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Abstract: Floods, storms and hurricanes are devastating for human life and agricultural cropland.
Near-real-time (NRT) discharge estimation is crucial to avoid the damages from flood disasters. The key
input for the discharge estimation is precipitation. Directly using the ground stations to measure
precipitation is not efficient, especially during a severe rainstorm, because precipitation varies even
in the same region. This uncertainty might result in much less robust flood discharge estimation and
forecasting models. The use of satellite precipitation products (SPPs) provides a larger area of coverage
of rainstorms and a higher frequency of precipitation data compared to using the ground stations.
In this paper, based on SPPs, a new NRT flood forecasting approach is proposed to reduce the time
of the emergency response to flood disasters to minimize disaster damage. The proposed method
allows us to forecast floods using a discharge hydrograph and to use the results to map flood extent by
introducing SPPs into the rainfall–runoff model. In this study, we first evaluated the capacity of SPPs to
estimate flood discharge and their accuracy in flood extent mapping. Two high temporal resolution SPPs
were compared, integrated multi-satellite retrievals for global precipitation measurement (IMERG) and
tropical rainfall measurement mission multi-satellite precipitation analysis (TMPA). The two products
are evaluated over the Ottawa watershed in Canada during the period from 10 April 2017 to 10 May 2017.
With TMPA, the results showed that the difference between the observed and modeled discharges was
significant with a Nash–Sutcliffe efficiency (NSE) of −0.9241 and an adapted NSE (ANSE) of −1.0048
under high flow conditions. The TMPA-based model did not reproduce the shape of the observed
hydrographs. However, with IMERG, the difference between the observed and modeled discharges was
improved with an NSE equal to 0.80387 and an ANSE of 0.82874. Also, the IMERG-based model could
reproduce the shape of the observed hydrographs, mainly under high flow conditions. Since IMERG
products provide better accuracy, they were used for flood extent mapping in this study. Flood mapping
results showed that the error was mostly within one pixel compared with the observed flood benchmark
data of the Ottawa River acquired by RadarSat-2 during the flood event. The newly developed flood
forecasting approach based on SPPs offers a solution for flood disaster management for poorly or totally
ungauged watersheds regarding precipitation measurement. These findings could be referred to by
others for NRT flood forecasting research and applications.

Keywords: satellite precipitation products (SSPs); flood forecasting; discharge estimation; MILc
model; integrated multi-satellite retrievals for global precipitation measurement (IMERG); tropical
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1. Introduction

Floods are one of the most devastating natural hazards in the world [1] and their forecast is
essential in flood risk reduction and disaster response decisions [2]. Since 1995, 2.3 billion people have
been affected by floods, and the death tolls caused by floods have risen in many parts of the world [3].
In spite of the considerable efforts in flood disaster management by national and international
organizations, floods still have a negative impact on terrestrial environments. In this context, the most
efficient tools for flood disaster reduction are needed to provide timely emergency responses in
large-scale areas. Flood detection and mapping are two important products from satellite-based
remote sensing using optical and synthetic aperture radar (SAR) images. The selection of suitable
sensors that are both cost-effective and efficient in the development of flood inundation maps has
been a major challenge [4]. In flood disaster reduction management, space technologies intervene
in emergency responses by providing satellite-based flood detection systems such as the United
Nations Platform for Space-based Information for Disaster Management and Emergency Response
(UN-SPIDER) (Office for Outer Space Affairs, United Nations, Vienna, Austria) and the International
Charter: Space and Major Disasters [5]. Although analysts use visual interpretation or change detection
methods [6] for damage assessments by processing images acquired before and after flood disasters,
these methods need to be improved, and space technologies can be incorporated with great potential.
Flood forecasting is a complicated process [7], so floods are very difficult to forecast quantitatively in
some respects, such as intensity, the extent of flood discharge and water depth. Many countries in the
world suffer from rain gauge deficiency. The use of ground stations to directly measure precipitation
might increase the uncertainties due to limited spatial distribution of ground stations so that the
accuracy of flood discharge estimation and mapping would be affected. To solve the problem, space
technologies have been developed to measure precipitation using satellites. Due to their high temporal
and spatial resolutions, satellite precipitation products (SPPs) have provided a new opportunity for
flood discharge estimation.

