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Abstract: The Slumgullion landslide, located in southwestern Colorado, has been active since the
early 1700s and current data suggests that the most active portion of the slide creeps at a rate of
~1.5–2.0 cm/day. Accurate deformation measurement techniques are vital to the understanding of
persistent, yet slow-moving landslides like the Slumgullion. The factors that affect slope movements
at the Slumgullion are on-time scales that are well suited towards a remotely sensed approach to
constrain the 12 different kinematic units that make up the persistent creeping landslide. We derive
a time series of motion vectors (magnitude and direction) using subpixel offset techniques from
very high resolution TerraSAR-X Staring Spotlight ascending/descending data as well as from a
novel high-resolution amalgamation of airborne lidar and unmanned aerial systems (UAS) Structure
from Motion (SfM) digital surface model (DSM) hillshades. Deformation rates calculated from the
spaceborne and airborne datasets show high agreement (mean difference of ~0.9 mm/day), further
highlighting the potential for the monitoring of ongoing mass wasting events utilizing unmanned
aircraft systems (UAS) We compare pixel offset results from an 11-day synthetic aperture radar (SAR)
pair acquired in July of 2016 with motion vectors from a coincident low-cost L1 only Global Navigation
Satellite System (GNSS) field campaign in order to verify the remotely sensed results and to derive
the accuracy of the azimuth and range offsets. We find that the average azimuth and range pixel offset
accuracies utilizing the methods herein are on the order of 1/18 and 1/20 of their along-track and slant
range focused ground pixel spacing values of 16.8 cm and 45.5 cm, respectively. We utilize the SAR
offset time series to add a twelfth kinematic unit to the previously established set of eleven unique
regions at the site of an established minislide within the main landslide itself. Lastly, we compare the
calculated rates and direction from all spaceborne- and airborne-derived motion vectors for each of
the established kinematic zones within the active portion of the landslide. These comparisons show
an overall increased magnitude and across-track component (i.e., more westerly angles of motion) for
the descending SAR data as compared to their ascending counterparts. The processing techniques
and subsequent results herein provide for an improved knowledge of the Slumgullion landslide’s
kinematics and this increased knowledge has implications for the advancement of measurement
techniques and the understanding of globally distributed creeping landslides.

Keywords: synthetic aperture radar (SAR); unmanned aircraft systems (UAS); structure from motion
(SfM); pixel offsets; landslide kinematics
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1. Introduction

The Slumgullion Landslide, located near Lake City in the San Juan Mountains of southwest
Colorado, is a deep-seated, creeping landslide and has been active since the early 1700s [1–3]. The active
portion of the slide creeps on top of an inactive historic slope failure that occurred over 700 years ago
and is outlined in Figure 1.
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Figure 1. Location of the Slumgullion landslide, GCP and base station locations and kinematic units.
The UAS-derived orthophoto acquired during the field campaign is also plotted.

This initial ~170 × 106 m3 catastrophic failure dammed the Lake Fork Gunnison River and
subsequently created Lake San Cristobal, the second largest natural lake in Colorado [1,2,4,5]. Recent in
situ and remotely sensed research suggests that the active portion of the slide moves at a rate up to
~2 cm/day, where the bulk of the motion occurs in the spring and summer snowmelt season [6,7].
The active slide is ~13 m in depth, nearly 4 km in length with an average width around 300 m, and an
elevation difference of approximately 540 m from head to toe [7–9]. The landslide material is of
volcanic origin and consists of highly altered, fine-grained silt and clay-rich materials with a high
swelling potential and less-weathered rock/debris from the head scarp [3,10–12].

The active material at the Slumgullion is mechanically and hydrologically separated from its
underlying inactive layers by a zone of low-permeable clays. This allows the overlying active region to
retain increased levels of moisture as compared to the underlying inactive zone, and in turn increases
the pore pressure at the basal landslide surface and allows for the persistent creeping motion of the
landslide [7,13]. The increased pore pressure and the subsequent increase in creep rates is a function
of variations in precipitation, atmospheric tides/windows and seasonal snowmelt. These have all
been attributed as important factors in the main drivers of the varying slope movement rates at
the Slumgullion and other similar creeping landslides [6,7,12,14–17]. Flow rates at the Slumgullion
are highly variable over both time and space. This is due to the size of the landslide as well as the
cyclic fashion in which water sources are delivered to the local water table as well as into the many
cracks/fissures on the surface of the slide that allow for direct infiltration. The temporal variability of
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the landslide flow rates is on several different scales. Although the landslide is in motion throughout
the entirety of the year, the flow velocity typically increases in the spring during the snowmelt season
and then decreases back to its normal rate in the summer after the snow water input has completely
infiltrated into the landslide system [7]. However, large monsoonal rains in the summer have been
shown to increase pore pressures and subsequently increase the rate of flow due to the reduction
in frictional strength within the landslide [1,7,17]. During the normal period of flow, the landslide
motion is highly correlated to the diurnal atmospheric tidal fluxes. These periods of lower atmospheric
pressure typically last for eight or fewer hours and are the cause of the majority of the daily motion
throughout the landslide [12]. Past research has defined 11 distinct kinematic units at the Slumgullion,
and these zones deform in diverse patterns and rates [18,19]. However, recent research has highlighted
an area of increased deformation in the lower one-third of the landslide, and we add this minislide
region as the twelfth kinematic unit [6,20].

The complexity of the Slumgullion deformation makes constraining the varied kinematics of the
slide a difficult task to undertake while utilizing in situ measurements alone. We point readers to the
work by Parise [4] for color images taken at the site. The large size, known diversity of kinematic
units within the landslide’s boundaries and the field conditions make for a difficult environment
to derive the spatial and temporal kinematic measurements that are required to properly constrain
the deformation at the site. Point-based measurement techniques utilizing in situ extensometers and
Global Navigation Satellite System (GNSS) campaigns allow for low spatial resolution measurements
but a high temporal measurement pattern. Other in situ/proximal data collection techniques (e.g.,
automatic total stations and terrestrial laser scanners) allow for highly accurate landslide monitoring,
but acquire data at low spatial resolutions and/or can be quite costly. However, under the right
circumstances the temporal resolution of these datasets can be quite high and the analyses from these
methods can produce meaningful results [21–24]. A large spatial coverage is required in order to
properly monitor the ongoing deformation in these diverse kinematic units, and in situ measurements
are usually not able to provide these requirements due to the typical inaccessibility of dangerous
landslide regions, the inadequate coverage of the deforming region as well as the extensive and
laborious undertaking required. Point measurements alone are not appropriate to constrain the diverse
kinematic regions within a landslide of this size and complexity. However, in situ measurements are a
crucial component (e.g., extensometers) in the deployment of landslide early warning systems and can
also provide meaningful information about the depth of the failure zone (e.g., using ground penetrating
radar) [25,26]. The connections between displacements of the different kinematic zones within complex
creeping landslides control its motion characteristics. That said, full-coverage kinematic measurements
from in situ campaigns at appropriate spatial resolutions are the most beneficial, but are almost always
less often obtained than their remotely sensed counterparts (for the reasons mentioned above).

