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Abstract: This study assesses model temporal transferability using airborne laser scanning (ALS) 

data acquired over two different dates. Seven forest attributes (i.e. stand density, basal area, squared 

mean diameter, dominant diameter, tree dominant height, timber volume, and total tree biomass) 

were estimated using an area-based approach in Mediterranean Aleppo pine forests. Low-density 

ALS data were acquired in 2011 and 2016 while 147 forest inventory plots were measured in 2013, 

2014, and 2016. Single-tree growth models were used to generate concomitant field data for 2011 

and 2016. A comparison of five selection techniques and five regression methods were performed 

to regress field observations against ALS metrics. The selection of the best regression models fitted 

for each stand attribute, and separately for both 2011 and 2016, was performed following an indirect 

approach. Model performance and temporal transferability were analyzed by extrapolating the best 

fitted models from 2011 to 2016 and inversely from 2016 to 2011 using the direct approach. Non-

parametric support vector machine with radial kernel was the best regression method with average 

relative % root mean square error differences of 2.13% for 2011 models and 1.58% for 2016 ones. 

Keywords: model temporal transferability; ALS; forest inventory; backdating; Mediterranean forest 

 

1. Introduction 

Forest ecosystems provide economic and social benefits to humankind [1,2] requiring accurate 

tools to monitor their dynamics over time [3]. Over the last decades, optical remote sensing 

techniques have been used for monitoring forest changes at regional scales with the support of field 

surveys (e.g., [4,5]). However, airborne laser scanning (ALS) is better adapted to characterize forest 

structure [6] and estimate forest inventory parameters, providing accurate information to perform 

forest management and planning [3]. Furthermore, costs of ALS-based inventories are comparable to 

those associated with traditional ground-based ones [7,8]. Despite the great potential of this 

technology, multi-temporal ALS data have been utilized less, as the availability of two or more 

surveys in the same area has been limited by acquisition costs as well as by the need of temporal-
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concomitant field data (e.g., [3,6,9,10]). Recently, organizations, companies, and countries have made 

an effort to gather multi-temporal datasets in different years (e.g., [11–13]) allowing the estimation of 

biophysical properties in forested areas over time. As a result, height growth has been estimated 

using the single tree or the area-based approach [14–20]. Biomass and carbon dynamics has also been 

analyzed [3,9,21–27], while less studies have estimated volume [17,18,21], basal area [17], and site 

index [14,28]. Multi-temporal data has also been used for quantifying fire-induced changes to forest 

structure [29], gaps presence [20,30,31] or detecting defoliation [32]. However, to the best of our 

knowledge, some relevant forest inventory attributes, such as stand density, squared mean diameter, 

and dominant diameter, have not been estimated using multi-temporal ALS data.  

The use of low-density ALS data has been successfully used for estimating forestry attributes in 

different forest ecosystems (e.g., [33–35]), being also the case in Mediterranean forests of Spain (e.g., 

[36–38]). The analysis of the influence of point density on model predictions have been analyzed by 

several authors (e.g., [39–41]), who established that point density has little or no effect on predictions 

as statistical metrics remain stable [42]. Furthermore, Garcia et al. [43], Singh et al. [44], and Ruiz et 

al. [45] pointed out that low-density datasets were a viable solution at regional scales. Furthermore, 

the use of multi-temporal, low-point density data has only been explored in boreal ecosystems [17,28] 

and in temperate forests [24,27] but not in other ecosystems, such as Mediterranean ones, which are 

characterized by a higher heterogeneity in terms of forest structure.  

Direct and indirect approaches have been proposed to model forest attributes using multi-

temporal ALS data over time [26]. The direct approach adjusts one model for one point in time and 

estimates the inventory attribute for another point in time [3,9]. Previously, the model to be 

extrapolated was generated through regression methods that related a suite of ALS-metrics with 

ground-truth data. This approach allowed the temporal transferability of models reducing modeling 

time and fieldwork, as it was not needed to revisit them when the time between the ALS surveys was 

not large [28]. In contrast, the indirect approach fits two different models and estimates the variables 

for each point in time [3,9,17,24,25,27]. Several examples of the evaluation of these two approaches 

can be found in the literature. For example, when estimating biomass and carbon fluxes, Zhao et al. 

[3] and Meyer et al. [25] achieved better results with the indirect approach while Cao et al. [9], 

Skowronski et al. [24], and Bollandsås et al. [26] found slightly better performance of the direct 

approach.  

These aforementioned modeling strategies sometimes face a challenge when lacking temporally-

concomitant field data to calibrate forest stand models [3]. To this end, forest growth models can 

serve as useful tools to calibrate forest stand variables in a specific point in time. Thus, empirical 

growth models have received particular attention since the beginning due to their usefulness. 

Nowadays state-space stand-level models [46], distribution-based models, and both individual-tree 

models and complex process-based eco-physiological models [47] have dramatically increased 

flexibility and realism to forest simulations. In this sense, individual-tree growth models are powerful 

tools to update stand variables to the Light Detection and Ranging (LiDAR) mission date. For 

example, the use of diameter at breast height (dbh) and the height growth values from general yield 

tables of the Spanish National Forest Inventory have been applied for estimating total tree biomass 

in Aleppo pine forests [36]. However, specific single-tree growth models calibrated with tree rings 

are more accurate, particularly for improving model consistency when working at regional scale.  

Thus, the aim of this study is to assess temporal transferability of several forest attributes models 

by comparing direct and indirect approaches using low-density ALS datasets collected in 2011 and 

2016. Seven forestry attributes (i.e. stand density, basal area, squared mean diameter, dominant 

diameter, tree dominant height, timber volume, and total tree biomass) are estimated at regional scale 

in the Mediterranean Aleppo pine forest. First, an indirect approach fits two different models for 2011 

and 2016 and estimates stand attributes for each point in time using different ALS-metrics and model 

parameters. Secondly, a direct approach extrapolates the models fitted previously, using the same 

variables and model parameters, to the other points in time.  
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Furthermore, the following secondary objectives were addressed: updating field inventory data 

collected in three different dates to the point clouds acquisition dates using single-tree growth 

models; comparing five selection methods and five regression methods in forest attributes modeling. 

2. Materials and Methods 

2.1. Study Area 

The Aleppo pine (Pinus halepensis Mill.) forests under study are located in the Aragón region 

(Figure 1), Northeast Spain. This species represents 18.7% of the forested area, including semi-natural 

and reforested stands [48] and is well adapted to Mediterranean environmental conditions. 

 

 Figure 1. Study area with the location of forest inventory plots. High spatial resolution 

orthophotography from Spanish National Plan for Aerial Orthophotography spatial data 

infrastructure (SDI) service  is used as a backdrop. 

In this area, the annual precipitation ranges from 350 mm to 1000 mm [49]. The average annual 

temperature is 14 °C, with cold winters and hot and dry summers. Aleppo pine forests are 

characterized by a hilly topography, with elevations ranging from 300 to 1150 m above sea level and 

slopes from 0° to 39°. The lithology of the study area varies from Miocene carbonate and marl 

sediments to limestone platforms and Mesozoic and Eocene limestone. 
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Some pine stands are natural, but most stands were planted approximately forty to sixty years 

ago. The evergreen understory includes species such as Quercus ilex subsp. rotundifolia, Quercus 

coccifera, Juniperus oxycedrus, Buxus sempervirens, Juniperus phoenicea, Rosmarinus officinalis, and Thymus 

vulgaris, among many others. Reforested areas usually present a low presence of hardwood species 

and poor diversity [50,51], while natural stands are structurally complex with a developed and 

diverse understory [52]. 

2.2. Forest Inventory Data 

Forest inventory data was acquired through 147 plots from three field campaigns performed 

during June to July 2013, July to September 2014, and April 2016 (Figure 1), from now on cited as first, 

second, and third campaign, respectively. The sampling data fulfilled the statistical requirements 

[53], considered the size of the study area, and the variability of the pine forest in terms of terrain 

slope, canopy height, and canopy cover (CC) [54].  

Field data from the first campaign were acquired in 53 circular plots with a 15 m radius. A Leica 

VIVA® GS15 CS10 GNSS real-time kinematic global positioning system (GPS) was used to collect the 

center of each plot. Tree dbh, for those trees with a dbh larger than 7.5 cm, was measured at 1.3 m 

height using a diameter tape. Green crown height and height of up to 4 randomly selected sample 

trees within each plot were measured using a Suunto® hypsometer. Thus, diametric class was 

considered when selecting the sample trees.  

