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Abstract: The spatial distribution information of remote sensing images can be derived by the
super-resolution mapping (SRM) technique. Super-resolution mapping, based on the spatial
attraction model (SRMSAM), has been an important SRM method, due to its simplicity and explicit
physical meanings. However, the resolution of the original remote sensing image is coarse, and
the existing SRMSAM cannot take full advantage of the spatial–spectral information from the
original image. To utilize more spatial–spectral information, improving remote sensing image
super-resolution mapping based on the spatial attraction model by utilizing the pansharpening
technique (SRMSAM-PAN) is proposed. In SRMSAM-PAN, a novel processing path, named the
pansharpening path, is added to the existing SRMSAM. The original coarse remote sensing image is
first fused with the high-resolution panchromatic image from the same area by the pansharpening
technique in the novel pansharpening path, and the improved image is unmixed to obtain the novel
fine-fraction images. The novel fine-fraction images from the pansharpening path and the existing
fine-fraction images from the existing path are then integrated to produce finer-fraction images with
more spatial–spectral information. Finally, the values predicted from the finer-fraction images are
utilized to allocate class labels to all subpixels, to achieve the final mapping result. Experimental
results show that the proposed SRMSAM-PAN can obtain a higher mapping accuracy than the
existing SRMSAM methods.

Keywords: remote sensing image; super-resolution mapping; spatial attraction model;
pansharpening technique

1. Introduction

Due to the variety of land-cover classes, and the limitations of sensors, there are many mixed
pixels that exist widely in any original remote sensing image [1]. Although spectral unmixing [2] can
handle mixed pixels by estimating the proportions of land-cover classes in mixed pixels, it cannot
provide any spatial distribution information for remote sensing images. To solve this issue, Atkinson
proposes a super-resolution mapping (SRM) technique, which is also named subpixel mapping [3,4].
SRM divides each mixed pixel into subpixels, and transforms the coarse-fraction images to a hard
classification image with a higher spatial resolution [5].
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In recent years, many studies on SRM have been rapid developed. The Hopfield neural
network [6,7], back-propagation neural network [8,9], object spatial dependence [10,11], indicator
cokriging (ICK) [12,13], point spread function [14,15], and some super-resolution methods [16–18]
have been successfully utilized in SRM. The above methods belong to soft-then-hard super-resolution
mapping (STHSRM) types. STHSRM contains two steps: (1) sub-pixel sharpening; and (2) class
allocation [19]. When addressing a supervised classification problem, another type of algorithm,
namely super-resolution then classification (STC) [20–22], can be utilized to obtain the spatial
distribution of land-cover classes. The fine-resolution image is derived from the original coarse
image by appropriate super-resolution reconstruction methods. An ideal result is then directly
derived from the fine-resolution image by classification techniques. However, when there is no full
supervision information in the classification process, STC is not always superior to STHSRM. So, STC is
different from STHSRM. To optimize the mapping result, some artificial intelligence algorithms, such as
particle swarm optimization [23,24], simulating annealing [25], and genetic algorithm [26], are utilized
as the optimization model. In addition, various auxiliary information, such as sub-pixel-shifted
images [27–29], light detection and ranging data [30], fused images [31], panchromatic images [32],
and shape information [33] are used to improve the SRM performance.

