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Abstract: Due to continuous degradation of mangrove forests, the accurate monitoring of spatial
distribution and species composition of mangroves is essential for restoration, conservation and
management of coastal ecosystems. With leaf hyperspectral reflectance, this study aimed to explore
the potential of continuous wavelet analysis (CWA) combined with different sample subset partition
(stratified random sampling (STRAT), Kennard-Stone sampling algorithm (KS), and sample subset
partition based on joint X-Y distances (SPXY)) and feature extraction methods (principal component
analysis (PCA), successive projections algorithm (SPA), and vegetation index (VI)) in mangrove
species classification. A total of 301 mangrove leaf samples with four species (Avicennia marina,
Bruguiera gymnorrhiza, Kandelia obovate and Aegiceras corniculatum) were collected across six different
regions. The smoothed reflectance (Smth) and first derivative reflectance (Der) spectra were subjected
to CWA using different wavelet scales, and a total of 270 random forest classification models were
established and compared. Among the 120 models with CWA of Smth, 88.3% of models increased the
overall accuracy (OA) values with an improvement of 0.2–28.6% compared to the model with the Smth
spectra; among the 120 models with CWA of Der, 25.8% of models increased the OA values with an
improvement of 0.1–11.4% compared to the model with the Der spectra. The model with CWA of Der
at the scale of 23 coupling with STRAT and SPA achieved the best classification result (OA = 98.0%),
while the best model with Smth and Der alone had OA values of 86.3% and 93.0%, respectively.
Moreover, the models using STRAT outperformed those using KS and SPXY, and the models using
PCA and SPA had better performances than those using VIs. We have concluded that CWA with
suitable scales holds great potential in improving the classification accuracy of mangrove species, and
that STRAT combined with the PCA or SPA method is also recommended to improve classification
performance. These results may lay the foundation for further studies with UAV-acquired or satellite
hyperspectral data, and the encouraging performance of CWA for mangrove species classification can
also be extended to other plant species.
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1. Introduction

Mangrove forests are communities of diverse salt-tolerant evergreen trees and other plant species
in tropical and subtropical intertidal zones, and they provide important ecosystem services such as
nutrient cycling, carbon sequestration, and coastal hazard (e.g., shoreline erosion, soil salinization,
hurricanes, and tsunamis) mitigation [1–4]. Due to climate change, natural disasters, and coastal
development, the ecological functions of mangrove forests have been continuously degraded for
decades [5,6]. The diversity and composition of tree species are key parameters for assessing forest
ecosystems [7] and are also particularly essential for understanding their response to environmental
change and observing the integrity of endangered ecosystems such as mangroves [8]. Therefore, the
accurate classification of mangrove species and in-time monitoring of their spatial distribution are
critical for conserving and restoring mangrove forests.

Conventionally, obtaining species information on mangrove forests requires costly, labor-
intensive, and time-consuming field investigations, and it is often difficult for investigators to access
mangrove forests [9]. Due to rapid, large-scale and cost-effective monitoring capacities, remote sensing
techniques have been increasingly adopted to survey and evaluate mangrove resources during the
past several decades [10]. Medium-resolution multispectral imagery, such as that from Landsat [11,12],
SPOT [13], and Sentinel-2 [8] are often used to map the distribution of mangrove forests at regional
or even national or global scales. Due to the advantage of their having superb spatial and textural
features and high-resolution multispectral images, satellites such as Quickbird [14], IKONOS [15],
Worldview [16,17], and Pléiades-1 [18] have been widely employed to classify mangrove species at
landscape or regional scales.

Compared with multi-spectral satellite images with poor spectral information, hyperspectral
remote sensing data contain dozens or hundreds of contiguous wavebands with spectral features
related to plant functional traits and are found to be more efficient for tree species classification [19].
Leaf [20,21], canopy [21–23], satellite (e.g., Hyperion [24,25]), and airborne (e.g., CASI [26],
AVIRIS [27,28], and AISA [29]) hyperspectral data have been widely employed in classifying mangrove
forests and other forest types (e.g., temperate, subtropical, tropical rainforest, and urban). With rapid
advancements in unmanned aerial vehicles (UAV) and self-driving cars, light detection and ranging
(LiDAR) techniques have been increasingly utilized in classifying tree species. However, several
studies have pointed out that LiDAR alone has not been able to accurately classify tree species, but
could be combined with hyperspectral images to further improve classification accuracy [30–32].
Therefore, LiDAR-acquired structural parameters are often used as auxiliary information, and the
significance of exploring hyperspectral data for plant species classification is still indispensable.

The high dimensionality and multi-collinearity of hyperspectral data may decrease model
accuracy in supervised learning processes because the number of spectral wavebands often exceeds
the number of model calibration samples [33]. Therefore, additional processing methods are needed
for hyperspectral data to resolve the problem of redundant predictors and enhance spectral differences.
Considering feature extraction, dimensionality reduction (e.g., principal component analysis (PCA)),
waveband selection (e.g., successive projections algorithm (SPA)), and vegetation index (VI) extraction
are the three commonly-used strategies in relating sensitive spectral features to the information of
plant species [34–36]. Moreover, different sample subset partition methods (e.g., stratified random
sampling (STRAT), Kennard-Stone sampling algorithm (KS), and sample subset partition based on
joint X-Y distances (SPXY)) may cause different classification results [37,38]. However, very few studies
have investigated the combination of feature extraction and sample subset partition in the classification
of mangrove species.