Remotely sensed datasets allow us to analyze the kinematics of the Slumgullion over the entirety
of the study region in a precise fashion. Remotely sensed data with high spatial resolutions are required
at this site due to the diversity and size of the 12 known kinematic zones. These units deform in
distinctive yet diverse rate and direction patterns [18], and many remotely sensed datasets do not
possess the spatial resolutions required (around 5 m) to appropriately monitor these zonal movements.
The multitude of techniques that exist in order to measure landslide displacements range from the
utilization of lidar, synthetic aperture radar (SAR), GNSS, and dense pixel offsets from unmanned
aircraft systems (UAS)/airborne orthophotos, etc. [27–35]. For example, Roering et al. [36] compared
L-band SAR products to airborne lidar data in order to better constrain slope movements along the Eel
River in northern California. To this end, Cascini et al. [37] used similar techniques to analyze slow
moving landslides in central Italy. Differential interferometric SAR (DInSAR) processing methods are
well suited to measure creeping landslides, but care needs to be taken in order to remove as much error
in the interferometric phase as possible. Multitemporal interferometric techniques like small baseline
subsets (SBAS) and persistent scatter interferometric SAR (PSInSAR) are useful methods known to
help with the above-mentiond issues [38,39]. Multiple studies have shown the practicality of these
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processing techniques as they relate to deformation monitoring [40–43]. Studies by Calabro et al. [44]
and Dai et al. [45] each use different methods to account for the phase delay that is caused by the
SAR waves’ propagation through the atmosphere/ionosphere. These phase delays must be accounted
for during processing in order to increase the accuracy of the DInSAR-derived line-of-sight (LOS)
slope displacement products. This is especially true if the deformation is small in comparison to the
wavelength of the SAR instrument and the temporal repeat time of the sensor itself. However, some
landslides deform at rates faster than traditional DInSAR techniques can properly measure without
losing coherence. In these cases, dense pixel offset techniques are best utilized at constraining the slope
deformation vectors.

Varying methods utilizing precise image registration and pixel offset processing techniques on
both optical and SAR datasets have shown their worth with respect to monitoring surface motion (e.g.,
Landslides) [46–50]. Dense pixel offset techniques have other advantages over DInSAR processing
methods in that offsets are derived in both the range (across track) and azimuth (along track) directions.
This is in contrast to traditional DInSAR techniques that can only give deformation in the range
direction (along the LOS). However, the benefits of DInSAR lay in the accuracy of these movement
measurements where they are oftentimes more precise than the corresponding pixel offset range
deformation values. However, utilizing high spatial resolution datasets to derive pixel offsets will
help to increase this accuracy to an acceptable level. It has been stated that the azimuth and range
offset accuracies are on the order of 1/16 to 1/32 of the ground pixel spacing dimensions [51–53].
The minimum rate velocities in the range and azimuth directions need to be compared to the spatial and
temporal resolutions of the sensor to be utilized in order to determine if the study is feasible with that
particular dataset. The conditions at the Slumgullion meet these requirements when utilizing data from
the TerraSAR-X Staring Spotlight (TSX ST) mode as inputs into a dense pixel offset tracking workflow.
The focused TSX ST data utilized in this study has an 11-day repeat with ground pixel spacings of
around 45.5 cm and 16.8 cm in the slant range and azimuth directions, respectively. This combination
allows for precise motion vectors to be derived at the study site in both the across track and along
track directions by utilizing dense pixel offset techniques.

Digital surface models from airborne lidar and UAS Structure from Motion (SfM) techniques
are novel datasets that can be utilized as inputs into a dense pixel offset cross-correlation processing
approach. Products from airborne lidar surveys typically have spatial resolutions < 5 m, and oftentimes
are less than 1 m. Similarly, UAS surveys have the ability to acquire data such that the spatial resolution
of the gridded products is on the order of decimeters or less. As such, both of these data types
can resolve motion at the Slumgullion using dense pixel offset techniques if they are appropriately
coregistered. Shaded relief models (hillshades) derived from gridded DSMs generated from lidar
and UAS/SfM dense point cloud products have been shown as useful inputs into pixel tracking
workflows [33,54–56]. A priori knowledge of the landslide’s surface features and its downslope
direction should be utilized in order to determine the proper illumination source angle used to derive
the shaded relief models. The hillshade grids highlight surficial features based on their elevation
values and it is these shadow or bright regions within the hillshade datasets that are utilized in the
pixel offset algorithm to track the deformation of the landslide over time.

The overarching goals of this research are to: (1) highlight a very accurate spaceborne SAR
pixel offset processing workflow; (2) advance UAS-based deformation monitoring methodologies;
(3) emphasize the capabilities of low-cost GNSS hardware systems; (4) increase the understanding of
the landslide kinematics at the Slumgullion using a robust time-series of remotely sensed deformation
vectors, and (5) compare some of the most up-to-date deformation monitoring techniques from in situ
and airborne/spaceborne remote sensing platforms.

In order to satisfy our research goals, we seek to highlight accurate motion vectors derived
from both a high spatial resolution spaceborne X-band SAR sensor and a novel high-resolution
amalgamation of airborne lidar and UAS SfM point cloud derived shaded relief models using dense
pixel offset techniques over a well-studied and complex creeping landslide in southwestern Colorado.
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We also compare pixel offset results from an 11-day SAR pair acquired in July of 2016 with motion
vectors from a coincident GNSS field campaign in order to verify the remotely sensed results as well
as to derive the across track and along track accuracies of the pixel offsets from our fast normalized
cross-correlation (FNCC) processing workflow. We then utilize our dense time series of motion
vectors (magnitude and direction) to delineate and add a new kinematic region at the site of the
established minislide to the eleven previously established zones within the active portion of the
Slumgullion. Lastly, we compare the calculated rates and direction from all spaceborne and airborne
derived motion vectors for each of these 12 established kinematic zones within the active portion of the
landslide. This will help to better understand the magnitudes and directions of the deformation over
the study period as well as to highlight the strengths and weaknesses of the SAR and hillshade-based
data products.

2. Data and Methods

2.1. In Situ GNSS

A multiday field campaign was undertaken in the summer of 2016 on July 3, 8, 14, and 18 to acquire
precise latitude, longitude, and height data for 12 different ground control points (GCPs) as well as a
common base station used for post-processing. GCP data obtained on 3 July and 14 July was acquired
coincident with a TSX ST descending overpass and GCP data acquired on 8 July was utilized to rectify
data from a UAS campaign undertaken on 7 July 2016. We utilized two low-cost GNSS hardware units
consisting of a u-blox NEO-M8T receiver, an Intel Edison board, a Tallysman TW4721 external antennae
set on top of a ~10 cm diameter ground plane, and an appropriate lithium polymer battery system
for both the base and the rover setups. The Edison and NEO-M8T combination boards utilized were
manufactured by Emlid and are sold as their Reach hardware units (https://emlid.com/). The Reach
units enable raw GNSS logging of the L1 carrier frequency in order to ingest into an open-source
post-processing static (PPS) GNSS processing workflow utilizing ancillary datasets (clock and orbit) to
determine precise locations for each of the survey GCPs.

The 12 ground control markers consisted of red plastic trays (25 cm × 36 cm) with a black circular
(15-cm diameter) vinyl sticker adhered to the center of the tray. The GCP locations are displayed in
Figure 1 along with the location of the base station, and were chosen to create an even coverage over
the entirety of the active slide area. The base station was located no more than ~3.3 km from the GCPs,
and its precise location utilized for PPS processing runs was determined from point TP200 within
Table 1 in [57]. We acquired raw GNSS logs at 5 Hz from GPS, Glonass, and SBAS constellations for all
GCPs and the base station. We occupied the base station for the entirety of the daily GCP collections
(~3–4 h) and the individual GCPs for approximately 10 min each.