Due to its simplicity, physical meanings, and no need for prior structure information,
super-resolution mapping based on SRMSAM, belonging to the STHSRM type, has been widely applied.
SRMSAM mostly differs in that the spatial attraction is computed, such as the subpixel/pixel spatial
attraction model (SPSAM) [34], the subpixel/subpixel spatial attraction model (MSPSAM) [23], and the
more effective hybrid spatial attraction model (HSAM) [35,36]. However, these SRMSAM methods are
applied in the coarse-fraction images that are derived by unmixing the original coarse remote sensing
image. Due to the coarse resolution of the original image, it is difficult for the coarse-fraction images
to fully pick up the spatial–spectral information of the original image. To solve this issue, improving
remote sensing image super-resolution mapping based on the spatial attraction model by utilizing
the pansharpening technique (SRMSAM-PAN) is proposed. In SRMSAM-PAN, a novel processing
path (pansharpening path) is added to the existing processing path. The pansharpening technique is
utilized to fuse the original coarse remote sensing image with the high-resolution panchromatic image
from the same area, to derive the improved image [37], and the novel fine-fraction images are obtained
by unmixing the improved image. The two kinds of fine-fraction images from the pansharpening
path and the existing processing path are then integrated to produce finer-fraction images with more
spatial–spectral information. Finally, the values predicted from the finer-fraction images are used to
allocate the class labels to each subpixel, to obtain the final mapping result. The experimental results
show that the proposed SRMSAM-PAN produces a higher mapping accuracy than the state-of-the-art
SRMSAM methods.

2. Theory of Spatial Correlation

The intention of SRM is to obtain the subpixel spatial distribution within mixed pixels,
by maximizing their spatial correlation [3]. A simple example that explains the theory of the spatial
correlation is shown in Figure 1. The original coarse remote sensing image contains two classes,
representing Class A and Class B, respectively. The coarse-fraction image, which is shown in Figure 1a,
has mixed pixels, and the proportion of Class A is marked on each mixed pixel. The zoom factor
represents the zoom ratio between a mixed pixel and its subpixels. When the coarse-fraction image is
upsampled with the zoom factor, each mixed pixel is segmented into 16 subpixels. A value of 0.25
means that the four subpixels are attributed to Class A in the central mixed pixel. Figure 1b,c describes
two possible subpixel spatial distributions. Based on the theory of spatial correlation, the subpixel
spatial correlation is greater in the same class. Therefore, Figure 1b is considered to be more optimal.
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Figure 1. Example of spatial correlation. (a) Spectral unmixing result of Class A. (b) Probability of 
Distribution 1. (c) Probability of Distribution 2. 
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allocation method.  

In SRMSAM, the predicted value ( )m nF p  can be computed by different spatial attraction 
models, such as the SPSAM model, MSPSAM model, and the more effective HSAM model. Next, we 
introduce the principles of the three models. 

The SPSAM model considers the spatial correlation between the central subpixel np  and the 

neighboring pixel JP  [34]. The predicted value spsam( )m nF p  of the SPSAM model can be written as: 

Figure 1. Example of spatial correlation. (a) Spectral unmixing result of Class A. (b) Probability of
Distribution 1. (c) Probability of Distribution 2.

3. SRMSAM

The flowchart of the SRMSAM method is shown in Figure 2. Suppose that S is the zoom factor,
and that each mixed pixel is segmented into S × S subpixels. Firstly, M coarse-fraction images Cm

(m = 1, 2, . . . , M, M is the number of land-cover class) are obtained by unmixing the original coarse
remote sensing image. Cm(PN) is defined as the proportion value belonging to the mth class for the
mixed pixel PN (N = 1, 2, . . . , K), K is the number of mixed pixels in the coarse-fraction image Cm).
Secondly, the fine-fraction images Fm are derived from the coarse-fraction images Cm by the SRMSAM
method. The fine-fraction images Fm contain the predicted value Fm(pn), which is the predicted value
of the mth class for subpixel pn(n = 1, 2, . . . , KS2), KS2 is the number of subpixels in the mixed pixel
PN . The constraints should satisfy two conditions: (1) each subpixel is only assigned to a specific class,
and (2) the number Lm(PN) of subpixels belonging to the mth class in the mixed pixel PN should meet
Equation (1):

Lm(PN) = Round(Cm(PN)× S2) (1)

where Round(•) is defined as a function that obtains the nearest integer to Cm(PN)× S2.
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Finally, the predicted value Fm(pn) is used to allocate class labels into all subpixels by class
allocation method.

In SRMSAM, the predicted value Fm(pn) can be computed by different spatial attraction models,
such as the SPSAM model, MSPSAM model, and the more effective HSAM model. Next, we introduce
the principles of the three models.