For discharge estimation, two SPPs of the National Aeronautics and Space Administration
(NASA, Washington, DC, USA) with different spatial and temporal resolutions can be used: (1) the
integrated multi-satellite retrievals for global precipitation measurement (IMERG), specifically the
GPM-3IMRGHH.05 product and (2) tropical rainfall measurement mission multi-satellite precipitation
analysis (TMPA), the NRT version (3B42-RT).

The key part of any flood discharge estimation and forecasting system is the hydrological
model [8]. The physically-based rainfall–runoff (R–R) model that allows the transformation from
precipitation to runoff is used for this purpose. Many categories of the R–R model exist [9]. However,
the challenge in this field is to improve the NRT discharge forecasting accuracy. To overcome this
uncertainty, many researchers have highlighted the importance of only using in-situ data [10].

The first objective of our study is to improve discharge forecasting accuracy by using SPPs to offer
a large coverage area with more frequent data, which allows the initial condition estimation using
the R–R model. For this purpose, we selected the R–R model “Research Institute for Hydrological
Protection Model”, named “Continuous Lumped Hydrological Model” (MILc), which gave satisfactory
results using the data from precipitation ground stations [11]. In order to integrate SPPs into the MILc
model, we developed an independent function for areal precipitation extraction based on the Theissen
polygon equation. The second objective is, after discharge estimation, to evaluate the capacity to
use the forecasted flood discharge from SSPs instead of ground measured discharge data for flood
extent mapping. Discharge data was combined with the Digital Elevation Model (DEM) using a
hydrodynamic model named the Hydrological Engineering Center River Analysis System (HEC-RAS)
(HEC, Davis, CA, USA) [12].

For the accuracy assessment, we selected SAR imagery acquired during the flood events as a
benchmark, due to SAR image acquisition being independent from weather conditions and daytime.
Moreover, the low values of water body backscattering in the microwave spectrum allows the detection
and extraction of water bodies from other objects by using a threshold classifier.
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The results of this study provide a new approach for early emergency responses that might be
helpful to minimize the damage caused by floods.

2. Study Area and Data

2.1. Study Area

The study area is determined by the availability of data required for the MILc model and
also crucial for the validation of the results. Our methodology is based on open source data with
global coverage such as SPPs and Digital Elevation Models. However, the model also requires other
data which are not easy to find simultaneously, such as discharge ground station data located on a
downstream watershed and the observed flood extent required during the flood event.

This study focuses on the area of Ottawa, Canada, which has been considerably affected by
flooding (Figure 1, Table 1) due to heavy rains and melting snow following the rising temperatures in
May 2017. As a result, a state of emergency was announced, and 1900 homes have been flooded across
126 towns and cities in the east of Canada. Furthermore, Lake Ontario’s water level has reached the
highest extent since 1993 [13].
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Figure 1. (a) Location of study area in the North America map, (b) Ottawa and Gatineau River extents
before flood (9 May 2018), (c) Flood extent on the Ottawa and Gatineau Rivers in Ottawa, Canada
(10 May 2018), recorded by the International Charter: Space and Major Disasters. Flood and river
extents are produced by Natural Resources Canada (NRC) based on RadarSat-2 data.
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Table 1. International Charter Space and Major Disasters activation for Ottawa flood event.

Charter Request Description Activation Information

Type of event Flood
Location of event Ottawa, Canada

Date of charter activation 6 May 2017
Time of charter activation 14:59:00

Time zone of charter activation UTC-04:00
Activation ID 529

Project management Canadian Space Agency

Generally, in water cycle and flood processes, the definition of watershed boundaries is very
important, allowing for the delineation of land areas that catch precipitation and then drain into a
water body [14]. For this purpose, we need to delineate the watershed that causes floods in Ottawa city.