Continuous wavelet analysis (CWA) is an effective noise reduction method and it can also enhance
the details of spectral features of hyperspectral data [39–41]. Hence, CWA has been successfully utilized
in quantitative remote sensing for retrieving functional traits of plants (e.g., leaf mass per area [42],
canopy water content [43], leaf dry matter content and specific leaf area [44]). In contrast, a few studies
have applied CWA in improving species classification accuracy in herbaceous wetlands and tropical
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dry forests [45,46]. However, the advantage of CWA with regards to hyperspectral data is rarely
investigated in mangrove species classification.

With the leaf hyperspectral reflectance spectra of four mangrove species samples collected across
six regions, this study aimed to explore the potential of CWA combined with different sample subset
partition and feature extraction methods in mangrove species classification. The results at the leaf scale
may lay the foundation for further studies with UAV- and satellite-based hyperspectral images.

2. Materials and Methods

2.1. Field Sample

A total of 301 leaf samples of four mangrove species were collected from six sites (Figure 1) in
2017 and 2018 (Table 1), comprising 60 of Avicennia marina, 46 of Bruguiera gymnorrhiza, 81 of Kandelia
obovate, and 114 of Aegiceras corniculatum. Each sample was collected from a plot of 10 m × 10 m with a
single species, and the center location of each plot was recorded with a global positioning system (GPS)
handheld receiver. Moreover, any two plots were at least 30 m apart. For each plot, about 20–30 leaves
were picked from the canopy using an extendable trimming pole. To ensure the picked leaves were
mature, the leaves between the third and fifth layers from the top were selected [47]. Finally, each
sample was instantly sealed in a fresh-keeping bag, kept in a dark box with ice packs, and transported
to a nearby laboratory for spectral measurement and chemical analysis.
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Figure 1. The distribution and location of study areas.

Table 1. Statistics of 301 mangrove leaf samples.

Time Sampling Location Sample Size Species

2017.01 Futian national mangrove nature reserve, Shenzhen 47 Am; Bg; Ko

2017.04

Shankou national mangrove nature reserve, Beihai 19 Ac; Bg; Ko
Dangjiang Town, Beihai 22 Ac; Ko

Gaoqiao mangrove nature reserve, Zhanjiang 56 Ac; Bg; Ko
Shatian Town, Beihai 23 Ac; Am

Beihai coastal national wetland park, Beihai 24 Am; Ko
2017.10 Futian national mangrove nature reserve, Shenzhen 51 Am; Ko
2018.05 Gaoqiao mangrove nature reserve, Zhanjiang 59 Ac; Bg; Ko

Am: Avicennia marina; Ac: Aegiceras corniculatum; Bg: Bruguiera gymnorrhiza; Ko: Kandelia obovata. Shenzhen and
Zhanjiang belong to Guangdong Province, China; Beihai is located in Guangxi Zhuang Autonomous Region, China.

2.2. Leaf Reflectance Measurement and Spectra Preprocessing

An ASD FieldSpec 4 portable spectroradiometer (Analytical Spectral Devices, Inc., Boulder, CO,
USA) was used to measure the leaf spectra reflectance of four mangrove species, and it possesses 2151
wavebands from 350 to 2500 nm with a sampling interval of 1.4 nm in the range of 350–1000 nm and
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2 nm in the range of 1000–2500 nm. For each sample, ten leaves were randomly selected in order to
measure their spectra with an ASD leaf clip and plant probe; the spectra of each leaf were recorded
with ten successive scans and the spectra of ten leaves were averaged as the final reflectance spectra of
the target sample.

Due to the systematic noise at two edges of leaf spectrum (350–399 nm and 2451–2500 nm), the leaf
reflectance spectra of 301 samples were first reduced to 400–2450nm (Figure 2). To minimize the effects
of random noise on model calibration, the remaining spectra were then processed by a Savitzky-Golay
smoothing filter with a second order polynomial fit and a window size of seven data points [48].
Finally, the smoothed spectra (hereafter Smth for short) were subjected to first derivative analysis
(hereafter Der for short) because this can enhance the peaks and valleys of spectral features [49] and
minimize the impact of multiple scatterings of irradiation [50].

with ten successive scans and the spectra of ten leaves were averaged as the final reflectance spectra 

of the target sample. 

Due to the systematic noise at two edges of leaf spectrum (350–399 nm and 2451–2500 nm), the 

leaf reflectance spectra of 301 samples were first reduced to 400–2450nm (Figure 2). To minimize the 

effects of random noise on model calibration, the remaining spectra were then processed by a 

Savitzky-Golay smoothing filter with a second order polynomial fit and a window size of seven data 

points [48]. Finally, the smoothed spectra (hereafter Smth for short) were subjected to first derivative 

analysis (hereafter Der for short) because this can enhance the peaks and valleys of spectral features 

[49] and minimize the impact of multiple scatterings of irradiation [50]. 

 

Figure 2. The mean smooth (Smth) reflectance spectrum and photos of four mangrove species. 