Field data from the second campaign were collected in 43 circular plots with a 15 m radius. The 

center of the plots was referenced using the same Global Navigation Satellite System (GNSS) receiver 

as in the first campaign. Tree dbh was measured with the same criteria as the first campaign using a 

Haglöf Sweden® Mantax Precision Blue caliper. The green crown height and the total height of all 

trees in the plot were measured using a Haglöf Sweden® Vertex instrument. 

Field data from the third campaign were acquired in 51 circular plots. The center of the 

designated circular plots was measured using a Trimble® GNSS receiver. Field plots with a 5.6 m (3 

plots), 8.5 m (23 plots), 11.3 m (17 plots), and 14.10 m (7 plots) radius were collected. Tree dbh was 

measured at 1.3 m using the same caliper as in the second campaign. The green crown height and the 

height of up to the 6 nearest trees to the plot center were measured using a Haglöf Sweden® Vertex 

instrument. The sample was completed to achieve 100 dominant stems ha-1 considering those with 

larger dbh.  

The height for those trees not measured in the field plots was predicted using a height–diameter 

model developed from the sampled trees from all the field plots of the third campaign. Normality of 

the residuals, homoscedasticity, and independence or no auto-correlation in the residuals were 

verified for the linear regression fitted model. 

2.3. Inventories Updating and Stand Variable Computation 

Field data measurements were updated to year 2011 and 2016, which correspond to each ALS 

flight, to avoid any temporal lag between ALS-metrics and stand-level variables. The PHRAGON-

2017 individual tree model was applied [55] through the forest simulator platform Simanfor [56]. This 

model enables tree-level distance–independent simulation of the development of Aleppo pine 

afforestations in Aragón. It consists of a set of equations for diameter over bark growth, diameter 

under bark growth, diameter under bark–diameter over bark ratio, generalized height–diameter 

relationship, volume over bark (taper equation) and crown ratio. In addition, it presents a survival 

model for the coming 10-year period and a classification tree for the regeneration of species of the 

genus Pinus, Quercus, and Juniperus, also in the coming decade. Explanatory variables included those 

related to tree size (diameter at breast height, total height), stand density (basal area, Hart–Becking 

index), dominant trees (dominant height, dominant diameter), competition (BALMOD) [57] and site 

quality (site index). Site index and dominant height evolution were estimated using the site index 

curves developed for natural Aleppo pine forests in the central Ebro valley [58]. 

Thus, when projecting future stand variables, diameter growth and survival equations were 

applied to every single tree in each plot, while the site index curve was used to forecast the future 
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stand dominant height (and hence estimate the total height of each surviving tree). To reconstruct 

stand structure in the past, we need to deploy the diameter under bark growth equation, as it permits 

the use of the current stand features to predict the past growth of a tree (backdating procedure). 

Therefore, past tree diameters over bark are estimated through the diameter under bark –diameter 

over bark ratio–, while past dominant height can be calculated with the same site index curves, as 

they are dynamic, age-independent functions. Once every diameter and dominant height are known, 

the rest of the stand variables can be directly computed. 

Seven forest inventory attributes were calculated from field data for each plot: stand density (N); 

basal area (G); squared mean diameter (Dg); dominant diameter (Do); dominant height (Ho); timber 

volume over bark of stem (V); and total tree biomass (W) [37] (Table 1). Thus, Ho is the mean height 

of the 100 trees per ha with largest dbh; Do is the mean dbh of the 100 trees per ha with largest dbh. 

V is estimated through the taper equation included in the PHRAGON-2017 individual-tree model 

[55]. W is computed as the sum of aboveground and belowground tree biomass using the Aleppo 

pine allometric equations developed by Ruiz-Peinado et al. [59]. 

Table 1. Forest inventory attributes. 

Date of the campaign Field data Variables Units 

First: June to July 2013 

Green crown height 

Total height 

Dbh 

Stand density (N) 

Basal area (G) 

Squared mean diameter (Dg) 

Dominant diameter (Do) 

Dominant height (Ho) 

Volume over bark (V) 

Total tree biomass (W) 

stems ha−1 

m2 ha−1 

cm 

cm 

m 

m3 ha−1 

tons ha−1 

Second: July to September 2014 

Third: April 2016 

2.4. ALS Data and Processing 

The ALS data were acquired in 2011 and 2016 by the Spanish National Plan for Aerial 

Orthophotography (PNOA) [60]. The respective acquisition specifications are shown in Table 2. The 

point clouds, delivered in 2 × 2 km tiles in LAS binary file format, were captured with up to four 

returns measured per pulse. The x, y, and z coordinates were provided in European Terrestrial 

Reference System (ETRS) 1989 Universal Transverse Mercator (UTM) Zone 30 N.  

Table 2. Technical specifications of airborne laser scanning (ALS) data. 

Characteristics Year 2011 Year 2016 

Time period January to February September to November 

Laser scanning system Leica ALS60 Leica ALS80 

Wavelength 1,064 nm 1064 nm 

Average flying altitude over sea level 3,000 m 3150 m 

Pulse repetition frequency ~70 kHz 176–286 kHz 

Scanning frequency ~45 kHz 28–59 Hz 

Maximum scan angle 29° 25° 

Nominal point density 0.5 points m−2 1 points m−2 

Average point density 0.64 points m−2 1.25 points m−2 

Accuracy of the point cloud (RMSEz) ≤0.2 m 0.09 m 

After the noise removal from the point clouds, a verification of the overlapping returns was 

performed considering vertical and horizontal displacements. Thus, overlapping returns were 

removed from 105 tiles for the 2011 ALS flight. The subsequent steps were evenly applied for both 

ALS campaigns. The multiscale curvature classification algorithm [61], implemented in MCC 2.1 

command line tool, was used to classify ground points according to Montealegre et al. [62]. A digital 

elevation model (DEM) with a 1-m size grid was generated using the Point-Triangulated Irregular 

Network-Raster interpolation method [61], implemented in ArcGIS 10.5 software. This DEM was 

used for point height normalization. The point clouds were clipped to the spatial extent of each field 

plot. Then, a full suite of statistical metrics related to height distribution and canopy cover was 

calculated [63] using FUSION LDV 3.60 [64] software. A threshold value of 2 m height was applied 
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to remove ground and understory laser hits before generating the ALS-derived variables according 

to Nilsson [65] and Næsset and Økland [66]. For better understanding of the results, the ALS metrics 

were classified into three macro classes and seven classes (see Table A1 in Appendix). Canopy height 

metrics (CHMs) were subdivided into lower, mean, and higher height variables; canopy height 

variability metrics (CHVMs) were subdivided into variability and variability metrics derived from 

the L moments [47]; and canopy density metrics (CDMs) were subdivided into percentage of first or 

all returns, canopy relief ratio (CRR), and the ratio between all returns and total returns. 

2.5. Modeling of Forest Stand Attributes and Temporal Tranferability Assessment. 

Figure 2 depicts in a graphical way the steps followed in the methodology in which two main 

phases can be distinguished: (i) the selection of variables and the forest attributes modeling in 2011 

and 2016 using the indirect approach and (ii) the temporal transferability assessment applying a 

direct approach. 

2.5.1. Variable Selection and Attributes Modeling Using the Indirect Approach 

Forest stand attributes modeling using the indirect approach was performed by two steps: (i) 

selection of the suitable ALS metrics using five selection approaches, and (ii) estimation of each stand 

attribute using five types of regression methods for 2011 and 2016 years (Figure 2). Thus, each of the 

computed models have associated a selection approach, which determined the ALS metrics to be 

included in the models. 

 

Figure 2. Methodology for forest stand attributes estimation using indirect and direct approaches. 

As described by Domingo et al. [36], different selection methods were applied to choose the ALS-

metrics that present the best relationship with the forest inventory attribute at plot-level: (i) 

Spearman’s rank correlation coefficient considering a minimum positive and negative rho value of 

0.5; (ii) stepwise selection using backward, forward, and bidirectional approaches; (iii) principal 

component analysis (PCA) using varimax rotation to better interpret the results [67,68]; (iv) last 
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absolute shrinkage and selection operator (LASSO) [69]; and (v) all subset selection (ASS) 

implementing exhaustive, backward, forward, and sequential replacement (Seqrep) approaches [70]. 

The selection of ALS-metrics was restricted to a combination of up to four independent variables 

using the mentioned selection methods to avoid variable multicollinearity, overfitting [71], and 

within the purpose of generating parsimonious models for forest management. 