The SPSAM model considers the spatial correlation between the central subpixel pn and the
neighboring pixel PJ [34]. The predicted value Fspsam

m (pn) of the SPSAM model can be written as:

Fspsam
m (pn) = max

M

∑
m=1

KS2

∑
n=1

8

∑
J=1

omn × wn × Cm(PJ) (2)
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omn =

{
1, if subpixel pn belongs to class m
0, otherwise

(3)

where Cm(PJ) is the proportional value belonging to the mth class in the Jth neighbor pixel PJ , and J is
the number of the neighbor pixels. In this paper, the number of the neighboring pixels is selected as
eight [34]. wn is the weight for the dependence between the central subpixel pn and the neighboring
pixel PJ :

wn = exp(−d(pn, PJ)
2/ε1) (4)

where d(pn, PJ) is defined as the Euclidean distance between the center subpixel pn and the coarse
neighboring pixel PJ , which is shown in Figure 3a. ε1 is the exponential model parameter.

In the MSPSAM model, the spatial correlation between the central subpixel and its neighboring
subpixels is utilized to obtain the predicted value Fmspsam

m (pn) of the MSPSAM model [23]:

Fmspsam
m (pn) = max

KS2

∑
n=1

8S2

∑
j=1

wn · xnj (5)

xnj =

 1,
if subpixel pn and subpixel pj are
assigned to same land cover class

0, otherwise
(6)

where wj represents the weight of the spatial correlation between the central subpixel pn and the
neighboring subpixel pj, which is given as:

wn = exp(−d(pn, pj)
2/ε2) (7)

As shown in Figure 3b, d(pn, pj) stands for the Euclidean distance between the center subpixel pn

to the neighboring subpixel pj. ε2 is the exponential model parameter.
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HSAM considers the spatial correlation of the above two models at the same time [35,36]. The
predicted value Fhsam

m (pn) of the HSAM model can be derived by integrating the predicted value
Fspsam

m (pn) of the SPSAM model, and the predicted value Fmspsam
m (pn) of the MSPSAM model by the

appropriate parameter θ:

Fhsam
m (pn) = θFmspsam

m (pn) + (1−θ)Fspsam
m (pn) (8)

Because the HSAM model inherits the advantages of the SPSAM model and the MSPSAM model,
the final mapping result in the HSAM model outperforms the other two models.
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4. Proposed Method

As shown in Figure 2, we can note that the existing SRMSAM methods are all applied in the
coarse-fraction images derived from the original coarse remote sensing image. It is difficult for the
coarse-fraction images to carry the full spatial–spectral information of the original image, due the
coarse resolution in original image, the final mapping accuracy of SRMSAM will be affected. To supply
more spatial–spectral information, and to improve the mapping accuracy, the SRMSAM-PAN model
is proposed.

4.1. Pansharpening Path

In the SRMSAM-PAN model, a novel processing path (the pansharpening path) is added to the
existing HSAM model. In the novel processing path, the resolution of the original coarse remote images
is improved by fusing the higher spatial resolution panchromatic image from the same area by the
pansharpening technique. The pansharpening technique can be considered as a particular data fusion
problem, which aims at combining the spatial details from the panchromatic image and the spectral
bands of the original remote sensing image. The improved image has a high spectral resolution of
the original remote sensing image, and a high spatial resolution of the panchromatic image. Due to
the effectively rendering of spatial details and its fast implementation, principal component analysis
(PCA) [37] is selected as the pansharpening method in this paper.