Raw data from the base and all GCP acquisitions was logged to a binary u-blox format by the
M8T chipset. We utilized RTKLIB, an open-source GNSS precise positioning software package in
order to process all of the raw ‘.ubx’ files [58]. The raw GNSS data was converted to RINEX format
(version 3.01) in order to post-process in RTKLIB. We acquired final International GNSS Service (IGS)
clock and orbit solutions from NASA’s Crustal Dynamics Data Information System (CDDIS) in order
to appropriately process the GNSS data into precise locations [59]. We utilized RTKLIB and the
individual GCP RINEX data along with the corresponding base data files in static positioning mode
with a combined processing solution and an elevation mask of 15◦. We set the integer ambiguities from
the carrier phase to fix and hold in order to better constrain the ambiguities to the resolved data with a
minimum ratio to fix of 3.0. Finally, we output the values from the processing runs and take the average
of the fixed values in the WGS84 coordinate reference system using the WGS84 ellipsoidal datum.

2.2. Dense Pixel Offsets

In order to calculate landslide motion vectors we exploit a dense pixel offset technique that
employs fast normalized cross-correlation (FNCC) algorithms [60–62]. More specifically, this study
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makes use of the denseampcor routine within the InSAR Scientific Computing Environment (ISCE)
processing modules [63]. This methodology is in wide use for SAR data processing and optical
offset analyses [51,64–68]. The denseampcor routine is capable of calculating sub-pixel offsets from
any ingestible imagery data (SAR, optical, DSMs, DTMs, hillshades, etc.) using the abovementioned
FNCC method. This methodology involves selecting an appropriate search window domain in the x
and y image dimensions (e.g., SAR azimuth and range) such that the search domain appropriately
encompasses the relative feature shift between the two scenes. The correlation coefficient peaks for
each investigated cell are matched in order to derive the offset between the pre and post image scenes.
The location of these matching correlation peaks within the imagery domain provides meaningful
estimates as to the x and y pixel shifts that have occurred between data takes (e.g., the landslide
deformation between two precisely co-registered image acquisitions). Accuracies that employ this
method are typically on the order of 1/16 to 1/32 of the pixel spacing dimensions [51–53,69,70]. As such,
the native ground sampling distance of the input dataset will play a vital role in determining whether
the FNCC-based denseampcor offset method is able to resolve the particular surface motion under
investigation (e.g., the Slumgullion). This study uses the abovementioned pixel offset methodology to
derive deformation from the ongoing Slumgullion landslide by utilizing high-resolution spaceborne
SAR amplitude data along with lidar- and UAS-derived shaded relief models. We describe these
datasets in Sections 2.2.1–2.2.3.

2.2.1. High-Resolution SAR

We employed eight ascending and 10 descending spaceborne SAR scenes acquired in the very-high
resolution TSX ST mode. Table 1 shows the dates for the 18 different ascending and descending SAR
scenes and Figure 2 shows the ascending and descending scene ground overlays.

These raw single-look complex (SLC) images were processed to the zero Doppler coordinates
along the range direction and consist of the complex amplitude and phase information [71]. The TSX
ST mode utilizes phased-array beam steering in the azimuth direction to increase the illumination
time at the rotational center within the scene [72]. This allows for a very high azimuth pixel spacing of
~16.8 cm and a slant-range ground resolution of ~45.5 cm in the focused SAR scenes. In the ST imaging
mode, the scene size is highly dependent on the incidence angle due to the correlation between the
length of the antennae footprint and the scene length (e.g., 7.5 km × 2.5 km at a 20◦ incidence angle
and 4 km × 3.7 km at 60◦). That said, total TSX ST coverage over the active slide is not possible due to
sensor geometry and the beam steering, but near-complete coverage does exist. These 8 ascending and
10 descending TSX ST scenes equate to 28 and 45 unique scene pairs and were acquired at an incidence
angle of 34◦ and 40◦, respectively. We chose to utilize the above-described FNCC dense pixel offset
processing technique instead of InSAR processing methods due to the large temporal baselines of most
scene pairs, the rate at which the slide deforms, as well as the unwrapping issues that would occur
from the complex deformation signal in the range direction at these very high ground pixel spacings.

Table 1. Dates of ascending and descending SAR scenes utilized for offset processing.

Ascending Descending

09202014 09012014
06302016 09122014
07112016 07032016
07222016 07142016
08022016 07252016
09152016 08052016
10182016 08162016
10292016 09182016

n/a 10212016
n/a 11012016
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We processed all 73 combinations of ascending and descending TSX ST scenes in the Jetstream
cloud computing environment of the Extreme Science and Engineering Discovery Environment
(XSEDE) [73,74]. The Jetstream environment allows for the large data stack of high-resolution
spaceborne SAR data to be processed in a timely fashion by utilizing many coincident Linux-based
processing instances. We created an automated workflow that allows for a hands-off processing of the
SAR scenes from start to finish. We utilized a highly accurate geometric coregistration approach due to
the fact that the TSX ST data is such high spatial resolution and the FNCC workflow requires highly
accurate coregistered input data [75]. This method outperforms a simpler polynomial coregistration
approach and provides the highly accurate rectification of data scenes that is required for our FNCC
methodology. Note that throughout this SAR processing workflow we utilized the TSX ST native zero
Doppler values to keep the Doppler information consistent with how the initial TSX ST SLCs were
formed. This provided a much more accurate coregistration of the data scenes.

In this paragraph we describe the highly accurate geometric coregistration approach utilized in
our processing workflow. First, the ascending and descending data scenes were evenly split throughout
the number of instances created on the Jetstream environment, and then a "superMaster" image for
each dataset was determined by limiting the temporal baseline between each pair (22 July 2016 for
ascending and 25 July 2016 for descending). Each TSX ST SLC was unpacked into a usable binary
format while all appropriate metadata and Doppler information was attained for further processing.
Next, a 1/3 arc-second (~10 m) USGS DEM was utilized along with orbital information to derive
pixel-by-pixel latitude, longitude, elevation, LOS, and incidence angle arrays for the "superMaster"
scenes using the individual SLC’s native zero Doppler information. These pixel-by-pixel latitude,
longitude, and height products were used to precisely coregister all scenes to their corresponding
"superMaster" using the workflow as described below. We estimated the range and azimuth positions
in all "slave" images for the corresponding "superMaster" latitude, longitude, and height values from
the previous step, and then created a pixel-by-pixel grid of the range and azimuth timing shifts of the
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"slave" scenes relative to the "superMaster" scene. Next, we performed a coarse coregistration on all
"slave" scenes using a purely geometric approach from the azimuth and range shift mapping from
the previous step. The following step estimated the constant azimuth and range shifts between the
"superMaster" and the recently derived coarse coregistered "slave" scenes. Here, the constant azimuth
shift represents the differential timing errors and the range shift represents timing errors and constant
atmospheric delays. We utilized these constant azimuth and range shifts to adjust the starting time of
the orbit and the range start location in the data in order to improve the coregistration between the
"superMaster" and all "slave" scenes. This was done by the creation of a new azimuth and range shift
mapping that included the newly derived constant shifts, and the subsequent fine coregistration from
this updated shift mapping between the "superMaster" and each "slave" scene.

We clipped all of the SLCs in the finely coregistered data stack to the appropriate study area
around the active portion of the Slumgullion, using the latitude and longitude mapping arrays derived
in a previous step along with spatial information of the landslide itself. Finally, we ran the FNCC-based
denseampcor routine described in Section 2.2 on the full-resolution (not multi-looked) coregistered
amplitude data in order to derive the landslide deformation vectors in the azimuth and range directions.
We converted these magnitudes to meters of motion using the appropriate azimuth and range pixel
spacing values. We also calculated the landslide motion vector heading angle for each pixel using the
LOS information along with the azimuth and range motion vector magnitudes derived from the FNCC
algorithm. The radar coordinate reference results were then geocoded to the Universal Transverse
Mercator (UTM) Zone 13 WGS84 Ellipsoid projection using the latitude and longitude mapping arrays,
and statistics on the rate and direction for each of the kinematic zones for each data pair were derived.