The estimation of forest stand attributes using an area-based approach and ALS data is usually 

done using either parametric (i.e. multiple linear regression) or non-parametric approaches such as 

regression trees, random forest, support vector machine, k-nearest neighbor, artificial neural network 

among others [72]. Five different regression methods, as described by Domingo et al. [36], were 

compared to estimate the seven forest inventory attributes (Table 1): multiple linear regression model 

(MLR), support vector machine (SVM), random forest (RF), locally weighted linear regression 

(LWLR), and linear model with a minimum length principle (MDL).  

In the case of multiple linear regression model (MLR) normality, homoscedasticity, 

independence, and no auto-correlation of the residuals were verified. Logarithmic transformation of 

the dependent variables and the independent ones was also performed in those cases where statistical 

assumptions of linear regression were not fulfilled [73–75] or to improve the goodness-of-fit of the 

models. Support vector machine was computed using two kernel variants, linear (SVMl), and radial 

(SVMr) ones. Cost and gamma SVM parameters were tuned applying an interval of 1–1000 and 0.01–

1, respectively. Random forest was implemented in R using “randomForest” [76] and “caret” 

packages [77], including “corr.bias” parameter to minimize bias effects. The model was tuned by 

applying a number of trees to growth (ntrees) within the interval 1–3000 and a number of variables 

to divide the nodes between 1 and 3. Locally weighted linear regression and MDL tree structures 

were computed using the R package “CORElearn” considering up to four ALS metrics. Model 

computation required the splitting of the original sample into a training set of 75% of the cases (110 

plots) and a test set of 25% of the cases (37 plots). Validation was performed for all the models, being 

executed 100 times for those methods with associated randomness as SVM, RF, LWLR, and MDL to 

increase robustness in the results [78]. Furthermore, data were normalized in values ranging from 0 

to 1 in order to avoid weights saturation according to Görgens [79].  

Statistic performance of each computed model was reported including root mean square error 

(RMSE), relative RMSE respect to the mean (%RMSE) and bias. Differences between models were 

determined by using the Friedman nonparametric test according to the RMSE of each plot [80]. 

Furthermore, the Nemenyi post-hoc test was applied to determine whether differences were 

statistically significant, with a significance level of 0.05 [81]. This test was applied only when the null-

hypothesis of the Friedman test was rejected, thus implying non-equivalence between models. 

2.5.2. Assessment of Temporal Transferability by Applying a Direct Approach. 

The temporal transferability of models were assessed by three steps: (i) selection of the best 

regression model previously generated by the indirect approach for each forest stand attribute and 

year (2011 and 2016); (ii) extrapolation of the selected models from 2011 to 2016 ALS data, using the 

same variables and model parameters, and inversely from 2016 to 2011 by using the direct approach; 

(iii) performance comparison between extrapolated models for both years (Figure 2). Thus, Friedman 

and Nemenyi tests were applied for selecting the best regression model for each year (step i) and for 

selecting the best transferable models for both years (step iii).  

3. Results 

3.1. Field Plot Computation  

Equation 1 was used for estimating tree height (ht) for those trees not measured in the field plots 

for the first and third campaign. Model performance for the ht model was as follow: RMSE of 0.80 m 

and R2 of 0.93.  
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where ht is tree height (m), dbh is the diameter at breast height (cm), Ho and Do are the dominant 

height and dominant diameter, as defined in Section 2.3.  

Table 3 shows a summary of the forest inventory attributes obtained from the field plot data. 

The N values of the inventoried plots ranges from 99.03 to 3200 stems ha-1 and G ranges from 0.82 to 

58.89 m2 ha-1, presenting also a variety of diameters, from 9.21 to 47.96 cm. V and W data show also a 

high range of values with a standard deviation in both cases higher than 60 tons ha-1. The high range 

and standard deviation values of the forest inventory attributes show the variability that 

characterizes Aleppo pine forest in Aragón region.  

Table 3. Summary of the field plot characteristics (n = 147). 

Forest Inventory Attribute Min. Max. Range Mean Standard Deviation 

N (stems ha−1) 99.03 3200.00 3100.97 715.61 486.54 

G (m2 ha−1) 0.82 58.89 58.07 21.47 10.04 

Dg (cm) 9.04 43.52 34.48 21.67 8.01 

Do (cm) 9.21 47.96 38.76 27.79 8.73 

Ho (m) 4.69 18.90 14.21 11.32 3.54 

V (m3 ha−1) 2.21 467.62 465.41 118.71 77.79 

W (tons ha−1) 2.89 373.02 370.14 101.91 60.69 

Table 4 shows a summary of the estimated field plot attributes using single-tree growth models 

for each measured stand variable and both years. N shows a general decrease in the number of stems 

ha-1, which may be caused by tree growth, resulting in an average of N change of 10.56 stems ha−1. G 

shows average values of change of 2.55 m2 ha−1 and Dg and Do changes range from around 1.73 to 

2.13 cm of growth, respectively. Ho values show an average increment of 0.62 m, ranging from 0.35 

to 1.89 m. V and W changes show similar values ranging from around 2.00 to 50.00 tons ha−1 with 

average values around 17.00 tons ha−1.  

Table 4. Summary of the estimated field plot attributes using single-tree growth models for each 

year. 

Inventory 

Attribute 

Min. 

2011 

Min. 

2016 

Max. 

2011 

Max. 

2016 

Range 

2011 

Range 

2016 

Mean 

2011 

Mean 

2016 

SD 

2011 

SD 

2016 

N (stems ha−1) 99.03 99.03 3405.67 3161.81 3306.64 3062.79 709.64 699.20 500.86 481.00 

G (m2 ha−1) 0.11 0.91 57.56 58.69 57.45 57.77 19.71 22.26 9.97 10.14 

Dg (cm) 3.29 9.55 41.41 45.05 38.12 35.50 20.72 22.45 7.99 8.40 

Do (cm) 3.35 9.72 45.85 49.19 42.50 39.47 26.59 28.72 8.84 9.09 

Ho (m) 4.24 4.90 18.46 19.08 14.22 14.17 10.97 11.58 3.70 3.60 

V (m3 ha−1) 0.35 2.51 454.77 476.02 454.42 473.51 107.31 126.45 74.83 81.48 

W (tons ha−1) 1.34 3.14 359.22 377.82 357.88 374.68 92.46 108.26 58.10 63.63 

3.2.Variable Selection  

This section includes the results of the selection of ALS variables for the seven estimated forestry 

attributes modeled with the different regression methods.  

Figure 3A synthetizes the performance of the analyzed selection methods for each forest stand 

attributes by year. All subsets regression Seqrep (ASSs) was the most powerful selection method. 

Spearman's rank correlation (rho) coefficient also showed good results, especially for selecting N, G, 

Dg, and W in 2011. All subsets regression Exhaustive (ASSe) and Stepwise (Step b&f) were both good 

selection methods for estimating G, Ho, and V. However, lasso selection (LASSO), all subsets 

regression Backward (ASSb) and all subsets regression Forward (ASSf) have been less utilized. The 

stepwise forward and PCA selection methods have not been included in Figure 3 as they did not 

determine the best variables for modeling in any of the cases. For detailed information of the selection 

methods performance, see Tables A2–A15 in the Appendix. 
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Figure 3B depicts the performance of selection methods associated to each regression method 

without considering the year of the model. The ASSs was the most powerful method to select the best 

ALS metrics when using the MDL, LWLR, SVMr, and SVMl regression methods. Furthermore, rho 

coefficient was the most powerful one when using the MLR and RF regression methods. The ASSe 

and Step b&f both were also good selection techniques for almost all the regression methods, 

excluding MLR. However, LASSO, ASSb, and ASSf were less effective. 

Figure 4 shows the ALS selected metrics for estimating the forest inventory attributes for both 

2011 and 2016 years. As mentioned in Section 2.4, for better understanding of results, the ALS metrics 

are classified into groups (see Table A1 in Appendix). In general, higher height variables, variability, 

and variables related to the ratio between all returns and total returns were included in most of the 

models, while height variables and variability L moments were less demanded. Comparing the 

different estimated forest attributes, some differences can be observed. N, Dg, and Do estimations 

included higher height variables, variability metrics, and CDM metrics. Ho estimation usually 

required higher height variables and variability metrics, while CDM metrics were not included. G, 

V, and W estimations included either lower or higher height metrics, variability metrics, and CDM 

ones. 