According to the NRC service, Ottawa city is affected by two principal rivers: Ottawa and
Gatineau, which are drained by three sub-basins: the upper, central and lower Ottawa watershed
boundaries [15].

According to the availability of discharge ground stations, we selected the Britannia station
(02KF005), located at latitude 44◦81′–48◦68′N and longitude 76◦67′–81◦53′W, and recorded only the
flow drained by the upper and central Ottawa watersheds (Figure 2).
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2.2. Data

Accurate flood forecasting results are related to the quality of the data which are required for two
parts of the proposed methodology, i.e., hydrological discharge estimation and flood extent mapping.

For hydrological forecasting, the MILc model requires three weather related data: precipitation,
air temperature and observed discharge data. For flood extent mapping, the HEC-RAS model requires
geometric and flow data.

2.2.1. Precipitation Data

Precise measurements of precipitation are difficult over large areas with ground precipitation
gauges. Satellite precipitation measurement from space can cover large areas by providing more
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frequent products around the world. Satellites carry instruments designed to observe H2O content in
the atmosphere [16].

In this study, precipitation data are retrieved from SSPs in NRT. Two of NASA’s SPPs are selected
with different spatial and temporal resolutions: IMERG and TMPA products (Figure 3).
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Figure 3. Spatial resolution and footprint comparison between two satellite precipitation products:
(a) tropical rainfall measurement mission multi-satellite precipitation analysis (TMPA) (0.25◦) and
(b) integrated multi-satellite retrievals for global precipitation measurement (IMERG) (0.1◦).

Many SPPs were employed for discharge estimation purpose [17,18] such as TMPA, climate
prediction center morphing technique (CMORPH) and precipitation estimation from remotely sensed
information using artificial neural networks (PERSIANN). IMERG products are newly available and
might offer better accuracy on flood discharge estimation and mapping.

TMPA and IMERG products are provided by a different generation of instruments.
TMPA products are retrieved from a tropical rainfall measurement mission microwave imager (TMI)
that covers the 10.6 GHz to 85.5 GHz frequency channels. However, IMERG products are carried out
from the global precipitation measurement microwave imager (GMI) designed to observe the total
precipitation within all cloud layers [19], covering larger parts of frequency channels (Table 2).

Table 2. Metadata of satellite precipitation products. GMI = global precipitation measurement
microwave imager. TMI = tropical rainfall measurement mission microwave imager.

Instrument Temporal Resolution Spatial Resolution Coverage Area Frequency Channels

GMI Half hour 0.1◦ ±90◦ North-South latitude band 10.6 GHz to 183 GHz
TMI 3 h 0.25◦ ±50◦ North-South latitude band 10.6 GHz to 85.5 GHz

IMERG data records (1488) and TMPA data records (248) for the period from 10 April 2017 to
10 May 2017 were acquired from GIOVANNI, a NASA Earth data platform in network common data
form (NetCDF).

2.2.2. Air Temperature Data

Air temperature data were collected by the ground stations located in the study area. They are also
available in the NRC platform in real time [20] for the same period from 10 April 2017 to 10 May 2017.

2.2.3. Observed Discharge Data

Discharge and water depth data were observed by Britannia (02KF005) ground stations, located
downstream of the Ottawa River watershed. Regularly, the base flow in this station is about 2800 m3/s,
while discharge can reach 5400 m3/s (Figure 4). The observed discharge data are very important in this
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study because they are used for estimating the MILc model parameters and validating the forecasted
flood discharge by SPPs. The data are available at the NRC platform in real time for the same period
from 10 April 2017 to 10 May 2017.
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measurements of water depth, and the blue triangles represent control measurements of discharge.

2.2.4. Geometric Data

Geometric data are used to build models of terrain neighboring the rivers and the area desired
for flood mapping. The accuracy of geometric data is very important because the terrain governs
the movement of precipitation when it reaches the ground. The HEC-RAS model allows the use
of DEM. In this study, we selected open source shuttle radar topography mission (SRTM) DEM [21]
with 1 arc-second of spatial resolution for the modeling process.