We also compared the GNSS deformation vectors with their corresponding SAR vector
counterparts to calculate average azimuth and range pixel offset accuracies on the SAR pixel spacing
scale. This was required in order to determine the accuracy and reliability of our SAR based offset
products as well as to compare these accuracies to previously established values using similar pixel
offset workflows. We found indices of the closest matching SAR pixels in the radar geometry to the true
GCP locations for the GNSS coincident SAR pair (3 July to 14 July 2016) using the derived latitude and
longitude look-up arrays. These index values were used to determine the along-track heading angle
as well as the azimuth and range SAR offsets at the GCP locations. Knowledge of the actual azimuth
and range ground pixel spacing was used in conjunction with the SAR heading and offset values to
translate the GNSS distance vectors (magnitude and direction) to the SAR geometry. The absolute
difference between these translated GNSS azimuth and range offsets and the coincident SAR azimuth
and range offsets was calculated for each of the overlapping GCPs and then averaged to derive the
overall average azimuth and range pixel offset accuracies based on the FNCC processing method as
described above.

2.2.2. Lidar-Derived Shaded Relief

We acquired a high resolution lidar-derived DSM in order to create a shaded relief model to
use as an input into the denseampcor routine with a UAS-derived shaded relief model as described
in Section 2.2.3 below. A multiday airborne lidar campaign conducted by the National Center for
Airborne Laser Mapping (NCALM) was undertaken over the Slumgullion site during early July of
2015. This campaign generated high-resolution elevation point cloud tiles on July 3, 7 and 10 of
2015 [76]. We have only selected and acquired data from the 7 July 2015 acquisition as it is exactly
one year prior to our UAS data acquisition (see Section 2.2.3). The 7 July 2015 NCALM lidar data was
acquired with an Optech Gemini Airborne Laser Terrain Mapper (1064 nanometers) mounted on a
Piper PA-31-350 Navajo Chieftain single engine aircraft flown at an altitude of ~600 m above ground
level (AGL). The Gemini is capable of capturing four separate returns for each pulse (first, second,
third and last). However, the point cloud data was processed to "ground" and "non-ground" categories
only. Data from the 7 July 2015 survey was processed by NCALM into a point cloud encompassing an
areal extent of ~17.35 km2 with an average point density of ~15.83 m-2. Figure 2 shows the lidar DSM’s
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outline over the study area. This point cloud was used to derive two 50 cm gridded products (< 10 cm
vertical error) where one is based on the "ground" returns and is titled the "Bare Earth" (DEM) product
and the other is derived from the first returns only and is titled the "Highest Hit" (DSM) product [77].
We focused our post-processing efforts on the "Highest Hit" DSM product in order to better match our
UAS-derived DSM product (see Section 2.2.3) as well as to exploit vegetation shadows in the hillshade
model that the FNCC algorithm can utilize in its correlation matching process. The lidar-derived DSM
model was appropriately reprojected and overlapping data between the two DSMs (UAS and lidar)
was kept for further processing. We derived a shaded relief model from this first-return-derived DSM
using an artificial light source with an azimuth and altitude of 230◦ and 45◦, respectively. These angles
were selected based on the local topography of the Slumgullion slide, and this hillshade output was
used in conjunction with the UAS-derived hillshade described below as inputs into the denseampcor
routine to derive the deformation vectors between July 2015 and July 2016.

2.2.3. UAS-Derived Shaded Relief

We utilized a DJI Phantom 3 Advanced (P3A) UAS system to acquire aerial photos over the
Slumgullion landslide on 7 July 2016 in order to ingest into a SfM workflow to create a DSM-derived
shaded relief model similar to the lidar derived hillshade as described in Section 2.2.2. The P3A utilized
a Sony EXMOR 1/2.3" sensor (6.16 mm width by 4.62 mm length) with a focal length of 3.61 mm
(or 20 mm at the 35 mm format equivalent) and a 3-axis (roll, pitch, and yaw) gimbal in order to
acquire near-nadir imagery for the 7 July 2016 flights. The onboard GNSS system utilized both GPS
and Glonass constellations in order to remain on a consistent (user-defined) flight path as well as to
roughly geotag the images acquired by the sensor with the approximate camera coordinates (latitude,
longitude, and elevation). We collected precise locational data for our 12 GCPs several hours prior
to our UAS flights over the study region. GNSS data for the markers was processed as described in
Section 2.1. The UAS’ onboard GNSS system is capable of acquiring picture location metadata with
several meters of absolute geometric accuracy. We utilized the GCPs in order to warp the SfM-derived
products to a more precise location on the UTM Zone 13 grid in order for our UAS-derived SfM outputs
to be precise enough to be ingested into our denseampcor processing routine along with the lidar-based
hillshade. We collected data from five different UAS flights with flight altitudes ranging from 3116 m
asl at the toe to 3688 m asl at the head in order to appropriately cover the entire active portion of the
landslide. The UAS flights were piloted at a constant altitude above the take off elevation (150 m to
175 m). UAS flight information is shown in Figure 3.

We acquired 502 separate images over ~30.1 km of UAS flight distance to completely cover
the landslide at an appropriate overlap in order to increase the accuracy of our SfM processing
outputs. These 502 geotagged images were ingested into our SfM workflow as described in the
preceding paragraph.

We utilized the SfM workflows built in to the Agisoft Photoscan Professional Edition (Version 1.2.4)
software in order to derive the high-spatial resolution DSM and a subsequent shaded relief model to
match the lidar-derived hillshade model [78]. The algorithms within Photoscan are mostly "black-box",
but the premise is based on previous known photogrammetric techniques [79,80]. We describe our
workflow below but point the reader to the two previously cited works for a more in-depth look at the
algorithms. All 502 UAS images were imported into Photoscan along with their picture coordinate
locations (x, y, z) derived from the UAS’ on-board GNSS system. The photos were then aligned using a
rendition of the scale-invariant feature transform (SIFT) algorithm using the imagery location metadata
to speed the process [79]. This alignment step finds matching points between all overlapping images,
estimates the camera positions, and creates a sparse point cloud. A total of 45 images did not align
properly and were removed from further processing after this step. Next, we utilized Photoscan to
mark the appropriate GCPs in all corresponding images and ingested the GCP location information
derived from Section 2.1 for each of the 12 GCPs acquired on 7 July 2016. We then optimized the
camera alignments by calibrating based on the ingested GCP information in order to reduce the error
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of the fit. In the following step, we generated a dense point cloud consisting of >121 million points
using the updated camera locations and the previously created sparse point cloud. Lastly, a DSM was
derived from the dense point cloud using an inverse distance weighting interpolation method with a
cell size of ~16 cm and an average point density of ~39 m-2. Figure 2 shows the UAS-derived DSM
outline as compared to the other datasets utilized within this study. Table 2 shows the XYZ residuals
from the above processing steps for the 12 GCPs.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 29 
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Table 2. Horizontal and vertical errors for georeferencing Structure from Motion (SfM) products
using GCPs.