 

Figure 3. Performance of selection methods for each forest inventory attribute by year (3A) and 

performance of selection techniques for each regression method without considering the year of the 

model (3B). Maximum number of computed models in Figure 3A was six for all the stand attributes 

except for volume (V) and total tree biomass (W), which have a maximum number of five models. 

Maximum number of models in Figure 3B is 14, seven for each year and stand attribute, for all 

regression methods. Rho stands for Spearman Rank; ASSs stands for All Subsect Selection Seqrep; 

ASSe stands for All Subsect Selection Exhaustive; ASSf stands for All Subsect Selection Forward; ASSb 

stands for All Subsect Selection Backward; and Step. b&f stands for Stepwise Selection Both Backward 

and Forward. 
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Figure 4. ALS selected metrics for estimating forest stand attributes for both 2011 and 2016 years. 

Maximum number of models is six for all the stand attributes except for V and W, which have a 

maximum number of five models.  

3.3. Indirect Approach 

The regression models to estimate Dg, Do, G, Ho, N, V, and W for 2011 and 2016 years using 

the indirect approach are summarized in Tables A2–A15 of the Appendix. Figure 5 summarizes the 

%RMSE respect to the mean of the different regression methods for estimating the forest inventory 

attributes. Models developed for 2016 (Figure 5B) present generally higher accuracy than the ones 

generated for 2011 (Figure 5A). The point density of ALS datasets may determine these differences 

in accuracy. The SVMr shows the lower RMSE when modeling all the analyzed stand attributes in 

2011 (Figure 5A). In this year, SVMl was the second best model when estimating Do, G, Ho, and W; 

MDL when estimating N and V; and RF when estimating Dg. The MLR regression method was not 

computed for V and W, as statistical assumptions of linear regression were not fulfilled, even 

considering logarithmic transformation. The MLR shows the lowest accuracy when estimating Do, 

G, Ho, and N.  
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Figure 5. % root mean square error (RMSE) respect to the mean of the different regression methods 

for estimating the forest inventory attributes for 2011 (A) and 2016 (B). 

The SVMr is the best model for estimating N, V, W, Dg, and G in 2016 (Figure 5B). However, in 

this year, SVMl and MDL outperformed SVMr when estimating Do and Ho, respectively. In 2016, 

MLR shows the lowest accuracy when estimating G, Ho, and N. 

Friedman tests shows that the models are not equivalent, with a p-value lower than 0.05 when 

testing whether there were statistically significant differences between regression methods for 2011 

and 2016 years. Thereby, the post-hoc Nemenyi test indicates that no statistically significant 

differences exist between the methods, with 95% of probability, except for MLR. In this sense, 

statistically significant differences were found when comparing models in the following cases: 

between MLR and SVMr models when estimating Do and G for 2011; between MLR and MDL models 

when estimating Ho for 2011; between MLR and MDL models when estimating Dg for 2016; and 

between MLR and all the generated models when estimating G, Ho, and N for 2016.  

3.4. Direct Approach 

The SVMr was established as the regression method for analyzing how models fitted at 2011 

perform at 2016, and inversely, following a direct approach to analyze temporal transferability. This 

method resulted the best estimator for all the models generated in 2011 and for the majority of forest 

attributes modeled in 2016.  

Table 5 summarizes the best-selected SVMr models fitted in 2011 and the ones extrapolated to 

2016 by using the same ALS metrics and model parameters. Table 6 summarizes the best-selected 

SVMr models fitted in 2016 and extrapolated to 2011 by using the same ALS metrics and model 

parameters. Furthermore, scatter plots of observed and predicted values for the analyzed forest stand 

attributes for both years are included in Figures A1 and A2 of Appendix.  

In the case of the models fitted in 2011 and extrapolated to 2016 (Table 5), the %RMSE after 

validation ranges from 8.54 to 42.43% and R2 ranges from 0.64 to 0.93 within the different stand 

attributes. As it is shown in Table 5, models are transferable. In fact, the average %RMSE differences 

between the fitted and the extrapolated models is 3.87%. Dg, Do, Ho, V, and W estimations for 2011 

models have higher %RMSE than the one for models extrapolated to 2016. However, N and G models 

show higher %RMSE for the 2016 extrapolated ones.  

In the case of the models fitted in 2016 and extrapolated to 2011 (Table 6), the %RMSE in the 

validation sample ranges from 8.83 to 48.09% and R2 ranges from 0.55 to 0.92 within the different 

stand attributes. These models also show good temporal transferability, being the average %RMSE 

differences between the fitted and the extrapolated model 5.85%, even lower than the models fitted 
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in 2011 and extrapolated to 2016. All the models fitted in 2016 for the analyzed stand attributes 

present lower RMSE than the ones extrapolated to 2011. 

Table 5. Summary of the best-selected SVMr 2011 models and 2016 extrapolated ones. ret. refers to 

returns; e is extrapolated; N is stand density; G is basal area; Dg is squared mean diameter; Do is 

dominant diameter; Ho is dominant height; V is timber volume over bark of stem; W is total tree 

biomass. 

    Fitting Phase Validation 

Attribute ALS metrics RMSE 
% 

RMSE 
Bias RMSE 

% 

RMSE 
Bias R2 

N 2011 

N 2016e 
P99 + ElevIQ + % first ret. Above 2.00 

257.09 36.34 28.81 272.76 38.55 
26.9

9 

0.7

2 

265.62 38.10 17.99 295.83 42.43 
20.4

9 

0.6

4 

G 2011 

G 2016e 

Elev. minimum + Elev. kurtosis + % first ret. above 

mean 

4.43 22.77 -0.10 4.77 24.51 
-

0.10 

0.7

7 

4.18 19.01 0.20 5.51 25.05 0.57 
0.7

1 

Dg 2011 

Dg 2016e 
P90 + Elev. SD + % first ret. above mean 

3.38 16.38 0.19 3.56 17.25 0.06 
0.8

1 

3.02 13.48 0.19 3.43 15.35 0.06 
0.8

5 

Do 2011 

Do 2016e 
P90 + (All ret. Above 2)/(total first ret) × 100 

4.11 15.53 0.19 4.07 15.36 0.11 
0.7

9 

3.43 11.99 0.41 3.53 12.33 0.31 
0.8

6 

Ho 2011 

Ho 2016e 
P90 + Elev. variance + % all ret. above mean 

1.32 12.11 0.11 1.34 12.30 0.09 
0.8

7 

0.86 7.47 0.10 0.98 8.54 0.10 
0.9

3 

V 2011 

V 2016e 
Elev. L2 + Elev. cubic mean + % first ret. above mean 

28.87 27.42 2.59 29.71 28.22 1.79 
0.8

4 

25.03 20.15 3.14 26.00 20.92 2.64 
0.9

0 

W 2011 
P10 + Elev. Quadratic  mean + (All ret. Above 

mean)/(total first ret) × 100 

23.00 25.29 0.75 24.29 26.71 
-

0.03 

0.8

2 

W 2016e 19.63 18.41 1.80 21.39 20.06 1.08 
0.8

9 
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Table 6. Summary of the best-selected SVMr 2016 models and 2011 extrapolated ones. ret. refers to 

returns; e is extrapolated; N is stand density; G is basal area; Dg is squared mean diameter; Do is 

dominant diameter; Ho is dominant height; V is timber volume over bark of stem; W is total tree 

biomass. 