Figure 4 gives the flowchart of the PCA pansharpening. Firstly, a set of scalar images called
principal components is produced by a linear transformation of the original remote sensing image.
The spatial information of the original image is collected in the first principal component, while
the spectral information is concentrated in the other principal components. Subsequently, the
spatial information from the high spatial resolution panchromatic image is utilized to replace the
first principal component. To reduce spectral distortion in the PCA pansharpening processing, the
histogram matching of the first principal component to the panchromatic image is performed before
the replacement takes place. The histogram-matched panchromatic image shows the same mean and
variance as the component to replace. Finally, the improved image is obtained by applying the inverse
linear transformation. The mathematical model of the PCA pansharpening is given in Equation (9):

Ôb
= Õ

b
+ gb(PAN − I) (9)

where PAN is the panchromatic image b (b = 1, 2, . . . , B), B is the number of spectral bands in the
original image) is the bth spectral band, O is the original coarse remote sensing image; Ô is the

improved image. Ôb represents the bth spectral band of the improved image, Õ
b

is the bth spectral
band of the original image, which is interpolated at the scale of the panchromatic image, and gb = [g1,
g2, . . . , gB] is the vector of the injection gains., while I is given as:

I =
B

∑
b=1

ybÕ
b

(10)

where the weight vector yb = [y1, y2, . . . , yB]T measures the spectral overlap between the panchromatic
image and the spectral bands.
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4.2. Implementation of SRMSAM-PAN

In the pansharpening path, the improved image Ô is unmixed to produce the novel fine-fraction
images Fpan

m , which contain the predicted value Fpan
m (pn). As shown in the flowchart of the

pansharpening path in Figure 5, the novel fine-fraction images Fpan
m with the predicted value Fpan

m (pn)

are derived in two steps. In the first step, the original coarse remote sensing image O is improved to
obtain an improved image Ô, by the pansharpening technique. The second step is that the fine-fraction
images Fpan

m are obtained by directly unmixing the improved image Ô. The predicted value Fpan
m (pn)

of the land-cover classes in the fraction images is calculated by Equation (11).

VÔ
b = E·Fpan

m + n (11)

where VÔ
b = [VÔ

1 , VÔ
2 , . . . , VÔ

B ]T is the vector of the spectral value of the improved image Ô, B are the
number of spectral bands, Fpan

m = [Fpan
m (p1), Fpan

m (p2), . . . , Fpan
m (pKS2)]T is the vector of the predicted

value Fpan
m (pn) of land-cover classes, KS2 is the number of subpixels, E is the matrix for spectral

endmembers, and n is the random noise. In this paper, the least squares support vector machine model
(LSVM) [38] is used to seek the optimal estimation under the condition of the minimum random noise.
Since the resolution of the original coarse remote sensing image is improved, the novel fine-fraction
images can contain the more spatial–spectral information from the original image.
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( )Ô O PAN Ib b
bg= + −  (9) 

where PAN is the panchromatic image b ( b =1, 2, …, B), B is the number of spectral bands in the 

original image) is the bth spectral band, O  is the original coarse remote sensing image; Ô  is the 
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O Ô pan
mF

 
Figure 5. The flowchart of the pansharpening path. 

Next the novel fine-fraction images with the predicted value pan( )m nF p  from the pansharpening 

path, and the existing fine-fraction images with the predicted value hsam( )m nF p  from the existing 

Figure 5. The flowchart of the pansharpening path.

Next the novel fine-fraction images with the predicted value Fpan
m (pn) from the pansharpening

path, and the existing fine-fraction images with the predicted value Fhsam
m (pn) from the existing HSAM

model are integrated to produce the finer-fraction images with a more accurately predicted value
Fm(pn). The integrating process of the equation is given as:

Fm(pn) = αFpan
m (pn) + (1 − α)Fhsam

m (pn) (12)

where α (0 ≤ α < 1) is the weight parameter to balance the influence of the predicted values, Fpan
m (pn)

and Fhsam
m (pn). The class allocation method utilizes the more accurately predicted value Fm(pn)
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to allocate the class labels to each subpixel, to derive the final mapping result. The flowchart of
SRMSAM-PAN is shown in Figure 6. The implementation of SRMSAM-PAN can be summarized in
the following steps.

Step 1. In the existing path, the coarse-fraction images are derived from the original coarse remote
sensing image by spectral unmixing. At the same time, the resolution of the original image is improved
by the pansharpening technique in the pansharpening path.