GCP Name XY RMSE Z Error XYZ RMSE

GCP1 0.142 cm 1.205 cm 1.213 cm
GCP2 1.374 cm −0.570 cm 1.488 cm
GCP3 2.256 cm −2.926 cm 3.695 cm
GCP4 3.233 cm 1.169 cm 3.438 cm
GCP5 5.925 cm 5.398 cm 8.016 cm
GCP6 2.061 cm 0.348 cm 2.091 cm
GCP7 1.663 cm −0.288 cm 1.688 cm
GCP8 1.916 cm 0.254 cm 1.933 cm
GCP9 2.527 cm −0.005 cm 2.527 cm
GCP10 1.280 cm 0.059 cm 1.282 cm
GCP11 6.024 cm −1.375 cm 6.179 cm
GCP12 2.785 cm −2.736 cm 3.904 cm
Total 3.100 cm 2.051 cm 3.717 cm
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These residuals consist of root mean squared errors (RMSE) in the XY, Z, and XYZ of 3.1 cm,
2.1 cm, and 3.7 cm, respectively. We then projected the DSM to UTM Zone 13 and upsampled the grid
to a 50 cm cell size in order to match the lidar-derived DSM. Overlapping cells between both DSMs
were kept for further processing and a shaded relief model was derived from the UAS product using
the same azimuth and altitude light source angles as the lidar-based hillshade (see previous section).
This UAS-derived shaded relief model was used in conjunction with the hillshade from the lidar DSM
as inputs into the denseampcor routine to estimate the slope movement based on the 2016 hillshade
dataset relative to the 2015 hillshade dataset to a fraction of the input cell size. Lastly, statistics were
generated for each of the kinematic units and compared to rates and directions from both the GNSS
and the SAR offset results.

3. Results

3.1. In Situ GNSS

We derived a time series of motion for each of the 12 GCPs for every date that GNSS data was
acquired. We note that the marker at GCP1 was disturbed sometime between 3 July and 8 July 2016 and
the marker at GCP10 was not placed appropriately inside the area of active deformation. That said,
we processed GNSS data at GCP1 for two days only (8 and 18 July 2016) and tossed out data from
GCP10. Data at GCPs 11 and 12 were only acquired on 8 and 18 July 2016. Tables 3 and 4 show the
GNSS-derived magnitudes (with the combined standard deviation) and angle of motion for each GCP
and all available date combinations.

The GNSS results for the longest running 3 July–18 July 2016 date pair show a varied motion vector
for each of the GCPs where the range of angles and daily rates for the vectors are ~224◦–~256◦ and
6.94 mm/day–15.35 mm/day, respectively. As expected, there are increased motion rates in the neck
and minislide areas of the slide with a decrease towards the head and the toe for each date combination.
GCP3 is located within the minislide region of the active Slumgullion zone and the GNSS results
show that this GCP has one of the highest rates in each of the six GNSS date combinations processed.
Figure 4 shows the GNSS motion vectors for each of the six temporal GNSS data combinations along
with their combined standard deviation. The kinematic units in this figure are symbolized according
to the average SAR offset deformation from scene pair 1 September 2014 to 16 August 2016.

Table 3. Displacement rate, total displacement, displacement standard deviation, and angle of motion
for GNSS pairs: 3 July to 8 July, 14 July and 18 July, 2016.

07032016–07082016 07032016–07142016 07032016–07182016

GCP1 NO DATA NO DATA NO DATA

GCP2 1.14 cm/dy | 05.69 cm
1.82 mm | 240◦

0.67 cm/dy | 07.39 cm
0.89 mm | 259◦

0.69 cm/dy | 10.41 cm
1.30 mm | 241◦

GCP3 1.49 cm/dy | 07.47 cm
0.53 mm | 237◦

1.37 cm/dy | 15.04 cm
0.99 mm | 235◦

1.44 cm/dy | 21.65 cm
1.51 mm | 235◦

GCP4 1.49 cm/dy | 07.46 cm
1.23 mm | 236◦

1.13 cm/dy | 12.41 cm
1.78 mm | 240◦

1.13 cm/dy | 17.02 cm
3.19 mm | 240◦

GCP5 1.70 cm/dy | 08.52 cm
0.90 mm | 222◦

1.29 cm/dy | 14.21 cm
2.25 mm | 221◦

1.37 cm/dy | 20.55 cm
0.97 mm | 224◦

GCP6 1.00 cm/dy | 05.01 cm
0.50 mm | 234◦

1.22 cm/dy | 13.40 cm
0.39 mm | 233◦

1.41 cm/dy | 21.16 cm
1.97 mm | 229◦

GCP7 1.33 cm/dy | 06.63 cm
3.73 mm | 217◦

1.38 cm/dy | 15.23 cm
0.99 mm | 230◦

1.53 cm/dy | 23.02 cm
0.57 mm | 232◦

GCP8 1.13 cm/dy | 05.64 cm
0.79 mm | 192◦

0.63 cm/dy | 06.92 cm
0.37 mm | 221◦

0.69 cm/dy | 10.28 cm
1.85 mm | 225◦

GCP9 0.75 cm/dy | 03.73 cm
1.73 mm | 249◦

0.49 cm/dy | 05.37 cm
0.43 mm | 248◦

0.50 cm/dy | 07.51 cm
0.56 mm | 240◦

GCP11 NO DATA NO DATA NO DATA
GCP12 NO DATA NO DATA NO DATA
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Table 4. Displacement rate, total displacement, displacement standard deviation and angle of motion
for GNSS pairs: 8 July to 14 July, 18 July 2016 and 14 July to 18 July 2016.

07082016–07142016 07082016–07182016 07142016–07182016

GCP1 NO DATA 0.50 cm/dy | 05.04 cm
2.83 mm | 259◦ NO DATA

GCP2 0.50 cm/dy | 03.00 cm
1.45 mm | 303◦

0.48 cm/dy | 04.76 cm
1.86 mm | 242◦

1.05 cm/dy | 04.20 cm
0.92 mm | 208◦

GCP3 1.27 cm/dy | 07.64 cm
0.90 mm | 232◦

1.44 cm/dy | 14.35 cm
1.42 mm | 234◦

1.70 cm/dy | 06.80 cm
1.89 mm | 235◦

GCP4 0.85 cm/dy | 05.11 cm
1.46 mm | 247◦

0.96 cm/dy | 09.60 cm
2.87 mm | 243◦

1.22 cm/dy | 04.86 cm
3.42 mm | 239◦

GCP5 0.97 cm/dy | 05.82 cm
2.49 mm | 219◦

1.22 cm/dy | 12.15 cm
1.21 mm | 225◦

1.60 cm/dy | 06.41 cm
2.56 mm | 230◦

GCP6 1.40 cm/dy | 08.40 cm
0.45 mm | 232◦

1.62 cm/dy | 16.18 cm
2.03 mm | 228◦

1.96 cm/dy | 07.82 cm
1.91 mm | 224◦

GCP7 1.48 cm/dy | 08.89 cm
4.10 mm | 239◦

1.68 cm/dy | 16.79 cm
3.68 mm | 238◦

2.00 cm/dy | 07.98 cm
0.94 mm | 237◦

GCP8 0.50 cm/dy | 02.98 cm
0.90 mm | 273◦

0.72 cm/dy | 07.24 cm
2.38 mm | 247◦

1.31 cm/dy | 05.25 cm
1.96 mm | 230◦

GCP9 0.77 cm/dy | 04.59 cm
1.78 mm | 239◦

0.39 cm/dy | 03.91 cm
1.90 mm | 232◦

1.48 cm/dy | 05.92 cm
0.60 mm | 232◦

GCP11 NO DATA 1.07 cm/dy | 10.71 cm
2.20 mm | 230◦ NO DATA

GCP12 NO DATA 1.15 cm/dy | 11.53 cm
1.53 mm | 226◦ NO DATA
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The angles of motion for the GCPs typically correspond with the layout of the landslide on the
landscape where the neck is sloping towards the southwest and the head and toe are angled more
towards the west. The most westerly angle of motion occurs at GCP1 where the slide’s runout has
turned from more southwest to west–southwest. The quality of these results from the L1-only GNSS
data is a proof positive for low-cost survey hardware/software combinations under the right survey
conditions. We note that under many circumstances that these low cost GNSS platforms can provide
accurate data for the scientific community without having to spend large sums of money on expensive
multi-band systems. The low cost of L1-only hardware also allows for cluster campaigns in which
a multitude of sensors can be deployed. We utilized the results from this GNSS field campaign to
compare our SAR and hillshade-derived offsets and to calculate SAR offset accuracy assessment values
as described in the following sections.