    Fitting phase Validation 

Attribute ALS metrics RMSE 
% 

RMSE 
Bias RMSE 

% 

RMSE 
Bias R2 

N 2011e 
Elev. maximum + Elev. L kurtosis + % first ret. Above 

2.00 

256.69 36.28 
33.7

3 
340.20 48.09 

49.3

1 

0.5

5 

N 2016 250.87 35.98 
13.9

5 
278.58 39.96 

11.8

3 

0.6

7 

G 2011e 
P75 + Elev. CUR mean CUBE + (All ret. Above 

2)/(total first ret) × 100 

4.97 25.54 0.26 5.04 25.88 0.13 
0.7

4 

G 2016 3.88 17.61 0.41 4.14 18.80 0.30 
0.8

4 

Dg 2011e 
Elev. maximum + Elev. IQ + (All ret. Above 2)/(total 

first ret) × 100 

3.54 17.14 0.14 3.77 18.25 0.00 
0.7

9 

Dg 2016 3.03 13.53 0.21 3.42 15.28 0.11 
0.8

5 

Do 2011e 

P99 + Elev. CV 

4.20 15.85 0.25 4.18 15.79 0.16 
0.7

8 

Do 2016 3.25 11.35 0.40 3.40 11.89 0.33 
0.8

7 

Ho 2011e 

P95 + Elev. SD 

1.32 12.12 0.03 1.38 12.64 0.03 
0.8

6 

Ho 2016 0.86 7.48 0.03 1.02 8.83 0.03 
0.9

2 

V 2011e 
P75 + Elev. CUR mean CUBE + (All ret. Above 

2)/(total first ret) × 100 

29.97 28.46 1.51 30.96 29.40 0.84 
0.8

3 

V 2016 24.69 19.87 2.65 26.35 21.20 1.92 
0.9

0 

W 2011e 
Elev. L2 + Elev. CUR mean CUBE + % first ret. Above 

2.00 

23.11 25.42 0.96 23.36 25.69 0.27 
0.8

3 

W 2016 18.82 17.65 1.23 20.06 18.81 0.56 
0.9

0 

The comparison between fitted models generated for either 2011 or 2016 and the extrapolated 

ones were assessed using Friedman and post-hoc Nemenyi tests. Friedman test shows that the models 

for the analyzed stand attributes are not equivalent with a p-value lower than 0.05 when testing 

whether there were differences: (i) between models fitted in 2011 and the ones extrapolated to 2016; 

(ii) between models fitted in 2016 and the ones extrapolated to 2011; (iii) between models fitted in 

2011 and models fitted in 2016; (iv) between models fitted in 2011 and models extrapolated to 2011; 

(v) between models fitted in 2016 and models extrapolated to 2016. Thereby, the required application 

of the post-hoc Nemenyi test indicates that no statistically significant differences exist between the 

methods for the proposed hypothesis, with 95% of probability.  

4. Discussion 

Airborne laser scanning is considered the best technology for mapping 3D vegetation structures 

[3] allowing the measurement of fine-scale forestry metrics [82]. Multi-temporal ALS data has been 

less explored as the availability of two or more LiDAR surveys in the same area is still limited. 

Nevertheless, several studies have used multi-temporal small-footprint ALS to estimate total tree 

biomass or carbon dynamics [3,9,21–27], volume changes [17,21], height growth [14–19], and basal 

area [17]. This study estimates seven forest attributes (N, G, Dg, Do, Ho, V, W) using bi-temporal 

low-point density ALS data in Mediterranean Aleppo pine heterogeneous forests. The high number 

of field plots has allowed estimating the seven mentioned forest attributes for 18.7% of the forested 

area in Aragón, providing results at a regional scale. Moreover, model temporal transferability was 

demonstrated which could improve forest management in a cost-effective way in Mediterranean 

Aleppo pine forests.  
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Multi-temporal LiDAR estimations of forest attributes requires the support of accompanying 

field surveys [3] being desirable to have them corresponding to LiDAR surveys [9]. Field surveys are 

cost and time demanding specially when acquiring a high number of plots. The use of specific 

individual-tree growth equations, derived from dbh growth by extracting tree cores or from interval 

or permanent plots, is a good way to get value from field plot inventories acquired between different 

ALS surveys. Diameter at breast height and height growth values from general yield tables from the 

Spanish National Forest Inventory have been applied in other studies for estimating total tree 

biomass in Aleppo pine forests [36]. Nevertheless, in this work specific single-tree growth models, 

generalized height-diameter curves and taper equations were used to estimate all stand attributes in 

the measured field plots at two different points in time, which produces more accurate results, 

particularly when predicting at short term [83].  

The use of selection methods reduces variable collinearity, modeling time and increases model 

parsimony. All subset selection Seqrep was the most powerful selection method in agreement with 

Hansen et al. [84] who also used similar best subset regression procedures to estimate biomass with 

ALS data. Spearman rho coefficients, proposed as a good tool for determining the relationships 

between ALS and field metrics by Kristensen et al. [85], also showed a good result, agreeing with our 

previous studies [37]. Furthermore, our results agree with García-Gutiérrez et al. [78], who found that 

stepwise was a powerless technique. Accordingly, the use of automatic selection methods such as 

ASSs is proposed when using MDL, LWLR, SVMr, and SVMl regression methods in Mediterranean 

Aleppo pine forest. Nevertheless, comparison between selection methods should be considered when 

working with other forest types or species. In this sense, Rho coefficients should be considered 

specially when using MLR and RF regression methods and PCA should be taken into account for a 

first attempt to reduce collinearity as proposed by Naesset [54] and Cao et al. [9], but afterwards 

another selection approach should be considered before modeling.  

The most selected types of ALS metrics for estimating the seven analyzed stand attributes were 

higher height variables, variability ones and  the ratio between all returns and total returns, while 

dominant height and variability L moment variables where less demanded. Ho estimation usually 

required the inclusion of high height percentiles as concluded by Næsset and Gobakken [17]. V and 

W estimations normally included either lower or higher height variables, variability metrics, and/or 

CDM ones as proposed by Silva et al. [86] and Hopkinson et al. [87]. 

The comparison between regression methods shows that SVMr had the lowest RMSE when 

estimating the majority of the analyzed stand attributes for both dates, except for Do and Ho when 

using 2016 data. These results match with García-Gutiérrez et al. [88] and Guerra-Hernández et al. 

[38,89], which obtained higher accuracies when using non-parametric regression methods. Different 

results were found in our previous studies [36,90] as MLR slightly outperformed other nonparametric 

methods when estimating total tree biomass in Aleppo pine forests, but no statistically significant 

differences were found. Thus, in agreement with Gagliasso et al. [91], a high number of field plots 

may have boosted machine-learning performance. Furthermore, the broad range and standard 

deviation values of the field plot data that characterizes Aleppo pine forest at a regional scale is 

notoriously higher than in our previous studies. Thus, although logarithmic transformation of the 

dependent and independent variables was carried out, most of the data was not normally distributed. 

The limitation on using the best-suited ALS metrics, as most of them were not normally distributed, 

generates a considerable decrease of accuracy in MLR model performance. In this sense, comparison 

between regression methods is desirable, especially when working with big datasets in 

heterogeneous forest stands as the Mediterranean ones. 

The comparison of direct and indirect approaches allowed us to assess model temporal 

transferability between 2011 and 2016. The direct approach was computed when extrapolating 2011 

models to 2016 and inversely. The indirect approach has shown slightly better results when 

estimating N, G, Dg, Do, and V. Direct approach showed slightly better results in the estimation of 

W when extrapolating 2016 model to 2011, but not inversely. Similar results were found for the 

estimation of Ho when extrapolating 2011 model to 2016 data, but not inversely. Comparisons with 

previous studies cannot be done for N, Dg, and Do, as these attributes have not been previously 
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estimated using multi-temporal data. Comparisons between Ho, G, and V results are neither possible 

as Næsset and Gobakken [17] performed only the indirect approach. Regarding W estimations, 

several results have been obtained using different regression methods, and even in our work both 

direct and indirect approaches performed in a different way when extrapolating the first-year model 

(2011) or the second one (2016). The indirect approach obtained better results when estimating W for 

2011 data agreeing with Zhao et al. [3] and Meyer et al. [25]. Our results also agree with Cao et al. [9], 

Skowronski et al. [24], and Bollandsås et al. [26], which detected slightly better performance of direct 

approach. Similar results have been found in our study when extrapolating 2016 model to 2011. In 

general, the SVMr regression method shows good temporal transferability between both ALS 

acquisitions with average %RMSE differences for all the modeled stand attributes of 2.13% for 2011 

and 1.58% for 2016. 

Models generated using 2016 data (1.25 points m−2) showed generally higher accuracy than 2011 

ones (0.64 points m−2). However, no statistically significant differences were found between the best-

fitted models for each year. In agreement with Cao et al. [9], point density may influence model 

performance but did not significantly affect the estimations of forest attributes as point clouds has a 

consistent vertical pattern. According to Hudak et al. [27], the relatively large size of the sample plots 

is considered sufficient for generating canopy height metrics. Thus, the results confirm, as other 

previous studies based on low-density ALS from the Spanish National Plan for Aerial 

Orthophotography data (i.e., [33,36,37,38]), that this information is an accurate and economic 

alternative to perform forest inventories when higher point density data are not available. 

Overall, the use of low-point ALS data for two dates and single-tree growth models for 

generating temporally-concomitant field data provides accurate estimations of forest stand attributes 

in Mediterranean Aleppo pine forests. The indirect approach produced higher precision, but the 

direct approach, within those conditions, may reduce fieldwork and time of model parametrization. 