2.3. Continuous Wavelet Analysis of Leaf Reflectance 

Wavelet analysis is an effective pattern of decomposing the original signal into multiple 

amplitudes and scales [51,52] and has been widely applied in the field of vegetation remote sensing 

[41,43,44]. Wavelet analysis is generally implemented in the form of discrete wavelet analysis (DWA) 

and continuous wavelet analysis (CWA). The former often transforms the most informative part of 

the input data to avoid redundancy but the decomposed components from DWA are difficult to 

interpret for waveband-by-waveband analysis [44]. In contrast, CWA generates interpretable signals 

which directly correspond to original leaf spectra and thus the decomposed signals can reflect the 

information on plant absorption features [53,54]. Therefore, we employed CWA to explore the details 

of leaf spectra in the classification of mangrove species. 

CWA performs the convolution of reflectance spectrum f (λ) into sets of coefficients with a 

mother wavelet function at various scales (eq. 1) [55]. This may be expressed as 

 
W𝑓(𝑎, 𝑏) = ∫ 𝑓(𝜆)ψ𝑎,𝑏(λ)

+∞

−∞

𝑑λ,  ψ𝑎,𝑏(λ) =
1

√𝑎
ψ (

λ − 𝑏

𝑎
) (1) 

where Wf (a,b) (a and b are positive real numbers) is the vector of wavelet coefficients, a and b 

represent scaling and shifting factors, respectively, indicating the width and position of the wavelet 

function [56], and ψ𝑎,𝑏(λ) is the mother wavelet function. 

The shape of the leaf reflectance spectrum is similar to a Gaussian or quasi-Gaussian function, 

or a composition of several Gaussian functions [57]. Based on the suggestion of Torrence et al. [58], 

the second order derivative of Gaussian (namely the ‘Mexican Hat’, “mexh”) was chosen as the 

mother wavelet function (Figure 3). The ”mexh” function has symmetry and its mean power is zero 

[59]. Moreover, the ”mexh” function has an infinite support width of [–5s, 5s] (s ∈ 𝑍+) and its effective 

basic support range is [–5, 5] [60]. 

To decrease intensive computation, according to the suggestion of Cheng et al. [61], CWA was 

only performed at dyadic scales instead of all possible scales. Moreover, the 2051 wavebands (400–

2450nm) available in this study made the dyadic scale less than 210 = 1024. Based on the suggestion of 

Ac: Aegiceras corniculatumKo: Kandelia obovata

Bg: Bruguiera gymnorrhizaAm: Avicennia marina

700 1200 1700 2200450 950 1450 1950 2450

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

915 945 975 1005 1035 1065

0.60

0.62

0.64

0.66

0.68

0.70

M
ea

n
 R

ef
le

ct
an

ce
 o

f 
S
m
th

Wavelength (nm)

 Am

 Bg

 Ko

 Ac

Figure 2. The mean smooth (Smth) reflectance spectrum and photos of four mangrove species.

2.3. Continuous Wavelet Analysis of Leaf Reflectance

Wavelet analysis is an effective pattern of decomposing the original signal into multiple
amplitudes and scales [51,52] and has been widely applied in the field of vegetation remote
sensing [41,43,44]. Wavelet analysis is generally implemented in the form of discrete wavelet analysis
(DWA) and continuous wavelet analysis (CWA). The former often transforms the most informative
part of the input data to avoid redundancy but the decomposed components from DWA are difficult to
interpret for waveband-by-waveband analysis [44]. In contrast, CWA generates interpretable signals
which directly correspond to original leaf spectra and thus the decomposed signals can reflect the
information on plant absorption features [53,54]. Therefore, we employed CWA to explore the details
of leaf spectra in the classification of mangrove species.

CWA performs the convolution of reflectance spectrum f (λ) into sets of coefficients with a mother
wavelet function at various scales (Equation (1)) [55]. This may be expressed as

W f (a, b) =
∫ +∞

−∞
f (λ)ψa,b(λ)dλ, ψa,b(λ) =

1√
a
ψ

(
λ− b

a

)
(1)

where Wf(a,b) (a and b are positive real numbers) is the vector of wavelet coefficients, a and b represent
scaling and shifting factors, respectively, indicating the width and position of the wavelet function [56],
and ψa,b(λ) is the mother wavelet function.

The shape of the leaf reflectance spectrum is similar to a Gaussian or quasi-Gaussian function, or
a composition of several Gaussian functions [57]. Based on the suggestion of Torrence et al. [58], the
second order derivative of Gaussian (namely the ‘Mexican Hat’, “mexh”) was chosen as the mother
wavelet function (Figure 3). The ”mexh” function has symmetry and its mean power is zero [59].
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Moreover, the ”mexh” function has an infinite support width of (–5s, 5s) (s ∈ Z+) and its effective
basic support range is (–5, 5) [60].

To decrease intensive computation, according to the suggestion of Cheng et al. [61], CWA was only
performed at dyadic scales instead of all possible scales. Moreover, the 2051 wavebands (400–2450nm)
available in this study made the dyadic scale less than 210 = 1024. Based on the suggestion of
Cheng et al. [42] and the preliminary experiments of mangrove species classification, the eight scales
(20, 21, . . . , 27) were chosen for CWA of Smth and Der (or named “wavelet power spectra of Smth and
Der”), and CWA was implemented with the wavelet packets of MATLAB R2018a.
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2.4. Establishment of Mangrove Species Classification Model

To examine the impact of different sample subset partition and feature extraction methods on
the performance of mangrove species classification, three commonly-used subset partition methods
(STRAT, KS, and SPXY) and feature selection methods (PCA, SPA, and VI) were tested and compared,
respectively. Random forests (RF), a prevalent and successful machine learning method, was chosen as
the classification model in this study.