3.2. SAR Offsets

We processed 28 ascending and 45 descending unique TSX ST mode scene pairs according to the
methodology described in Section 2.2.1. The denseampcor routine provides azimuth and range offsets
for each of the processed scene pairs. We utilized the individual scenes’ geometry to derive the overall
displacement rates and angles of motion for all 73 data pairs. All unclipped angle and rate plots for
the ascending and descending scene pairs are shown in Supplementary Figures S1–S4, respectively.
We show the clipped displacement rates along with the deformation angles for an ~2-year descending
scene pair (September 2014 to August 2016) and an 11-day descending scene pair (3 July to 14 July
2016) that was acquired coincident with GNSS data in Figure 5.Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 29 
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Figure 5. Clipped displacement rates and angles of motion for descending SAR offset pairs 1 September
2014 to 16 August 2016 and 3 July 2016 to 14 July 2016. The minislide region is highlighted by the
white oval.
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We note the minislide region as the small area of rapid deformation in the lower one-third of
the slide shown within the white ovals in Figure 5. This minislide zone has been found in two prior
airborne SAR-based studies [6,20]. We created a new kinematic unit (#12) around this area of rapid
motion by summing all SAR offset deformation grids and then defining the kinematic zone 12 region
based on the increased accumulated deformation values in the minislide region as compared to the
surrounding cells’ values. This new kinematic zone was utilized with the initial eleven units to
compare motion vectors derived from both the SAR offsets described within this section as well as the
hillshade-derived offsets described in Section 3.3 below.

We show the average rate and angle of motion (along with the standard deviation) in Table 5 for
each of the 12 kinematic units for both the example SAR data pairs.

Table 5. Average rates and angles of motion along with their associated standard deviations for each of
the 12 kinematic units for the SAR offset pairs 1 September 2014 to 16 August 2016 and 3 July 2016 to
14 July 2016.

20140901–20160816 20160703–20160714

Kin. Unit Avg. Rate St. Dev. Avg. Angle St. Dev. Avg. Rate St. Dev. Avg. Angle St. Dev.

1 0.17 cm/day 0.75 mm 219◦ 26◦ 0.39 cm/day 3.88 mm 189◦ 57◦

2 0.25 cm/day 0.52 mm 238◦ 10◦ 0.34 cm/day 1.91 mm 216◦ 45◦

3 0.26 cm/day 0.61 mm 252◦ 13◦ 0.51 cm/day 4.26 mm 207◦ 68◦

4 0.35 cm/day 0.82 mm 234◦ 19◦ 0.43 cm/day 2.33 mm 217◦ 32◦

5 0.59 cm/day 1.38 mm 237◦ 13◦ 0.56 cm/day 1.71 mm 219◦ 21◦

6 0.96 cm/day 3.31 mm 217◦ 35◦ 1.00 cm/day 2.58 mm 214◦ 18◦

7 1.16 cm/day 4.32 mm 219◦ 41◦ 1.18 cm/day 2.69 mm 216◦ 09◦

8 0.84 cm/day 1.82 mm 232◦ 19◦ 0.82 cm/day 2.22 mm 224◦ 18◦

9 0.84 cm/day 2.85 mm 230◦ 26◦ 0.80 cm/day 2.52 mm 221◦ 20◦

10 0.20 cm/day 1.22 mm 289◦ 41◦ 0.46 cm/day 3.43 mm 206◦ 85◦

11 0.44 cm/day 0.94 mm 244◦ 23◦ 0.42 cm/day 2.26 mm 218◦ 44◦

12 1.12 cm/day 2.85 mm 226◦ 23◦ 1.03 cm/day 2.14 mm 214◦ 10◦

The differences in deformation rates in the 12 kinematic zones are more defined in the
displacement plots for the longer temporal scene pairs as compared to the shorter temporal baseline
pairs. These differences in landslide motion for the kinematic regions are more easily discerned as
further time passes between acquisitions and the displacement between scenes increases. We note that
the fastest moving zones (Kinematic zones 6–9, 12) are the same in both date pairs, and the differences
between the rates in these zones are lower than most other kinematic units. Similarly, the angle of
motion in these zones shows the lowest difference as compared to the other units. This is caused by
the pronounced deformation in these faster moving regions (the neck and the minislide). We note
the presence of the slow-moving region of zone 10 on the northern half of the toe that has a more
pronounced northward deformation angle for the 2014–2016 data pair. Figures 5 and 6 also highlight
this increased angle of motion.

3.3. Lidar/UAS Offsets

We calculated pixel offsets from two high-resolution (50 cm) shaded relief models derived from
our previously described UAS and lidar DSMs utilizing the denseampcor routine discussed in Section 2.2.
Figure 6 displays the hillshade-derived clipped and unclipped Slumgullion displacement rates along
with the corresponding deformation angles. We show the unclipped plots in this figure so the reader
can see the noise level of the offsets in the areas outside of the actively deforming regions.
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Figure 6. Clipped and unclipped displacement rates and angles of motion for the UAS/lidar hillshade
offset pair 7 July 2015 to 7 July 2016. The minislide region is highlighted by the white oval.

Note that the minislide is also present in these hillshade rate plots. We compare the deformation
rates and angles for each of the 12 kinematic units as previously described. Table 6 displays the average
rates and angles (along with the standard deviation) for each of the kinematic zones. Similar to Table 5,
we note the increased rates in the neck and the minislide regions of kinematic zones 6–9, and 12.

Table 6. Average rates and angles of motion along with their associated standard deviations for each of
the 12 kinematic units for the UAS/lidar hillshade offset pair 7 July 2015 to 7 July 2016.

20150707–20160707

Kin. Unit Avg. Rate St. Dev. Avg. Angle St. Dev.