Step 2. The fine-fraction images with the predicted value Fhsam
m (pn) are produced by the HSAM

model. Also, the novel fine-fraction images with the predicted value Fpan
m (pn) are derived by unmixing

the improved image.
Step 3. The fine-fraction images from the existing path, and the fine-fraction images from the novel

pansharpening path are integrated to produce finer-fraction images with a more accurate predicted
value Fm(pn) (see Equation (12)).

Step 4. According to the constraints in Equation (1), the more accurate predicted value Fm(pn) is
used to allocate class labels to each sub-pixel for obtaining the final mapping result.

Comparing Figure 2 with Figure 6, the two kinds of fine-fraction images from the two
paths are related to the different predicted values. The more spatial–spectral information that is
supplied by the pansharpening technique, the higher the mapping accuracy that is generated by the
proposed SRMSAM-PAN.
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spatial attraction model by utilizing the pansharpening technique (SRMSAM-PAN).

5. Experiments and Analysis

Three real hyperspectral images were implemented to test the performance of the proposed
SRMSAM-PAN. To assess the effect of image registration error on the SRMSAM methods, a simulated
coarse remote sensing image was produced by downsampling the original fine hyperspectral
image [39]. The spectral response function of the IKONOS satellite was used to produce a suitable
panchromatic image, in order to only consider the influence of the pansharpening technology on
the mapping result, and to avoid the impact of errors caused by the acquisition of the panchromatic
image [40]. The highest soft-attribute values assigned first (HAVF) [41] were considered as the
class allocation method. All experiments were tested by the MATLAB 2018a software package
(https://www.mathworks.com/).

https://www.mathworks.com/
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Four SRMSAM methods were tested and compared: SPSAM [34], MSPSAM [23], HSAM [36],
and the proposed SRMSAM-PAN. The mapping accuracy was evaluated quantitatively by the overall
accuracy (OA) and the Kappa coefficient (Kappa).

5.1. Experiment 1

The first hyperspectral image was acquired over the Engineering School at the University of
Pavia [39]. As shown in Figure 7a, the tested region had 100 × 100 pixels, 103 spectral bands, and 1.3 m
spatial resolution. Figure 7a is degraded, with S = 4, to simulate the coarse image shown in Figure 7b.
The panchromatic image shown in Figure 7c is produced by the spectral response of the IKONOS
satellite. As shown in Figure 7d, the pansharpening technique was utilized to fuse the coarse remote
sensing image and the panchromatic image, to produce the improved image. The improved image had
the spectral resolution of the former, and the spatial resolution of the latter. As a visual observation,
the improved image was similar to the original image. SRMSAM-PAN can use the improved image to
obtain a higher mapping accuracy. The weight parameter α was set to 0.6.

As shown in Figure 8a, the reference image contained asphalt, meadows, trees, and bricks.
The SRMSAM results of the four methods were given in Figure 8b–e. SRMSAM-PAN obtained a
better mapping result than SPSAM, MSPSAM, and HSAM, by visual comparison. For example, there
were many disconnected patches and obvious burrs in the bricks. This phenomenon was alleviated
with the aid of the pansharpening technique. Due to supplying more spatial–spectral information,
SRMSAM-PAN was closer to the reference image than the other three SRMSAM methods.

For quantitative evaluation, we utilized the mapping accuracy (%) of each class and OA
(%), to evaluate the performance of the four methods. Checking the evaluation results shown in
Table 1, the mapping accuracy of SRMSAM-PAN was higher than the other three methods. For
example, the mapping accuracy (%) of trees in the SRMSAM-PAN increased from 56.32% to 72.31%,
when compared with the HSAM. Since more spatial–spectral information was supplied by the
pansharpening technique, SRMSAM-PAN could achieve the highest OA of 93.87%.

Table 1. Mapping accuracy (%) of the four methods (S = 4).