According to the suggestion of Roth et al. [62], to ensure the modeling and prediction sets
contained samples of each species, the original dataset (301 samples) was first divided into two
sets with STRAT, using 70% (211) of samples for modeling and 30% (90) of samples for prediction
(Figure 4). The reason for this partition strategy of selecting the prediction sets was that the KS and
SPXY algorithms selected sample subsets based on the Euclidean distances of x-space or x and y space
which resulted in an unbalanced prediction sample size of four species. Afterwards, the modeling
set was divided into two sets, with 70% (148 samples) being used as a calibration set to construct
species classification models and the remaining samples (the validation set) being eliminated due to
the aforementioned influence of KS and SPXY. Each process of sample subset partitioning was repeated
50 times to ensure the reliability of the classification results [63].

A total of 270 (18 × 3 × 5) models were constructed, considering 18 types of spectra (Smth, Der,
Smth + CWA (eight scales), and Der + CWA (eight scales)) in conjunction with three sample subset
partition (STRAT, KS, and SPXY) and five feature extraction methods (PCA, SPA, and three VIs). To
simply and clearly present the 270 models, CWA of Smth and Der were expressed in Smth_scale and
Der_scale (scale = 1, 2, 4, 8, 16, 32, 64, 128) and the combination of sample subset partition and feature
extraction was represented in STRAT_PCA, which indicated the sample subset was partitioned by
STRAT and the feature was in the meantime extracted by PCA.
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2.4.1. Sample Subset Partition

Compared with simple random sampling (SRS), STRAT can select more representative samples
and is especially suitable for remote-based plant species classification [28]. The KS algorithm calculates
the Euclidean distances within different samples along the independent variable (x) space using
a stepwise procedure; two samples with the farthest Euclidean distance are first selected and the
next sample selected is the farthest one from the first two samples [64]. SPXY improves on the KS
algorithm [65] by extending the Euclidean distance calculation with both independent and dependent
variables. For details of KS and SPXY refer to Galvao et al. [65]. The three aforementioned sample
subset partition methods were implemented with MATLAB R2018a.

2.4.2. Feature Extraction

PCA is a typical dimensionality reduction method which is widely applied in hyperspectral image
analysis [34,66]. In this study, spectra (Smth, Der, Smth + CWA (eight scales), and Der + CWA (eight
scales)) were subjected to PCA using a pca() function in MATLAB R2018a, and the leading several
principal components were chosen based on the eigenvalues-greater-than-one rule to calibrate the
model [67]. In addition, we added up the percentages of total variance explained by the selected
principal components for each spectrum (Table 2).

Table 2. Summary of percentages of total variance explained by the selected principal components.

Spectra Smth Smth_1 Smth_2 Smth_4 Smth_8 Smth_16 Smth_32 Smth_64 Smth_128

Num_Comps 5 5 7 7 6 6 6 5 5
Explained (%) 99.16 93.55 92.73 95.52 96.14 97.30 97.58 96.76 98.59

Spectra Der Der_1 Der_2 Der_4 Der_8 Der_16 Der_32 Der_64 Der_128
Num_Comps 6 13 12 9 6 4 5 5 5
Explained (%) 96.01 84.90 84.65 91.79 96.12 96.40 97.57 97.73 98.56

Num_Comps is the number of selected components of principal component analysis (PCA), and Smth_scale
(Der_scale) (scale = 1, 2, 4, 8, 16, 32, 64, 128) represents wavelet power spectra derived from continuous wavelet
analysis (CWA) of Smth/first derivative reflectance (Der) spectra with specific scales.

SPA is a forward variable selection algorithm which begins with a waveband, merges a new one
during each iteration, and applies projection operators in a vector space until meeting a specified
number of wavebands [68]. The advantage of SPA lies in its deterministic search process with good
robustness and reproducible results. The ratio of the number of selected wavebands to the total
number of training samples is 0.15–0.2 to avoid over-fitting problems [69]. Gross, et al. [45] discovered
that model performance with less than 20 features was relatively stable, and extra features evidently
increased computation time. Hence, we set the parameter m_max (maximum number of variables) of
the spa() function as 20. The process was implemented with SPA code (www.ele.ita.br/~{}kawakami/
spa) in MATLAB R2018a.

VIs are generally derived from two or three wavebands to detect the differences of plant
physiology and biochemistry [69]. There are many forms of VIs based on different mathematical rules,
and those commonly-used are normalized difference vegetation index (NDVI = (ρλ1 − ρλ2)/(ρλ1 +

ρλ2)) [70], ratio vegetation index (RVI = ρλ1/ρλ2) [71] and three bands vegetation index (TBVI =
ρλ1/(ρλ2 + ρλ3)) [72]. The wavebands selected by SPA from spectra (Smth, Der, Smth + CWA (eight
scales), and Der + CWA (eight scales)) were then used to construct the three forms of VI. The selected
wavebands generated n × (n − 1) (n being the number of wavebands selected by SPA) combinations of
all possible NDVIs and RVIs, and n × (n − 1) × (n − 2)/2 combinations of TBVIs. The computations
were carried out in MATLAB R2018a.