2.2.5. Flow Data

According to the goal of the methodology, two input hydrographs are processed: the forecasted
discharge from SPPs, specifically IMERG, and the observed discharge by a ground station located
downstream of the Ottawa River in order to compare the accuracy and the impact of discharge data in
flood extent mapping.

3. Methodology

The early warning in flood disaster management has grown with the availability of real time data.
The most crucial part of a flood forecasting system is the hydrological model. Many categories
of flood forecasting methods exist [22] with same expectations, namely the discharge hydrograph
estimation, the volume of water in the stream, however, the difference concerns the modelling approach,
the number of parameters and the type of used data. In our work, the R–R model based on SPPs in
NRT was selected. Our approach was divided into two parts: hydrological forecasting in NRT and
flood extent mapping in NRT.

The new global flood forecasting framework is described in Figure 5:
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Figure 5. Hydrological flood forecasting framework based on the MILc model and SPPs. MILc
= Continuous Lumped Hydrological Model; SPPs = satellite precipitation products; Air T = air
temperature; IUH = instantaneous unit hydrograph; Qobs = observed discharge and Qsim = simulated
discharge. Flood extent mapping based on the Hydrological Engineering Center River Analysis System
(HEC-RAS) model and forecasted discharge hydrographs from SSPs and RadarSat-2 imagery during
the flood event is used for accuracy assessment and validation of the framework.

3.1. Hydrological Forecasting in NTR

Hydrological forecasting aims to predict a flood discharge hydrograph based on SPPs. For this
purpose, we selected an open source hydrological model which allows the use of SPPs. Kauffeldt et al.
provide a comprehensive review of flood forecasting systems [22], which permits an appropriate
model selection. We chose the MILc R–R model developed by Brocca et al. [9]. This model only applies
for gauged watersheds, offering the possibility to validate expected results.

3.1.1. MILc Model

MILc consists of the soil–water balance model (SWB) and the rainfall–runoff model (R–R) that are
used to simulate temporal soil moisture patterns and flood discharge, respectively. The two models
have a linear relationship. It has been confirmed by [17] that an accurate estimation of the antecedent
wetness condition (AWC) on the hydrologic response of a watershed can provide a better accuracy for the
flood hydrograph. The MILc model has been tested for flood simulation based on rain ground station
data [9,10]. In this paper, we developed an independent function to adapt the MILc model to use SPPs.

The surface soil layer is assumed as a spatially lumped system, which can be expressed in the
following water content balance equation:

dW(t)
d(t)

= f (t)− e(t)− g(t) with W(t) ≤Wmax (1)

where t is time, W(t) is the amount of water in the soil layer, f (t) is the fraction of the precipitation
infiltrating into the soil, e(t) is the evapotranspiration rate, g(t) is the drainage rate due to the interflow
and/or the deep percolation and Wmax is the maximum water capacity of the soil layer. The ratio
W(t)/Wmax represents the degree of saturation.

The R–R model is based on the soil conservation service curve number method [23] aimed
to estimate the direct runoff from precipitation excess for each sub-watershed. The respective
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sub-watershed drains water into the principal stream. Finally, the routing along the principal stream is
estimated by the diffusive linear method.

Therefore, the precipitation excess, εj(t) for the element j (j D 1, . . . , Nb) is given by the soil
conservation service curve number formulation [24]:

εj(t) =

[
rj(t)Rj(t)− λ1Sj

)(
Rj(t) + (2− λ1)SJ

)
]

(Rj(t) + (1− λ1)Sj)
2 (2)

where Rj(t) is the precipitation depth from the start of the rainstorm, Sj is the soil potential maximum
retention at the start of the rainstorm, D is the diffusivity parameter and λ1 is the parameter linked to
the initial abstraction and assumed constant for all elements.