1 0.37 cm/day 2.5 mm 305◦ 13◦

2 0.26 cm/day 0.3 mm 277◦ 14◦

3 0.23 cm/day 0.4 mm 253◦ 18◦

4 0.37 cm/day 1.2 mm 245◦ 23◦

5 0.71 cm/day 1.5 mm 224◦ 10◦

6 1.11 cm/day 2.5 mm 226◦ 18◦

7 1.33 cm/day 4.1 mm 229◦ 22◦

8 0.84 cm/day 1.9 mm 236◦ 21◦

9 0.86 cm/day 2.4 mm 233◦ 12◦

10 0.23 cm/day 0.9 mm 283◦ 35◦

11 0.47 cm/day 0.9 mm 229◦ 11◦

12 1.03 cm/day 1.3 mm 238◦ 5◦

4. Discussion

The magnitude of the deformation vectors derived in this study is similar to past findings,
and the angle of the deformation is in line with the local aspect and topographic bounds of the
slide [6,7,12,81,82]. We compared the SAR offset vectors from the 3 July–14 July 2016 descending
scene pair with eight coincident GNSS vectors acquired in the field. We found the matching cell in
the SAR offset image (in radar coordinates) that corresponds closest to the GCP location using precise
latitude and longitude look-up arrays, and then determined the deformation vector at that location
along with a separate vector for the average nine-cell window centered on that pixel. Figure 7 plots
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both the single matching cell and the nine-cell average SAR deformation vectors along with their
corresponding GNSS-derived vectors for a visual comparison of the derived motion at each of the
8 coincident GCP locations.Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 29 
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Figure 7. Comparison deformation vectors for the eight overlapping GNSS locations and the coincident
SAR-derived offsets for date range 3 July to 14 July 2016. We plot the SAR vector at the GCP cell in
radar geometry as well as the nine-cell average surrounding that cell. Motion and heading angles are
noted in each subplot.
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We derived the average azimuth and range pixel offset accuracies using the GNSS/SAR offset
comparison technique described at the end of Section 2.2.1. The average of these absolute differences
in azimuth and range for each of the eight coincident GCPs are on the order of 1/18 (0.93 cm) and
1/20 (2.28 cm) of their along-track and slant range focused ground pixel spacing values of 16.8 cm
and 45.5 cm, respectively. These values fall in line with accuracies (1/16 to 1/32 of the pixel spacing
dimensions) from comparable studies that employ similar FNCC processing methods [51–53,69,70].
The absolute differences in the azimuth and range offsets equate to a potential 2D Euclidean error
of approximately ±2.46 cm in the offset results. These potential differences between the GNSS
displacement and the offset derived motion, along with the uncertainty in the GNSS measurements
of the GCPs themselves, are the likely cause of the differences in the deformation vectors in Figure 7.
We also note that the majority of the GNSS vectors in Figure 7 have more of a westerly component than
their corresponding SAR offset counterparts. We recall the imaging geometry of these descending SAR
scenes is 189.80◦ and 279.8◦ in the azimuth and range directions. Here, the more accurate azimuth
offsets could be affecting the SAR vectors such that they are more southerly, and the more westerly,
but less-accurate range offsets are not providing the magnitude required to completely match up the
coincident GNSS and SAR offset displacement vectors. We note that because the temporal baseline of
the GNSS-coincident SAR offset pair is only 11 days, and the motion at the monitored GCPs plotted
in Figure 7 is at most ~15 cm, that the ±2.46 cm uncertainty in the offset results accounts for a larger
percentage of the total offset than a longer baseline pair would have. We highlight the individual
magnitudes and angles between the SAR and the GNSS vectors in Table 7 where these differences in
the motion vectors can be discerned.

Table 7. SAR offset and coincident GNSS deformation vector comparison for the 3 July to 14 July
2016 data pair.

GCP
Name

SAR
Magnitude

SAR 9-cell
Magnitude

GNSS
Magnitude

SAR
Angle

SAR 9-cell
Angle

GNSS
Angle

GCP2 07.77 cm 07.67 cm 07.39 cm 255.87◦ 254.68◦ 259.73◦

GCP3 13.12 cm 13.40 cm 15.04 cm 222.58◦ 225.08◦ 235.07◦

GCP4 09.30 cm 09.88 cm 12.41 cm 227.49◦ 225.00◦ 240.97◦

GCP5 12.41 cm 12.04 cm 14.21 cm 217.06◦ 213.79◦ 221.38◦

GCP6 11.49 cm 11.27 cm 13.40 cm 219.46◦ 215.66◦ 233.10◦

GCP7 16.55 cm 16.29 cm 15.23 cm 220.81◦ 222.01◦ 230.11◦

GCP8 05.52 cm 05.17 cm 06.92 cm 220.81◦ 216.83◦ 221.70◦

GCP9 03.94 cm 04.12 cm 05.37 cm 210.93◦ 219.74◦ 248.87◦

In order to glean a better understanding of the kinematics at the Slumgullion for the different
viewing geometries of our SAR scenes, we plot the average daily deformation rate and the average
angle of motion from all SAR data points. These values are separated for each of the 12 kinematic
zones and plotted against the temporal baseline in days between scene acquisitions for both of the
ascending and descending data pairs. Figure 8 shows the angle of motion plots and Figure 9 displays
the daily rate of motion plots for all Slumgullion kinematic regions.

The ascending and descending angle of motion comparisons show a more westerly direction
for the descending tracks as compared to the ascending tracks in the kinematic zones with higher
rates of motion (i.e., 5–9, 12) and for the data pairs spanning longer temporal periods (i.e., >600 days).
Similarly, the average daily rates for the descending data pairs are nearly always larger than their
ascending counterparts. Again, this is especially true for the kinematic zones with higher rates
of motion (i.e., 5–9, 12), and for the data pairs spanning longer temporal periods (i.e., >600 days).
This dissimilarity is partially caused by the difference in sensor geometry. In particular, the varying
incidence angles for the two orbits (ascending: 34◦ and descending: 40◦) cause the horizontal velocities
to project differently into the LOS (range offsets). The variations in the displacement rates also
stem from the different handling of the built-in vertical component of the range offset deformation.
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This vertical component of the displacement offsets is inherently added to the westward horizontal
motion in the descending data and subtracted from the motion in the ascending data, thereby reducing
the deformation values for the latter. This is especially evident in Figure 10 as we plot the single
reference time series for the longest running ascending and descending pair combinations at each of
the GCP locations.Remote Sens. 2018, 10, x FOR PEER REVIEW  19 of 29 
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Figure 8. Average angle of motion for each of the 12 kinematic units plotted against the temporal
baseline in days for each of the 73 SAR scene pairs and the hillshade data pair.
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Figure 9. Average displacement rate for each of the 12 kinematic units plotted against the temporal
baseline in days for each of the 73 SAR scene pairs and the hillshade data pair.
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Figure 10. Single reference time series for the two longest running ascending and descending pair
combinations at each GCP. The linear trends and reference dates for the ascending and descending
data are plotted as red and green dashed lines and circles, respectively. Note the reduced displacement
in the ascending offsets that are likely caused by the difference in viewing geometry (LOS and azimuth
angles).

We derived statistics for the azimuth and range offsets in order to further investigate the
noted differences in deformation magnitudes between the ascending and descending orbital pairs.
Figure 11 plots the average ascending and descending azimuth and range offset rates for each of the
12 kinematic units.

Recall that the along track (azimuth) and across track (range) directions for the ascending and
descending orbits are 349.65◦ and 79.65◦ in comparison to 189.80◦ and 279.8◦, respectively. We note
that the more westerly motion in the descending tracks is caused by the sensor geometry and is
evidenced by the increased range offsets as compared to the ascending range offsets. The markedly
different ascending and descending deformation angles for kinematic unit 12 are likely caused by the
much lower ascending range offset rates in this region. The larger (more westerly) angle of motion for
kinematic units 3, 10, and 11 is evidenced by the increased range offset values in the corresponding
plots. The difference in along-track heading angles for both the ascending (349.65◦) and descending
(189.80◦) data along with the overall southwesterly deformation direction of the Slumgullion allows
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for more of the westerly deformation to be contained in the descending data’s azimuthal offsets.
This allows for a better and more direct-translation of the horizontal component into the total offsets
as the increased azimuth resolution (~16.8 cm) as compared to the slant range resolution (~45.5 cm)
allows for more accurate offset results from the FNCC-based denseampcor workflow.
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Figure 11. Average absolute azimuth and range displacement rates for each of the 12 kinematic units
plotted against the temporal baseline in days for each of the 73 SAR scene pairs.