2.4.3. Random Forests Classification

The RF algorithm introduces decision trees, the bagging (bootstrapping aggregation) sampling
method and internal cross-validation into K binary Classification and Regression Trees (CART) trees,

www.ele.ita.br/~{}kawakami/spa
www.ele.ita.br/~{}kawakami/spa
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and can effectively overcome the over-fitting problem of machine learning [73–75]. Hundreds of
decision tree models are constructed by RF and the randomized subsets of target data and variables
are utilized for building each tree [76]. These classification trees are then used to determine the correct
classification by majority voting [77]. There are two main tuning parameters (ntree and mtry) needed
in a RF model, and both of them are kept at the default values because researchers have reported that
the default values and the empirical criteria generally produce acceptable results [74,78]. The RF was
performed with RF code (https://code.google.com/archive/p/randomforest-matlab/downloads)
in MATLAB R2018a.

2.5. Evaluation of Classification Model Performance

Overall accuracy (OA) (Equation (2)), producer’s accuracy (PA) (Equation (3)) and user’s
accuracy (UA) (Equation (4)) were employed to evaluate the performance of each classification
model. Furthermore, the allocation disagreement (AD) (Equation (5)) and quantity disagreement (QD)
(Equation (6)) were adopted rather than Kappa, since Kappa neglects the assessment of off-diagonal
elements [79] which is highly relevant to OA [63]. For specific descriptions and explanations of AD and
QD refer to Jr et al. [80] and Nurmemet et al. [81]. The larger the values of OA, PA, or UA, the better
the model performance; however, the larger the value of AD or QD, the poorer the model performance.
These aforementioned methods may be expressed as

OA =
∑ Aii

n
× 100%, (2)

PA =
Aii
Ai+
× 100%, Ai+ = Ai1 + Ai2 + Ai3 + Ai4 (3)

UA =
Aii
A+i
× 100%, A+i = A1i + A2i + A3i + A4i (4)

AD =
∑
(

2×min
(

Ai+
n −

Aii
n , A+i

n −
Aii
n

))
2

× 100%, (5)

QD =
∑
∣∣∣ Ai+

n −
A+i

n

∣∣∣
2

× 100%, (6)
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where A is a 4× 4 error matrix (Equation (7)), and i is the row/column number of relevant species;
Ai+ represents the sum of the ith row of the error matrix, reflecting the total number of the samples
in ith species divided into the ith species and the other three species; A+i represents the sum of the
ith column of the error matrix, reflecting the total number of samples divided into ith species; Aii, the
ith diagonal element of error matrix, indicates the number of species correctly classified; and n is the
sample size of prediction sets.

3. Results

3.1. Mean Reflectance and Wavelet Power Spectra of Mangrove Leaf

Taking Am (Avicennia marina) for instance (the cases of other species can be found in Figure S1-1,
S1-2 (see supplementary material Figure S1), the mean reflectance and wavelet power spectra of
Smth/Der with eight scales are illustrated in Figure 5. The mean reflectance spectra of Smth only

https://code.google.com/archive/p/randomforest-matlab/downloads
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had 10 peaks and 10 troughs (Figure 5a), while 52 peaks and 53 troughs were observed for the first
derivative spectra (Figure 5b). Compared with the spectra of Smth/Der, the number of peaks and
troughs for the wavelet power spectra of Smth/Der (scale = 1, 2, and 4) experienced a substantial
increase with much more detailed spectral features; however, the wavelet power spectra with the
scales of 32–128 had less information of spectral features than the spectra of Smth/Der. The other three
species (Figure S1-1,S1-2 (Figure S1)) also experienced the same condition with first derivative and
wavelet power spectra (scale = 1, 2, and 4), which enhanced the differences of spectral wavebands and
improved the details of spectral features.
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Figure 5. Plots of the mean reflectance (a), derivative (b), and wavelet power spectra of Smth (a-1, a-2,
. . . a-8) and Der (b-1, b-2, . . . b-8) with eight scales (taking Am species for instance).
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3.2. Performance of Classification Models with Reflectance, Derivative and Wavelet Power Spectra

To explore the advantage of CWA on mangrove species classification, the OAs, Ads, and QDs
of the 270 models with reflectance, derivative, and wavelet power spectra were summarized and
compared (Table 3). Regardless of the effect of sample subset partition and feature extraction, the
models with CWA of Smth spectra at the scales of 21-26 (also Smth_2, Smth_4, Smth_8, Smth_16, Smth_32,
and Smth_64) and CWA of Der spectra at the scale of 23 and 24 (also Der_8 and Der_16) had higher mean
OAs and lower mean QDs than those with Smth/Der spectra; the Der spectra achieved much better
classification performance than the Smth spectra. In addition, among the 120 models with the wavelet
power spectra of Smth, 88.3% of models increased the OA values with an improvement of 0.2–28.6%
compared to the model with the Smth spectra, and among the 120 models with the wavelet power
spectra of Der, 25.8% of models increased OA values, with an improvement of 0.1–11.4% compared to
the model with the Der spectra (Table S1—OA comparison).