3.1.2. Model Adaptation to SPPs

In order to integrate SPPs with the MILc model, we developed an independent function for areal
precipitation extraction, which allows us to use the global coverage SPPs in the MILc model for flood
forecasting. Although many methods exist for this purpose, we selected the Thiessen polygon method [25],
which assumes that the precipitation value at a given area (A) is covered by a pixel (i). So, the precipitation
value observed at pixel i is related only to its area. The weight of every pixel is determined by the
corresponding area in the Thiessen polygon network. The Thiessen polygon equation is:

x =
∑ polygon area for each pixel× precipitation value for the same pixel

∑ total polygon area
(3)

So:
x =

A1P1 + A2P2 + A3P3 . . . + AnPn

A1 + A2 + A3 . . . + An
= ∑ n

i=1
AiPi

A
(4)

The following framework (Figure 6) illustrates the adaption of the MILc model for SPPs.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 20 
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Figure 6. Hydrological forecasting framework using the MILc model adapted to SPPs. Notations in the
Soil–Water Balance model (SWB): e(t) = evapotranspiration, f(t) = infiltration, s(t) = saturation excess,
p(t) = precipitation, w(t) = wetness and wmax = maximum wetness.
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3.1.3. Model Performance

For MILc model performance assessment, we selected the most widely used statistics on
hydrological modeling, the Nash–Sutcliffe Efficiency (NSE) and the Adapted Nash–Sutcliffe Efficiency
(ANSE), proposed by Nash and Sutcliffe [26]. The ANSE, which is adapted to high flow conditions,
is considered be more significant than NSE because the Ottawa River is characterized by high flow.
NSE and ANSE ranges are between −∞ and 1. The United States Geological Survey (USGS, Reston,
VA, USA) considers that the results are satisfactory when the NSE and ANSE values are higher than
0.5 and close to 1.

The following are the equations of NSE and ANSE:

NSE =
∑n

t=1(Qobs −Qsim)
2

∑n
t=1(Qobs −Qobs)

2 (5)

and

ANSE = 1− ∑n
t=1

(
Qobs + Qobs

)
(Qsim −Qobs)

2

∑n
t=1

(
Qobs + Qobs

)(
Qobs −Qobs

)2 (6)

where Qobs is observed discharge and Qsim is simulated discharge

3.2. Flood Mapping in NTR

The second part of the methodology aims to simulate a flood extent map using a two-dimensional
(2D) flood model. For this, we propose a simple flood mapping approach in order to simulate flood
extent based on open source data and software that would be compared with the observed benchmark
flood extent. The HEC-RAS model requires geometric data that will be derived from DEM and
discharge hydrograph data. Two discharge data were tested in different simulations and compared:
(1) the forecasted discharge estimated by SPPs and (2) the observed discharge data by the ground
station. Finally, to validate the simulated flood extent maps, we extracted the flood extent from the
SAR imagery acquired during the flood event by RadarSat-2. The observed and simulated maps were
compared using across topographical profiles for the accuracy assessment.

3.3. Flood Mapping Assessment

Based on the across topographical profiles, we estimated the distance in meters of boundaries
between the simulated flood extent based on the forecasted discharge hydrograph using IMERG
and the MILc model (S IMERG), and the simulated flood extent based on the observed discharge
hydrograph using the ground station (S GDS) with the observed benchmark of the Ottawa River flood
by RadarSat-2 (Obs).

Two methods are used to calculate the uncertainties. The first one is the absolute error (A Err),
which is the difference between the simulated map data and the observed map data as shown in the
following equation:

A Err = |S IMERG−Obs| (7)

The second one (P Err) is used to calculate the error considering the pixel size (90 m) of the 2D
mesh used in the HEC-RAS model for flood map simulations, based on the following equation:

P Err =
Pixel size of 2D mesh

A Err
(8)

3.4. Model Calibration

Calibration aims to adapt the model for the study area characteristics. The model parameters
are physically based and estimated by the MILc model using the Ottawa River watershed data.
Nine parameters have been estimated. These parameters and their ranges are shown in Table 3.
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Table 3. MILc model parameters.