When using a direct approach it would not be necessary to create one model for two different points 

in time, as it will be possible to extrapolate a model generated for one date (validated with field data) 

to another date. Furthermore, the number of revisited field plots can be dismissed or even not 

required, when the time between ALS surveys is not large [28]. This will benefit not only forest 

managers but also enterprises devoted to forest inventories. The use of direct method and the 

possibility of model temporal transferability generates new alternatives to calibrate future ALS 

captures with a lower number of field plots and helps in designing the temporal gap between flights. 

Single-tree growth models constitute a useful and robust alternative to update field data to a point in 

time, allowing to accurately estimate forest inventory parameters with the use of ALS data. Future 

research using multi-temporal ALS data should focus on the inclusion of inference models to better 

understand uncertainties as well as on the analysis of field plot size and saturation effects in model 

accuracy. Furthermore, the analysis of forests structural biodiversity changes caused by wildfires or 

the fusion of ALS data with multi-temporal passive remote sensing series or unmanned aerial vehicle 

(UAV) point clouds may help to monitor forest dynamics over time. 

5. Conclusions 

Multi-temporal ALS data may improve forest management and planning, providing accurate 

forest inventory attribute estimations for different points in time. The results illustrate the usefulness 

of bitemporal low-point density ALS data and single-tree growth models, when lacking temporally-

concomitant field campaigns, to accurately estimate seven forestry attributes, using an area-based 

approach. All subsets regression Seqrep was the most powerful selection method, followed by rho 

coefficient, to generate parsimonious models. Higher height metrics, canopy height variability, and 

canopy density variables were the most selected ALS-metrics, while mean height variables and 

variability L moments were less demanded. The SVM with radial kernel outperformed the analyzed 

non-parametric and multivariate linear regression methods for estimating all forest inventory 

attributes except from Do and Ho when using 2016 data. Thus, machine-learning performance may 

have been boosted by forest heterogeneity and an elevated number of field plots.  



Remote Sens. 2019, 11, 261 16 of 29 

 

This study has assessed model temporal transferability by comparing direct and indirect 

approaches for the estimation of seven forestry attributes. Indirect approach have produced slightly 

more accurate results than the direct approach, but average %RMSE differences between both 

approaches for all modeled stand attributes ranged from 2.13% in 2011 to 1.58% in 2016. Thus, mixing 

the direct approach with single-tree growth methods provides a suitable alternative to reduce 

fieldwork and enhance ALS technology as a good tool for estimating forest attributes in two different 

dates. The utility of multi-temporal ALS data and the combination with multi-temporal series from 

passive remote sensing and UAV point clouds derived by using photogrammetric techniques would 

have great value for forest management and planning. 
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Appendix  

Table A1. Summary of the airborne laser scanning (ALS) computed metrics including the 

abbreviations, classes, and macro-classes defined. 

  
Macro- 

Classes 
Classes ALS Computed Metrics Abbreviations 

Canopy 

height 

metrics 

(CHM)  

Lower 

height 

variables 

Minimum elevation Elev. minimum  

01th percentile of the return heights P01 

05th percentile of the return heights P05 

10th percentile of the return heights P10 

20th percentile of the return heights P20 

25th percentile of the return heights P25 

L moment 1 elevation Elev. L1 

L moment 2 elevation Elev. L2  

Mean height 

variables 

Mean elevation Elev. Mean 

Mode elevation  Elev. Mode 

30th percentile of the return heights P30 

40th percentile of the return heights P40 

50th percentile of the return heights P50 

60th percentile of the return heights P60 

70th percentile of the return heights P70 

L moment 3 elevation Elev. L3 

Elevation quadratic mean Elev. SQRT mean SQ 

Elevation cubic mean Elev. CUR mean CUBE  

Higher 

height 

variables 

75th percentile of the return heights P75 

80th percentile of the return heights P80 

90th percentile of the return heights P90 

95th percentile of the return heights P95 

99th percentile of the return heights P99 

Maximum elevation  Elev. maximum 

L moment 4 elevation Elev. L4 

Canopy 

height 

variability 

metrics 

(CHVM)  

Variability 

Standard deviation of point heights distribution Elev. SD  

Variance of point heights distribution Elev. Variance 

Coefficient of variation of point heights distribution Elev. CV 

Skewness of point heights distribution  Elev. Skewness 

kurtosis of point heights distribution Elev. Kurtosis 

Interquartile distance of point heights distribution Elev. IQ 

Average Absolute Deviation of point heights distribution Elev. AAD 

Variability L 

moment 

L moment coefficient of variation of point heights distribution Elev. LCV  

L moment skewness of point heights distribution Elev. Lskewness 

L moment kurtosis of point heights distribution Elev. Lkurtosis 

Canopy 

density 

metrics 

(CDM)  

% first, % all 

returns, 

canopy relief 

ratio 

percentage of first returns above the 2.00 % first ret. above 2.00 

percentage of all returns above the 2.00 % all ret. above 2.00 

percentage of first returns above the mean % first ret. above mean 

percentage of first returns above the mode % first ret. above mode 

percentage of all returns above the mean % all ret. above mean 

percentage of all returns above the mode % all ret. above mode 

Canopy relief ratio CRR 

All returns 

Total 

returns-1 

All returns above 2.00 divided by the total first returns x 100 
(All ret. above 2.00)/(total 

first ret.) × 100 

All returns above mean divided by the total first returns x 100 
(All ret. above mean)/(total 

first ret.) × 100 

All returns above mode divided by the total first returns x 100 
(All ret. above mode)/(total 

first ret.) × 100 
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Table A2. Summary of the N models using 2011 ALS data. Validation results in terms of RMSE (stems 

ha-1), %RMSE, and bias (stems ha-1) and R2. SM refers to selection method; Step. stands for Stepwise 

both and forward; SVMr. refers to support vector machine with radial kernel; SVM l. refers to support 

vector machine with linear kernel; ret. refers to returns. 

     Fitting Phase Validation 

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R2 

P90 + (All ret. above mean)/(total first ret.) × 

100 
MLR Step. 347.22 49.08 0.00 350.67 49.57 8.76 0.53 

Elev. L2 + Elev. Variance + (All ret. above 

2.00)/(total first ret.) × 100 
MDL ASSs 235.89 33.34 -0.83 292.37 41.33 −1.48 0.68 

P99 + Elev. IQ + % first ret. above 2.00 LWLR Rho 205.80 29.09 −9.79 310.97 43.96 −11.39 0.65 

P99 + Elev. IQ + % first ret. above 2.00 SVMr rho 257.09 36.34 28.81 272.76 38.55 26.99 0.72 

Elev. L2 + Elev. Variance + (All ret. above 

2.00)/(total first ret.) × 100 
SVMl ASSs 319.34 45.14 60.68 309.56 43.76 64.83 0.65 

P99 + Elev. SD + % first ret. above 2.00 RF rho 151.86 21.46 1.91 303.56 42.91 6.91 0.66 

Table A3. Summary of the N models using 2016 ALS data. Validation results in terms of RMSE (stems 

ha−1), %RMSE, and bias (stems ha−1) and R2. SM refers to selection method; Step. stands for Stepwise 

both and forward; SVMr. refers to support vector machine with radial kernel; SVM l. refers to support 

vector machine with linear kernel; ret. refers to returns. 

    Fitting Phase Validation 

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R2 

Elev. mean + Elev. L kurtosis + Canopy relief 

ratio 
MLR Step. 358.84 51.47 0.00 363.62 52.15 11.57 0.45 

Elev. maximum + Elev. L kurtosis + % first 

ret. above 2.00 
MDL LASSO 243.13 34.87 1.14 322.89 46.31 8.15 0.61 

Elev. maximum + Elev. L kurtosis + % first 

ret. above 2.00 
LWLR LASSO 204.63 29.35 4.55 333.20 47.79 11.06 0.57 

Elev. maximum + Elev. L kurtosis + % first 

ret. above 2.00 
SVMr LASSO 250.87 35.98 13.95 278.58 39.96 11.83 0.67 

Elev. maximum + Elev. L kurtosis + % first 

ret. above 2.00 
SVMl LASSO 322.11 46.20 29.31 313.41 44.95 36.04 0.59 

Elev. maximum + Elev. L kurtosis + % first 

ret. above 2.00 
RF LASSO 159.15 22.83 −1.71 302.57 43.40 −10.81 0.60 

Table A4. Summary of the G models using 2011 ALS data. Validation results in terms of RMSE (m2 

ha−1), %RMSE, and bias (m2 ha−1) and R2. SM refers to selection method; Step. stands for Stepwise both 

and forward; SVMr. refers to support vector machine with radial kernel; SVM l. refers to support 

vector machine with linear kernel; ret. refers to returns. 