Among the 270 models, the models with Smth_4 and Der_8 spectra had the highest mean
classification accuracies; however, the models with CWA of Smth spectra at the scale of 128 and
CWA of Der spectra at the scale of 1 had the poorest classification performances. The two models with
CWA of Smth/Der spectra at the scale of 8 held the best classification accuracies, with OA reaching
97.6% and 98.0%, respectively.

Table 3. The overall accuracies (OAs), allocation disagreements (ADs), and quantity disagreements
(QDs) of models with reflectance, derivative, and wavelet power spectra.

Spectra Number of
Models

OA (%) AD (%) QD (%)
Max Min Mean SD Max Min Mean SD Max Min Mean SD

Smth 15 86.3 52.8 68.5 11.6 39.3 8.4 24.4 10.8 8.8 5.4 7.2 1.0
Smth_1 15 88.0 56.9 69.9 10.6 36.0 6.5 22.7 9.2 11.0 5.4 7.4 1.9
Smth_2 15 91.1 65.2 77.7 9.3 28.3 4.3 16.0 7.9 9.9 4.6 6.3 1.8
Smth_4 15 97.1 76.3 87.0 7.0 17.4 0.8 8.4 5.1 10.8 2.1 4.6 2.4
Smth_8 15 97.6 72.5 84.7 8.6 20.5 0.9 10.5 6.8 8.7 1.6 4.7 1.9

Smth_16 15 92.3 71.0 82.5 7.6 23.4 3.6 12.5 6.4 7.8 3.5 5.1 1.4
Smth_32 15 89.9 61.8 76.4 10.1 31.2 5.3 17.7 9.3 8.7 4.6 5.9 1.1
Smth_64 15 89.8 57.3 74.7 11.1 29.5 5.4 17.5 8.3 17.3 4.8 7.8 3.6
Smth_128 15 86.5 48.7 67.0 13.2 42.4 8.7 24.7 10.9 14.9 4.9 8.3 3.0

Der 15 93.0 69.6 81.9 8.9 24.2 3.7 13.0 7.4 8.9 3.0 5.0 1.7
Der_1 15 84.1 36.9 57.3 17.0 54.6 7.8 34.3 16.6 10.8 5.5 8.4 1.6
Der_2 15 88.7 55.0 70.0 11.4 37.6 4.7 22.7 10.7 9.8 4.4 7.3 1.5
Der_4 15 97.3 61.1 79.9 12.6 30.5 1.0 15.2 10.7 9.0 1.8 5.0 2.1
Der_8 15 98.0 70.7 85.6 8.5 21.2 0.5 10.1 6.8 8.2 1.4 4.4 1.8
Der_16 15 96.8 67.2 82.2 9.6 25.8 1.2 12.9 7.9 8.1 2.0 5.0 1.8
Der_32 15 91.2 61.8 80.7 8.8 28.0 4.4 13.4 7.1 10.2 4.0 5.9 2.1
Der_64 15 88.3 66.0 75.5 7.8 26.9 6.6 18.2 7.1 9.0 4.9 6.3 1.0

Der_128 15 86.5 54.5 71.6 11.5 36.1 7.6 20.5 9.4 13.8 5.2 7.8 2.5

Sum 270

Smth and Der are smoothed reflectance and first derivative spectra, respectively; Smth_scale and Der_scale (scale = 1,
2, 4, 8, 16, 32, 64, 128) represent the wavelet power spectra of Smth and Der with specific scale, respectively; and SD
is standard deviation.

3.3. Performance of Models with Different Sample Subset Partition Methods

To explore the effect of different sample subset partition methods on the model performance of
mangrove species classification, the OAs, ADs and QDs of the 270 models using the STRAT, KS and
SPXY methods were compared (Figure 6). The models using the STRAT method (mean OA = 84.5%,
mean AD = 10.8%, and mean QD = 4.8%) achieved better classification results than those using the
KS (mean OA = 72.7%, mean AD = 20.4%, and mean QD = 6.9%) and SPXY (mean OA = 71.7%, mean
AD = 21.3%, and mean QD = 7.0%) methods. Moreover, the standard deviation of the OAs, ADs, and
QDs using the STRAT method (SD = 6.7%, 5.9%, and 1.2%, respectively) were much smaller than
those using the KS (SD = 13.1%, 11.3%, and 2.4%, respectively) and SPXY (SD = 13.7%, 11.9%, and
2.6%, respectively) methods. In addition, the lowest accuracies of models using these three methods
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(OA = 66.2% for STRAT, OA = 38.0% for KS, and OA = 36.9% for SPXY) occurred with the wavelet
power spectra of Der_1.
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Figure 6. The box plots of the OAs (a), ADs (b) and QDs (c) of the 270 models with the stratified
random sampling (STRAT), Kennard-Stone sampling algorithm (KS), and subset partition based on
joint X-Y distances (SPXY) methods. Each box has three whisker labels representing the maximum,
mean, and minimum values for each dataset from top to bottom. The box width represents SD and a
comparatively wider box width indicates a larger SD value.