SPSAM MSPSAM HSAM SRMSAM-PAN

Meadows 96.37 97.10 97.73 99.13
Asphalt 95.48 97.29 97.47 99.82

Tress 45.13 55.23 56.32 72.31
Bricks 77.18 83.37 83.60 90.30

OA 85.17 88.73 89.20 93.87
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(b) Coarse image (S = 4). (c) Panchromatic image. (d) Pansharpening result.
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5.2. Experiment 2

In Experiment 2, a hyperspectral image with 102 spectral bands and 1.3 m spatial resolution, which
was larger and contained more classes, was used [42]. As shown in Figure 8a, the tested region, which
covers the two residential areas on both sides of the Ticino river in Pavia city, had 400 × 400 pixels.
Figure 9a is degraded, with S = 4, to obtain the simulated coarse image shown in Figure 9b. Figure 9c
is the panchromatic image by the method described in Experiment 1. The pansharpening result is
shown in Figure 9d. Better SRMSAM results were obtained by using more spatial–spectral information
from the pansharpening result. The weight parameter α was set to 0.5.
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Figure 9. (a) RGB composites of image (bands 102, 56, and 31 for red, green, and blue, respectively).
(b) Coarse image (S = 4). (c) Panchromatic image. (d) Pansharpening result.

The reference image in Figure 10a showed six classes, containing shadow, water, road, tree,
grass, and roof. Figure 10b–e gives the mapping results of four methods. With the help of the
pansharpening technique, the mapping result was more continuous, and the boundaries were smoother
in Figure 10e. The SRMSAM-PAN was visually closer to the reference image, compared to the other
three SRMSAM methods.
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The mapping accuracies (%) of each class and of the OA (%) of the four methods were measured
in Table 2 Similar to the result in Experiment 1, both the mapping accuracies of each class and the
OA (%) in the SRMSAM-PAN were higher than in the other three methods. In addition, to test the
influence of the zoom factor S on the final mapping results, the four methods were experimented for
the two other zoom factors of 2 and 8. Figure 11a,b show the OA (%) and Kappa of the four methods
for the three zoom factors. We can note that no matter how the zoom factor S changed, the OA (%) and
Kappa of the SRMSAM-PAN result were higher than SPSAM, MSPSAM, and HSAM.

Table 2. Mapping accuracy (%) of the four methods (S = 4).

SPSAM MSPSAM HSAM SRMSAM-PAN

Shadow 52.46 62.80 65.98 74.57
Water 98.04 98.33 98.35 98.76
Road 79.38 82.97 84.03 89.74
Tree 80.95 83.47 84.52 89.00

Grass 80.51 83.94 85.66 89.41
Roof 85.89 88.63 89.87 92.49
OA 88.52 90.86 92.20 95.11
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Figure 11. (a) Overall accuracy (OA (%) of the four methods in relation to the zoom factor S. (b) Kappa
coefficient (Kappa) of the four methods in relation to the zoom factor S.
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5.3. Experiment 3

The third dataset, including 191 bands and 3 m spatial resolution, was collected from a mall in
Washington, DC [42]. As shown in Figure 12a, there were 240 × 280 pixels in the region tested.
The coarse image shown in Figure 12b is obtained by downsampling Figure 11a, with S = 4.
Figure 12c,d were the panchromatic image and the pansharpening results, respectively. The weight
parameter α was selected as 0.5.
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Figure 12. (a) RGB composites of the image (bands 102, 56, and 31 for red, green, and blue, respectively).
(b) Coarse image (S = 4) (c) Panchromatic image. (d) Pansharpening result.

There were seven classes, including shadow, water, road, tree, grass, roof, and trail, in the reference
image shown in Figure 13a. The SRMSAM results of the four methods are listed in Figure 13b–e.
We can note there were many speckle artifacts existing in Figure 13b,c. Due to the pansharpening
technique supplying more spatial–spectral information, this phenomenon was improved, and the
SRMSAM-PAN result was more similar to the reference image.
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Figure 13. SRMSAM results in Experiment 3 (S = 4). (a) Reference image. (b) SPSAM. (c) MSPSAM.
(d) HSAM. (e) SRMSAM-PAN.