Parameter Description Range

Wp Initial conditions, fraction of Wmax 0.5–1 (mm)
Wmax Field capacity 100–1000 (mm)

M2 Exponent of drainage 5–60
Ks Parameter of infiltration drainage 0.01–20 (mm/h)
Nu Fraction of drainage versus interflow 0–1

Gamma1 Coefficient lag-time relationship 0.5–6.5
Kc Parameter of potential evapotranspiration 0.4–2

Lambda Initial abstraction coefficient 0.0001–0.2
Sr_coeff Multiplicative for Sr 1–4

4. Results and Discussion

4.1. Hydrological Forecasting in NRT

Accuracy Assessment

Before the calibration of the MILc model, both SPP results show high error values. With IMERG as
input, values of NSE and ANSE are equal to −23.0073 and −21.7878, respectively, which reflects
the significant difference between the modeled discharge and the observed discharge from the
ground station.

Simulation accuracies after MILc model calibration with the data during the flood event of the
Ottawa River watershed improved a lot, as shown in Table 4 by NSE and ANSE values. For the IMERG
product, the model was able to accurately reproduce the observed discharge (Figure 7a), especially
in high flow conditions. This is a very valuable finding and could be useful for flood forecasting for
poorly or totally ungauged watersheds with high and low flow conditions. The difference between the
observed and modeled discharge is small, with NSE and ANSE equal to 0.8039 and 0.8287, respectively.
However, for the TMPA product, the results show that the comparison between the observed and
modeled discharge is not close to the 0.5 nominal value (Table 4). The simulated discharge hydrograph
by TMPA does not reproduce the shape of the observed hydrograph (Figure 7b). The IMERG product
gives better results compared to TMPA in discharge estimation. According to these results, we selected
the IMERG product as the input for flood extent mapping.

Table 4. Comparison between integrated multi-satellite retrievals for global precipitation
measurement (IMERG) and tropical multi-satellite precipitation analysis (TMPA) performance on
discharge estimation.

SPPs NSE ANSE

IMERG 0.8039 0.8287
TMPA −0.9241 −1.0028
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4.2. Flood Mapping in NRT

For flood extent mapping, two accurate simulations were completed: flood extent estimated
by the MILc model using SPPs (specifically IMERG) and flood extent estimated by using observed
discharge from the ground station. Floods typically occur in a short time. So, it is very difficult to
assess the accuracy of the simulated flood extent map without the observed flood benchmark acquired
during the flood event. In this research, RadarSat-2 imagery acquired on 09 May 2017 during the
Ottawa flood event was used as benchmark. By overlaying the flood extent maps, we can compare the
simulated results.

It can be seen that the agreement between the simulated maps of flood extent based on IMERG
and the MILc model and the retrieved maps from RadarSat-2 are reasonable (Figure 8). The global
shape of the simulated flood extent generally fits well with the observed, as shown in Figure 8a for
upstream and Figure 8b for the middle of the Ottawa River. For downstream, the difference between
the simulated maps and the retrieved (Figure 8c) is generally small, except in locations where the
water was separated from the main river channel. These uncertainties were mainly due to the used
thresholding method which separated different intensity values in the histogram according to different
backscattering from objects (smooth from rough surfaces) in SAR imagery. Consequently, it is difficult
to separate water bodies from other land cover types when they were mixed together. For example,
in Figure 8c, it can be seen that the water bodies are mixed with the urban area.
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To quantify the accuracy of the results, we compared across topographical profiles of flood
simulated maps based on forecasted discharge hydrographs using SPPs and the MILc model with
those based on the observed discharge hydrograph using the ground station. These two maps were
also compared with the observed flood benchmark of the Ottawa River by RadarSat-2 (Figure 9).
Ten topographical profiles were created from upstream of the Ottawa River to downstream with an
equal distance of 25 km, as shown in Figure 9a. Overlaying of simulation flood extents with the
observed flood extent by RadarSat-2 for two profiles, 2 and 8, is shown in Figure 9b,c, respectively,
which shows the close agreement between the simulations and the observations.