Comparing the 11-day SAR offset results from early July, 2016 with the coincident GNSS vectors
shows an overall reduced deformation rate in the SAR derived results (see Table 7). Similarly, when
comparing the SAR offset results from the ascending and descending data pairs we note an overall
reduced deformation for the ascending data pairs. These discrepancies, along with the ones discussed
in the preceding paragraph, highlight the importance of sensor geometry with respect to the particular
geomorphologic phenomenon being investigated. That said, the Slumgullion kinematic units are more
accurately resolved utilizing the descending data described herein. An ideal scenario involves the
sensor geometry matching up with the deformation angles of the landslide occurrence, which would
provide a more direct translation of the actual displacement into the pixel offset results.

In the following paragraph we compare and discuss the lidar/UAS offsets with GNSS motion
vectors and the kinematic zone averages between all remotely sensed offset products. Table 8 plots
the magnitude and direction of the deformation for the hillshade offset results at all 12 of the GCP
locations for comparison.

Note that the GNSS rates are derived from GCP acquisition dates 8 July–18 July 2016. The GNSS
magnitudes are larger in all but three cases (GCP2, 7, and 12), and in these three cases the hillshade
magnitude is only slightly larger than its GNSS-derived counterpart. The increased GNSS-derived rates
as compared to the hillshade offset-derived rates are very likely caused by the difference in the temporal
period between the two (i.e., 8 July–18 July 2016 versus July 2015–July 2016, respectively). The fastest
motion occurs during the spring and summer snowmelt seasons, and as such, the GNSS rates for the
early July period are expected to be higher than the fall, winter and early spring rates that are included
in the hillshade offset rate derivations [6,7]. These seasonally reduced hillshade deformation speeds
bring down the overall rate for this period, thereby very likely creating the discrepancy between the two.
We compare deformation vectors from the hillshade grids to the different ascending and descending
SAR-based results by examining Figures 8 and 9. We note that the lidar/UAS hillshade rates match
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closer with the majority of the longer-running (>600 days) descending data pairs. The fastest moving
kinematic zones from the hillshade results in Table 6 are the same fastest moving zones derived from
the SAR offsets (Kinematic zones 6–9, 12) on Table 5. We compared the hillshade-derived rates to
an example descending SAR rate pair (1 July 2014–16 August 2016) and found the average absolute
difference between the two displacement rates to be less than ~0.9 mm/day. Note that the hillshade
displacement rate is calculated from the 7 July 2015 to 7 July 2016 shaded relief model pairs, and is
within the temporal range of the compared descending SAR data pair. This similarity between the two
airborne and spaceborne-derived deformation vectors further highlights the benefits of UAS-derived
products with respect to ongoing mass wasting events, and other similar geophysical processes (e.g.,
Glacier flows).

Table 8. Hillshade derived deformation rates and angles of motion from the UAS/lidar offset pair
7 July 2015 to 7 July 2016 compared to GNSS vectors derived from 8 July to 18 July 2016.

GCP
Name

HS
Magnitude

HS 9-cell
Magnitude

GNSS
Magnitude

HS
Angle

HS 9-cell
Angle

GNSS
Angle

GCP1 0.39 cm/day 0.39 cm/day 0.49 cm/day 230◦ 230◦ 260◦

GCP2 0.54 cm/day 0.53 cm/day 0.46 cm/day 224◦ 222◦ 243◦

GCP3 1.07 cm/day 1.08 cm/day 1.38 cm/day 232◦ 232◦ 234◦

GCP4 0.85 cm/day 0.85 cm/day 0.93 cm/day 228◦ 228◦ 244◦

GCP5 1.15 cm/day 1.15 cm/day 1.17 cm/day 239◦ 238◦ 225◦

GCP6 1.18 cm/day 1.18 cm/day 1.56 cm/day 234◦ 234◦ 229◦

GCP7 1.69 cm/day 1.69 cm/day 1.62 cm/day 209◦ 209◦ 238◦

GCP8 0.51 cm/day 0.51 cm/day 0.70 cm/day 237◦ 236◦ 248◦

GCP9 0.16 cm/day 0.16 cm/day 0.38 cm/day 259◦ 259◦ 232◦

GCP11 0.92 cm/day 0.92 cm/day 1.03 cm/day 231◦ 231◦ 230◦

GCP12 1.13 cm/day 1.13 cm/day 1.11 cm/day 240◦ 240◦ 227◦

5. Conclusions

We derived accurate Slumgullion deformation vectors from very high resolution spaceborne SAR
scenes utilizing dense pixel offset workflows for 73 different ascending (28) and descending (45) scene
pairs. These vectors are similar to past studies, and the angle of the deformation is in line with the
local aspect and topographic bounds of the slide. SAR offset results from our cloud-computing based
workflows are compared to a coincident GNSS survey from July 2016 and the average azimuth and
range pixel offset accuracies utilizing the methods herein are on the order of 1/18 and 1/20 of their
along-track and slant range focused ground pixel spacing values of 16.8 cm and 45.5 cm, respectively.
We found an area of increased deformation in the lower one-third of the landslide and added this
minislide region to a previously established set of eleven different kinematic units. We then compared
deformation rates and directions for each of these 12 kinematic zones along with the individual azimuth
and range offsets for both ascending and descending scene pairs. Differences in the deformation vectors
for the 12 zones on the active landslide between the ascending and descending SAR offsets were then
discussed. The average daily rates and angles of motion for the descending data pairs are nearly always
larger and more westerly than their ascending counterparts, respectively. The inconsistencies in the
ascending and descending vectors are caused by the different sensor geometries and the Slumgullion
kinematic units are more accurately resolved utilizing the descending data pairs.

We have shown the quality and usefulness of open-source, low-cost L1-only multiconstellation
GNSS hardware and software platforms for geoscience applications (e.g., GCP creation and
deformation tracking). More specifically, we have derived accurate GNSS deformation vectors at
the Slumgullion landslide in southwest Colorado for four different field collection dates along with
accurate ground control points for an airborne UAS survey. These GNSS vectors correspond well
to previous research at this field site, and these (or similar) GNSS platforms can be used to track
sub-decimeter motion from many geophysical phenomena (e.g., glacier flows and creeping landslides)
at a fraction of the cost of off-the-shelf multiband GNSS platforms.
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We calculated displacements from a novel high-resolution amalgamation of airborne lidar and
UAS SfM point-cloud-derived shaded relief models using dense pixel offset techniques. We compared
the hillshade offset deformation with displacement vectors from a temporally overlapping SAR-derived
offset grid and found the average absolute difference between the two displacement rates to be
less than ~0.9 mm/day. We found that GNSS-derived displacement rates are slightly larger than
their corresponding hillshade-derived counterparts for the majority of the associated GCPs and
that this is likely caused by the seasonal variations in deformation rates and the difference in the
temporal period between the two data acquisitions (i.e., 8 July–18 July 2016 versus July 2015–July 2016,
respectively). The similarity between the airborne-derived deformation vectors and both the GNSS
and spaceborne-derived deformation vectors further highlights the benefits of UAS-derived products
with respect to ongoing mass wasting events and other similar geophysical processes.

The processing techniques and subsequent results herein provide for an improved knowledge
of the Slumgullion’s kinematics and this increased knowledge has implications for the advancement
of measurement techniques and the understanding of globally distributed creeping landslides.
These methodologies are not restricted to the Slumgullion study area and can be applied to other
landslide complexes in order to better understand landslide kinematics at locations that experience
similar complex creeping landslides.
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