3.4. Performance of Classification Models with Different Feature Extraction Methods

To explore the effect of different feature extraction methods on the model performance of
mangrove species classification, the OAs, ADs, and QDs of the 270 models using PCA, SPA, and
three VIs (NDVI, RVI, and TBVI) were compared (Figure 7). The ranking order of the mean OA values
was PCA > SPA > TBVI > NDVI > RVI, while PCA < SPA < TBVI < NDVI < RVI for the mean AD
values and SPA < PCA < TBVI < NVDI < RVI for the mean QD values. The models using PCA had
lower standard deviation values of the OAs, ADs, and QDs (SD = 4.6%, 3.5%, and 1.5%, respectively)
than those with the other four methods. Moreover, the model using SPA combined with the STRAT
method and the wavelet power spectra of Der_8 achieved the highest OA value of 98.0% among the
270 models.
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Figure 7. The box plots of the OAs (a), ADs (b) and QDs (c) of the 270 models using PCA, successive
projections algorithm (SPA), normalized difference vegetation index (NDVI), ratio vegetation index
(RVI), and three bands vegetation index (TBVI). Each box has three whisker labels representing the
maximum, mean, and minimum values for each dataset from top to bottom. The box width represents
SD and a comparatively wider box width indicates a larger SD value.
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Among the three VIs, there were no significant differences between NDVI and RVI in mangrove
species classification considering the mean or the SD values of OAs, Ads, and QDs; however, both
provided lower classification results than TBVI (mean OA = 72.7%, mean AD = 17.2%, and mean
QD = 6.6%). Notably, the model using TBVI (the three wavebands were 730, 1680, and 1735 nm)
combined with the STRAT method and the wavelet power spectra of Smth_4 held the highest OA
value of 93.6% among the models using VIs, which was higher than the best result of the models using
PCA (Figure 7a).

To explore which waveband or spectral range was sensitive to mangrove species classification,
the wavebands which were frequently selected (with ratios of the frequency of the specific waveband
to the number of all the wavebands selected by SPA greater than 0.01) by SPA (54 models, 714 selected
wavebands in total) and VIs (54 × 3 = 162 models, 378 selected wavebands in total) were compiled
(Table 4). The selected bands mostly lie in the range of 680–780 nm (red edge region), 1650–1950 nm,
and 2200–2450 nm.

Table 4. The wavebands selected by SPA and vegetation indexes (Vis) with high frequency.

Wavebands Selected by SPA Wavebands Selected by VIs

Wavelength (nm)

405; 685; 690; 695; 700; 705; 710;
715; 720; 725; 730; 735; 745; 800;

1145; 1650; 1655; 1730; 1875; 1885;
1890; 2245; 2320; 2450

405; 515; 605; 685; 690; 695; 700;
715; 730; 745; 765; 800; 855; 1385;

1390; 1620; 1650; 1655; 1695; 1730;
1740; 1870; 1945; 1970; 2185; 2235;
2245; 2250; 2255; 2260; 2320; 2450

4. Discussion

4.1. Continuous Wavelet Analysis for Mangrove Species Classification

With leaf hyperspectral reflectance, we have explored the potential of CWA combined with
different sample subset partition and feature extraction methods in mangrove species classification,
and study results have demonstrated that CWA of Smth and Der spectra with suitable wavelet scales
could greatly improve the classification accuracy compared to Smth or Der spectra alone (Table 3).
Notably, although low-scale (e.g., scale = 1) wavelet coefficients were able to discover numerous details
from leaf spectra (Figure 5), the results were unsatisfactory (mean OA: 63.6%); the high-scale (e.g.,
scale = 128) wavelet coefficients also corresponded to poorer performance of classification (mean OA:
69.3%). Such unsuccessful results may be explained by the fact that the low or high scales of wavelet
power spectra have noise, or insensitive or less detailed spectral information related to leaf structure
and biochemical components [41,44]. In addition, both the derivative analysis and CWA can enhance
the differences of spectral wavebands; however, their combination did not improve the accuracy at
the scale of 21 or 22, suggesting that the details of the original spectra could be largely preserved by
derivative analysis or CWA alone. Such inference could also be supported by the result of Der spectra
performing much better than Smth spectra. In general, low-scale wavelet coefficients are adept at
detecting the characteristics of narrow absorption features of leaves but high-scale coefficients are
expert in determining the overall spectral shape of leaf reflectance spectra [44]. Therefore, it is of
crucial importance to determine the suitable wavelet scale when reflectance or derivative spectra are
subjected to CWA.

Considering relevant studies using CWA on hyperspectral data at the leaf level, many studies
have reported that the optimal scale of CWA in plant disease detection and biochemical component
estimation lies between 22 and 25. For instance, Shi et al. [41] selected wavelet features at the scales of
22, 24 and 25 to study rust infestation; Zhang et al. [23] identified disease sensitive wavelet features
at the scales of 22~4; Li et al. [82] found the performance of scale 23 was the best for extracting the
red edge position from leave reflectance; and 24 was specified as the optimal scale for estimating
leaf water content and leaf dry matter content by Cheng et al. [54] and Cheng et al. [42], respectively.
Therefore, the optimal continuous wavelet scales between 22 and 25 are still required to be investigated
in future studies.
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Previous studies have reported the classification of mangrove species without CWA. For instance,
Zhang et al. [23] coupled laboratory leaf hyperspectral reflectance with mangrove health conditions,
acquiring an OA around 90%. In terms of other plant species classification without CWA, Shen et al. [34]
combined airborne hyperspectral images with LiDAR to classify tree species of subtropical forests
and their best OA reached around 91.5%. Our study has revealed the advantage of CWA in mangrove
species classification, and the fact that it is promising to employ CWA to further improve the accuracy
of plant species classification with drone or satellite-based hyperspectral data.