    Fitting Phase Validation 

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R2 

Elev. minimum + Elev. Kurtosis + (All ret. 

above mode)/(total first ret.) × 100 
MLR rho 5.80 29.80 0.00 6.01 30.89 0.19 0.64 

P10 + % first ret. above 2.00 MDL rho 4.61 23.69 0.21 5.23 26.85 0.38 0.74 

P05 + % first ret. above mean LWLR ASSe 4.07 20.92 0.01 5.53 28.42 0.12 0.70 

Elev. minimum + Elev. Kurtosis + (All ret. 

above mode)/(total first ret.) × 100 
SVMr ASSs 4.43 22.77 -0.10 4.77 24.51 −0.10 0.77 

Elev. minimum + Elev. Kurtosis + (All ret. 

above mode)/(total first ret.) × 100 
SVMl ASSs 4.85 24.92 0.10 4.87 25.05 0.05 0.75 

P10 + % first ret. above 2.00 RF rho 2.61 13.41 0.02 5.19 26.69 0.06 0.73 
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Table A5. Summary of the G models using 2016 ALS data. Validation results in terms of RMSE (m2 

ha−1), %RMSE, and bias (m2 ha−1) and R2. SM refers to selection method; Step. stands for Stepwise both 

and forward; SVMr. refers to support vector machine with radial kernel; SVM l. refers to support 

vector machine with linear kernel; ret. refers to returns. 

    Fitting Phase Validation 

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R2 

Elev. minimum +% all ret. above mode MLR rho 9.27 42.11 0.00 9.19 41.76 0.21 0.15 

P75 + Elev. CUR mean CUBE + (All ret. above 

2.00)/(total first ret.) × 100 
MDL ASSe 3.65 16.57 0.19 4.43 20.11 0.12 0.82 

P75 + Elev. CUR mean CUBE + (All ret. above 

2.00)/(total first ret.) × 100 
LWLR ASSe 2.84 12.93 0.01 5.05 22.94 −0.10 0.77 

P75 + Elev. CUR mean CUBE + (All ret. above 

2.00)/(total first ret.) × 100 
SVMr ASSe 3.88 17.61 0.41 4.14 18.80 0.30 0.84 

P75 + Elev. CUR mean CUBE + (All ret. above 

2.00)/(total first ret.) × 100 
SVMl ASSe 4.38 19.89 0.44 4.43 20.12 0.35 0.81 

P10 + Elev. minimum + % first ret. above 

mean 
RF ASSf 2.32 10.56 0.08 4.64 21.06 0.37 0.81 

Table A6. Summary of the Dg models using 2011 ALS data. Validation results in terms of RMSE (cm), 

%RMSE, and bias (cm) and R2. SM refers to selection method; Step. stands for Stepwise both and 

forward; SVMr. refers to Support Vector Machine with radial kernel; SVM l. refers to Support Vector 

Machine with linear kernel; ret. refers to returns. 

    Fitting Phase Validation 

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R2 

P90 + % first ret. above mean MLR rho 3.80 18.44 0.00 3.84 18.60 −0.03 0.77 

P90 + (All ret. above 2.00)/(total first ret.) × 

100 
MDL ASSs 3.30 15.97 0.16 3.78 18.34 0.00 0.78 

P90 + (All ret. above 2.00)/(total first ret.) × 

100 
LWLR ASSs 2.98 14.46 −0.02 3.75 18.19 −0.22 0.78 

P90 + Elev. Std.dev + % first ret. above 

mean 
SVMr rho 3.38 16.38 0.19 3.56 17.25 0.06 0.81 

P90 + Elev. Std.dev + % first ret. above 

mean 
SVMl rho 3.76 18.24 0.08 3.88 18.80 −0.06 0.78 

P90 + Elev. Std.dev + (All ret. above 

mean)/(total first ret.) × 100 
RF rho 1.89 9.17 −0.02 3.75 18.18 −0.04 0.79 

Table A7. Summary of the Dg models using 2016 ALS data. Validation results in terms of RMSE (cm), 

%RMSE, and bias (cm) and R2. SM refers to selection method; Step. stands for Stepwise both and 

forward; SVMr. refers to Support Vector Machine with radial kernel; SVM l. refers to Support Vector 

Machine with linear kernel; ret. refers to returns. 

    Fitting Phase Validation 

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R2 

P90 + Elev. LCV + (All ret. above 

mean)/(total first ret.) × 100 
MLR Step. 3.48 15.53 0.00 3.63 16.22 −0.07 0.82 

Elev. maximum + Elev. IQ + (All ret. above 

2.00)/(total first ret.) × 100 
MDL ASSf 3.12 13.93 0.23 3.71 16.58 0.21 0.82 

P90 + Elev. LCV + (All ret. above 

mean)/(total first ret.) × 100 
LWLR Step. 2.59 11.58 -0.03 3.91 17.48 -0.04 0.80 

Elev. maximum + Elev. IQ + (All ret. above 

2.00)/(total first ret.) × 100 
SVMr ASSf 3.03 13.53 0.21 3.42 15.28 0.11 0.85 

P90 + Elev. mode + % first ret. above mode SVMl ASSs 3.45 15.40 0.20 3.57 15.95 0.11 0.83 

P90 + Elev. LCV + (All ret. above 

mean)/(total first ret.) × 100 
RF rho 1.65 7.39 0.01 3.59 16.05 0.05 0.82 
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Table A8. Summary of the Do models using 2011 ALS data. Validation results in terms of RMSE (cm), 

%RMSE, and bias (cm) and R2. SM refers to selection method; Step. stands for Stepwise both and 

forward; SVMr. refers to Support Vector Machine with radial kernel; SVM l. refers to Support Vector 

Machine with linear kernel; ret. refers to returns. 

    Fitting Phase Validation 

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R2 

Elev. skewness + Elev. Lkurtosis + P25 MLR rho 5.34 20.17 0.00 5.42 20.47 0.07 0.62 

P90+ (All ret. above 2.00)/(total first ret.) × 

100 
MDL ASSf 3.99 15.07 0.10 4.27 16.12 0.11 0.77 

P90+ (All ret. above 2.00)/(total first ret.) × 

100 
LWLR ASSf 3.49 13.17 −0.03 4.29 16.19 −0.05 0.77 

P90+ (All ret. above 2.00)/(total first ret.) x 

100 
SVMr ASSf 4.11 15.53 0.19 4.07 15.36 0.11 0.79 

P90+ (All ret. above 2.00)/(total first ret.) × 

100 
SVMl ASSf 4.24 16.01 0.22 4.20 15.85 0.11 0.78 

P90 + % first ret. above mean RF rho 2.13 8.04 −0.11 4.38 16.55 −0.36 0.76 

Table A9. Summary of the Do models using 2016 ALS data. Validation results in terms of RMSE (cm), 

%RMSE, and bias (cm) and R2. SM refers to selection method; Step. stands for Stepwise both and 

forward; SVMr. refers to support vector machine with radial kernel; SVM l. refers to support vector 

machine with linear kernel; ret. refers to returns. 

    Fitting Phase Validation 

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R2 

P90 + Elev. CV + (All ret. above 

mean)/(total first ret.) × 100 
MLR Step. 3.53 12.33 0.00 3.63 12.68 −0.08 0.85 

P90 + Elev. variance + Elev. L2 MDL ASSs 3.26 11.40 0.18 3.47 12.13 0.23 0.86 

P95 + Elev. CV LWLR ASSs 2.88 10.07 −0.03 3.63 12.70 −0.09 0.84 

P95 + Elev. CV SVMr ASSs 3.25 11.35 0.40 3.40 11.89 0.33 0.87 

Elev. Std.dev + Elev. Variance + P05 SVMl ASSe 3.26 11.40 0.18 3.36 11.75 0.11 0.87 

P95 + Elev. CV RF ASSs 1.61 5.64 −0.02 3.62 12.64 0.00 0.85 

Table A10. Summary of the Ho models using 2011 ALS data. Validation results in terms of RMSE (m), 

%RMSE, and bias (m) and R2. SM refers to selection method; Step. stands for Stepwise both and 

forward; SVMr. refers to Support Vector Machine with radial kernel; SVM l. refers to Support Vector 

Machine with linear kernel; ret. refers to returns. 