Each profile was created based on flood extent maps simulated using IMERG products and
observed by RadarSat-2. With these profiles, absolute error (Equation (7)) and pixel error (Equation (8))
can be calculated, e.g., Profile 4 as shown in Figure 10.

For both sides of the riverbank, eight profiles out of ten show that the difference between the
simulation map based on IMERG and the MILc model with simulation map based on observations from
ground stations is equal to zero, except on the right side of Profile 3 and the left side of Profile 6. P Err
values are reasonable (Table 5) considering that the pixel size of the 2D mesh used on the simulation is
90 m, except for the right side of Profile 3 and Profile 9. The use of discharge flood hydrographs based
on IMERG and the MILc model for flood forecasting and mapping gives a satisfactory accuracy.
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Table 5. Accuracy assessment of simulation flood maps.

Profiles
Right Riverbank Left Riverbank

S IMERG S GDS Obs A Err P Err S IMERG S GSD Obs A Err P Err

1 166.77 166.77 171.11 4.34 0.04 1581,4 1581.4 1557.1 24.3 0.27
2 772.64 772.64 838.92 66.28 0.73 1745.8 1745.8 1731.2 14.6 0.16
3 82.7 113.4 201 118 1.3 1955.2 1955.2 1873.7 81.5 0.90
4 131.47 131.47 141.58 10.11 0.11 1690.9 1690.9 1651.2 39.7 0.44
5 120.73 120.73 171.09 50.39 0.55 913.1 913.1 936.1 23 0.25
6 152.75 152.75 157.85 5.1 0.05 526.32 495.18 452.28 74.04 0.82
7 125.75 125.75 183.37 57.62 0.64 1876.3 1876.3 1814.3 62 0.68
8 192.48 192.48 214.21 21.73 0.24 3675.4 3675.4 3694.6 19.2 0.21
9 691.51 691.51 554.49 137.02 1.52 3957.3 3957.3 3991.2 33.9 0.37

10 226.14 226.14 204.98 21.16 0.23 2261 2261 2256.9 4.1 0.04

5. Conclusions

It can be concluded from this paper that the estimation of discharge flood hydrographs based
on IMERG products gives satisfactory accuracy. Consequently, flood forecasting based on IMERG
products can play an important role in preparedness and mitigation of flood disaster management.
The IMERG products might contribute to the use of space technologies more efficiently in flood risk
reduction in emergency responses on global scale due to its large coverage.

The use of forecasted flood discharge hydrographs based on IMERG and the MILc model gives
encouraging results on flood extent mapping. These results were evaluated and compared with
simulated flood extent maps based on observed discharge hydrographs by using ground stations.
The difference between the two simulations is insignificant. The two simulations were evaluated,
and the results were satisfactory with the observed flood benchmark by RadarSat-2 imagery during the
flood event. The use of SAR imagery as a benchmark was helpful in accuracy assessment, due to the
difficulty of acquisition of benchmark data for natural phenomenon that can happen in a short time.
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Acronyms

NRT Near-real-time
SPPs Satellite precipitation products
MILc Modello Idrologico lumped in continuo
IMERG Integrated multi-satellite retrievals for global precipitation measurement
TMPA Tropical rainfall measurement mission multi-satellite precipitation analysis
NSE Nash–Sutcliffe efficiency
ANSE Adapted Nash–Sutcliffe efficiency
SAR Synthetic aperture radar
IRPI Istituto di Ricerca per la Protezione Idrogeologica
R–R Rainfall–runoff
DEM Digital elevation model
HEC-RAS Hydrological Engineering Center River Analysis System
NRC Natural Resources Canada
CMORPH CPC MORPHing technique
PERSIANN Precipitation estimation from remotely sensed information using artificial neural networks
TMI Tropical rainfall measurement mission microwave imager
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GMI Global precipitation measurement microwave imager
NetCDF Network common data form
SRTM Shuttle radar topography mission
IUH Instantaneous unit hydrograph
SWB Soil–water balance
AWC Antecedent wetness condition
USGS United States Geological Survey
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