4.2. Impact of Sample Subset Partition and Feature Extraction on Classification Accuracy

Our results have demonstrated that the selection of sample subset partition and feature extraction
methods play an important role in improving the accuracies of mangrove species. Generally, the models
using STRAT method exhibited more stable and higher classification accuracies than those using KS
and SPXY methods. To our knowledge, very few studies have applied SPXY in the sample partition
for plant species classification, and comparisons among SRS, KS and SPXY have been performed in
quantitative models to determine the asiaticoside content in centella total glucosides [83]. However,
Zhan et al. [83] have concluded that the model using SPXY achieves the highest prediction accuracy
which was contrary to our results. Such disagreement may be related to differences in species, models
or the statistical distribution of dependent variables. Moreover, the sample subset partitioned by KS
and SPXY cannot ensure the equal number of samples for each species. Hence, it is recommended to
employ STRAT method in plant species classification.

Regarding the feature extraction method, the performances of the models using PCA and SPA
were better than those using VIs, which could be explained by the fact that VIs had less spectra features
with only two or three wavebands. This inference could be supported by the results of the models
using TBVI, because TBVI has only one more waveband than NDVI and RVI, but the OAs of the
models using TBVI were higher than those using NDVI and RVI. Although the models using SPA had
slightly lower mean classification accuracies than those using PCA (Figure 7), the former models could
have better waveband explanation and the model using SPA coupled with CWA of Der at the scale of
8 and STRAT had the best classification result among the 270 models. Guzmán Q et al. [39] recently
solely applied PCA to realize data reduction and successfully discriminated liana and tree leaves from
a neotropical dry forest. Hence, it is difficult to determine whether PCA or SPA is more suitable for
mangrove species classification, and both methods still require investigation with other plant species
or other forms of hyperspectral data (satellite-based or UAV-acquired).

This study has only focused on wavebands selected by SPA and VIs and many of the selected
wavebands lie in the red edge region (680–780 nm) (Table 4). Red edge species are sensitive to
vegetation chlorophyll, stress, dynamics, and nitrogen accumulation [84,85]. Moreover, the selected
wavebands located around 1885 and 2245 nm are related to foliar starch [86]. The selected wavebands
within 1600–1750 nm might be associated with complex biochemical properties, such as salt, sugar,
water, protein, oil, lignin, starch, and cellulose, as well as leaf structure [10]; and the wavebands in
the range of 1900–1950 nm and around 1400 nm are strongly affected by water absorption [86]. The
hyperspectral data alone could explore the sensitive spectral information related to mangrove species
classification, and the integration of spectral information and supplementary data (e.g., biochemical
components, soil property, and geomorphology) might help to further understand the mechanism of
mangrove species composition and extend the classification model to other study sites.

4.3. Taxonomically Comparing the Accuracy of Mangrove Species Classification

Some studies mention that the spectral differences of plants within different taxonomic levels are
significant [87–89]. Kiang et al. [88] found that the spectral differences within higher taxonomic
levels were more pronounced than those within lower taxonomic levels. Hence, we compiled
detailed taxonomical information (Figure S1-3 (Figure S1)) (source: Flora Reipublicae Popularis Sinicae,
frps.iplant.cn) on four mangrove species.
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Bg and Ko belong to the same family, while Am and Ac are classified into different orders. In most
cases, the PAs and UAs of Bg and Ko are lower than Am and Ac (Figure S1-5 (Figure S1)). Moreover,
we found that the majority of the error-classifying of Bg and Ko samples were classified into Ko
and Bg, respectively, which may be explained by the fact that the shape, size and thickness of their
leaves are similar and their biochemical components are approximate (leaf water content (Ko: 70.93%
(SD = 2.82%); Bg: 68.27% (SD = 2.67%)); chlorophyll (metered by SPAD-502, Ko: 68.6 (SD = 5.18); Bg:
70.1 (SD = 3.89)). In general, we can infer that it is still a challenge to use hyperspectral data alone to
accurately discriminate between taxonomically similar species, and supplementary information such
as canopy structure, leaf area index, and leaf biochemical components may be incorporated into the
classification model to improve the accuracies of species discrimination.

5. Conclusions

With leaf hyperspectral data, we have explored the potential of CWA coupled with different
sample subset partition and feature extraction methods in mangrove species classification. The
following conclusions may be drawn:

1) Regardless of the effect of sample subset partition and feature extraction methods on the
performance of mangrove species classification, CWA with suitable scales has great potential to
improve the classification accuracy.

2) The STRAT method combined with PCA or SPA methods is recommended to improve
classification performance.

3) Compared with the original reflectance spectra, the derivative spectra can significantly improve
the classification accuracy.

The leaf-level results can lay the foundation for the next step in-depth study of mangrove
species classification with UAV-acquired or satellite hyperspectral data, contributing to understanding
large-scale species composition and further effectively protect and manage mangrove forests. Moreover,
the encouraging performance of CWA can also be extended to other plant species such as forest and
crop. Further, eco-environment factors (e.g., elevation, soil property, leaf biochemical components, and
canopy structure) are required to investigate their effects on the performance of mangrove species
classification in future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/3/254/s1,
Figure S1: Supplementary Figures, Table S1: Statistics.
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