    Fitting Phase Validation 

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R2 

Elev. LCV + Elev. Lkurtosis + P01 MLR rho 2.21 20.24 0.00 2.26 20.71 0.05 0.63 

P90 + Elev. kurtosis MDL Step. 1.24 11.36 0.10 1.44 13.18 0.08 0.85 

P90 + Elev. skewness LWLR ASSs 1.16 10.69 −0.02 1.40 12.83 0.01 0.86 

P90 + Elev. variance + % All ret. above mean SVMr ASSf 1.32 12.11 0.11 1.34 12.30 0.09 0.87 

Elev. L1 + Elev. maximum SVMl LASSO 1.42 12.99 0.09 1.40 12.82 0.05 0.86 

P90 + Canopy relief ratio   RF Step. 0.72 6.65 −0.01 1.46 13.41 −0.06 0.84 
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Table A11. Summary of the Ho models using 2016 ALS data. Validation results in terms of RMSE (m), 

%RMSE, and bias (m) and R2. SM refers to selection method; Step. stands for Stepwise both and 

forward; SVMr. refers to Support Vector Machine with radial kernel; SVM l. refers to Support Vector 

Machine with linear kernel; ret. refers to returns. 

    Fitting Phase Validation 

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R2 

Elev. minimum + Elev. CV + Canopy relief 

ratio 
MLR rho 2.41 20.90 0.00 2.52 21.91 0.01 0.51 

P95 + Elev. Std.dev MDL ASSs 0.92 7.99 0.07 0.95 8.27 0.07 0.93 

P95 + Elev. variance LWLR ASSs 0.79 6.87 0.02 0.98 8.48 0.00 0.93 

P95 + Elev. Std.dev SVMr ASSs 0.86 7.48 0.03 1.02 8.83 0.03 0.92 

P90 + Elev. variance + Elev. SQRT mean SQ SVMl ASSb 0.96 8.30 0.12 1.00 8.69 0.08 0.93 

P95 + Elev. variance + (All ret. above 

mean)/(total first ret.) × 100 
RF rho 0.43 3.76 −0.01 1.00 8.72 -0.03 0.92 

Table A12. Summary of the V models using 2011 ALS data. Validation results in terms of RMSE (m³ 

ha-1), %RMSE, and bias (m³ ha-1) and R2. SM refers to selection method; Step. stands for Stepwise both 

and forward; SVMr. refers to support vector machine with radial kernel; SVM l. refers to support 

vector machine with linear kernel; ret. refers to returns. 

    Fitting Phase Validation 

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R2 

P20 + (All ret. above 2.00)/(total first ret.) × 

100 
MDL ASSs 30.15 28.63 1.69 33.39 31.71 2.13 0.81 

P20 + (All ret. above 2.00)/(total first ret.) × 

100 
LWLR ASSs 25.89 24.58 0.05 34.09 32.37 0.24 0.80 

Elev. L2 + Elev. CUR mean CUBE + % first 

ret. above mean 
SVMr Step. 28.87 27.42 2.59 29.71 28.22 1.79 0.84 

P20 + Elev. L skewness + (All ret. above 

mean)/(total first ret.) × 100 
SVMl ASSs 34.25 32.52 0.88 34.30 32.58 0.09 0.79 

P20 + Elev. L skewness + % first ret. above 

2.00 
RF ASSs 16.80 15.96 0.17 34.28 32.55 −0.56 0.78 

Table A13. Summary of the V models using 2016 ALS data. Validation results in terms of RMSE (m³ 

ha-1), %RMSE, and bias (m³ ha-1) and R2. SM refers to selection method; Step. stands for Stepwise both 

and forward; SVMr. refers to support vector machine with radial kernel; SVM l. refers to support 

vector machine with linear kernel; ret. refers to returns. 

    Fitting Phase Validation 

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R2 

P75 + Elev. CUR mean CUBE + (All ret. above 

2.00)/(total first ret.) × 100 
MDL ASSe 24.87 20.02 −0.34 29.63 23.85 −0.19 0.88 

P75 + Elev. CUR mean CUBE + (All ret. above 

2.00)/(total first ret.) × 100 
LWLR ASSe 20.26 16.30 −0.08 31.80 25.59 −0.06 0.85 

P75 + Elev. CUR mean CUBE + (All ret. above 

2.00)/(total first ret.) × 100 
SVMr ASSe 24.69 19.87 2.65 26.35 21.20 1.92 0.90 

P75 + Elev. CUR mean CUBE + (All ret. above 

2.00)/(total first ret.) × 100 
SVMl ASSe 30.49 24.54 2.60 31.14 25.06 1.48 0.86 

Elev. L2 + Elev. CUR mean CUBE + % first 

ret. above 2.00 
RF Step. 15.25 12.27 −0.38 31.73 25.53 0.32 0.86 
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Table A14. Summary of the W models using 2011 ALS data. Validation results in terms of RMSE (tons 

ha−1), %RMSE, and bias (tons ha−1) and R2. SM refers to selection method; Step. stands for Stepwise 

both and forward; SVMr. refers to support vector machine with radial kernel; SVM l. refers to support 

vector machine with linear kernel; ret. refers to returns. 

    Fitting Phase Validation 

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R2 

Elev. L2 + Elev. CUR mean CUBE + % first 

ret. above 2.00 
MDL Step. 22.02 24.21 0.68 28.30 31.12 1.82 0.76 

P10 + Elev. CUR mean CUBE + % first ret. 

above mean 
LWLR rho 18.34 20.17 0.23 29.12 32.02 0.04 0.74 

P10 + Elev. SQRT mean SQ + (All ret. above 

mean)/(total first ret.) × 100 
SVMr rho 23.00 25.29 0.75 24.29 26.71 −0.03 0.82 

P10 + Canopy relief ratio + (All ret. above 

mean)/(total first ret.) × 100 
SVMl ASSf 26.60 29.25 0.50 26.82 29.49 0.11 0.79 

P10 + Elev. CUR mean CUBE + (All ret. 

above mean)/(total first ret.) × 100 
RF rho 14.39 15.83 −0.05 29.43 32.36 0.24 0.75 

Table A15. Summary of the W models using 2016 ALS data. Validation results in terms of RMSE (tons 

ha-1), %RMSE, and bias (tons ha-1) and R2. SM refers to selection method; Step. stands for Stepwise 

both and forward; SVMr. refers to support vector machine with radial kernel; SVM l. refers to support 

vector machine with linear kernel; ret. refers to returns. 

    Fitting Phase Validation 

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R2 

P75 + Elev. CUR mean CUBE + (All ret. 

above 2.00)/(total first ret.) × 100 
MDL ASSe 19.66 18.44 −0.64 23.44 21.98 −0.43 0.88 

P75 + Elev. CUR mean CUBE + (All ret. 

above 2.00)/(total first ret.) × 100 
LWLR ASSe 16.11 15.11 −0.11 25.75 24.15 0.18 0.85 

Elev. L2 + Elev. CUR mean CUBE + % first 

ret. above 2.00 
SVMr Step. 18.82 17.65 1.23 20.06 18.81 0.56 0.90 

P75 + Elev. CUR mean CUBE + (All ret. 

above 2.00)/(total first ret.) × 100 
SVMl ASSe 22.78 21.37 1.65 23.43 21.98 0.80 0.87 

P20 + Elev. CUR mean CUBE + All ret. 

above 2.00)/(total first ret.) × 100 
RF Step. 12.58 11.80 0.13 22.38 20.99 0.01 0.87 
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Figure A1. Scatterplot of predicted vs. observed values of the forest stand variables using the best-

selected SVM with radial kernel 2011 models and 2016 extrapolated models. Dg and Do are expressed 

in cm; G is expressed in m2 ha−1; H is expressed in m; N is expressed in stems ha−1; V is expressed in 

m³ ha−1; W is expressed in tons ha−1. 
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Figure A2. Scatterplot of predicted vs. observed values of the forest stand variables using the best-

selected SVM with radial kernel 2016 models and 2011 extrapolated models. Dg and Do are expressed 

in cm; G is expressed in m2 ha−1; H is expressed in m; N is expressed in stems ha−1; V is expressed in 

m³ ha−1; W is expressed in tons ha-1. 
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