Consistent with the results in Experiment 1 and Experiment 2, we also evaluated the four
SRMSAM methods for three zoom factors, i.e., 2, 4, and 8. Checking the OA (%) and Kappa
in Figure 14a,b, the quantitative evaluation from SRMSAM-PAN was higher than the other three
SRMSAM methods.
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Figure 14. (a) OA (%) of the four methods in relation to the zoom factor S. (b) Kappa of the four
methods in relation to the zoom factor S.

5.4. Discussion

The weight parameter α (0 ≤ α < 1) was utilized to balance the influence of the predicted values,
Fpan

m (pn) and Fhsam
m (pn), on the proposed SRMSAM-PAN. To find the appropriate weight parameter

α, the experimental data, such as Experiment 2 (S = 4) and Experiment 3 (S = 4) calculated the
adjusted OA (%) values for 10 combinations of α in the range of [0, 0.9] at intervals of 0.1. The method
of selecting the weight parameter in Experiment 1 was the same as that in the Experiment 2 and
Experiment 3. As shown the test result in Figure 15a,b, when α = 0, only the HSAM model worked,
and the predicted value Fpan

m (pn) from the pansharpening path did not play any role at this time. As α

continued to increase, the OA (%) value was obviously improved. This was because of the greater
spatial–spectral information that was supplied by the pansharpening path. When the appropriate α

was 0.5 in Experiment 2 and Experiment 3, the pansharpening path produced the most spatial–spectral
information, resulting in the highest OA (%). However, when α continued to increase, the predicted
value Fhsam

m (pn) from the existing path contributed less to the overall solution (Equation (12)). This loss
of information from the existing path degraded the value of the OA (%).Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 16 
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Figure 15. (a) OA (%) of SRMSAM-PAN in relation to the weight parameter α in Experiment 2 (S = 4).
(b) OA (%) of SRMSAM-PAN in relation to the weight parameter α in Experiment 3 (S = 4).

In addition, the final mapping result also could be obtained by pansharpening technique then
classification (PTC) which belongs STC type. Although the SRMSAM-PAN and PTC belong to different
types, a comparison between STHSRM-PAN and PTC is worth studying. To get a fair comparison,
the classification method based on SVM was selected in PTC. The number of the training samples was
respectively selected as 30%, 20% and 10% per class, the remaining numbers per class were test samples
in SVM. We respectively named the PTC with 30% training samples as PTC1, the PTC with 20% training
samples as PTC2 and the PTC with 10% training samples as PTC3. The proposed STHSRM-PAN and
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the three kinds of PTC methods were compared in Experiment 2 and Experiment 3. As shown the test
result in Figure 16a,b, it is note that when there was abundant supervisory information (i.e., training
samples), PTC is superior to the proposed STHSRM-PAN. Instead, STHSRM-PAN can obtain the
higher OA (%) than PTC in the absence of adequate supervisory information. However, supervisory
information is usually acquired by human markers, a large amount of supervisory information is
often difficult to obtain. Therefore, STHSRM-PAN is more widely used than PTC for coarse remote
sensing image.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 17 
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Figure 16. (a) OA (%) of SRMSAM-PAN and pansharpening technique then classification (PTC) in
experiment 2 (b) OA (%) of SRMSAM-PAN and PTC in experiment 3.

Finally, the performance of SRMSAM-PAN depended on the pansharpening technique. Therefore,
it was necessary to test the effects of different pansharpening methods on the performance of
the proposed method. The band-dependent spatial detail (BDSD) [43] was selected as another
pansharpening method to compare the previous PCA in Experiment 2 and Experiment 3 for three zoom
factors, that is, 2, 4 and 8. Figure 17a,b show the OA (%) of the SRMSAM-PAN result in relation to the
two pansharpening methods. As shown in Figure 17a,b, since BDSD is more effective than PCA [37],
the OA (%) in the BDSD-based SRMSAM-PAN is higher than that in PCA-based SRMSAM-PAN.
Hence the more effective pansharpening method can obtain a better mapping result.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 16 
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6. Conclusions

The contribution of this research is to improve the existing super-resolution mapping based on
spatial attraction by pansharpening technique, resulting in obtaining a more accurate super-resolution
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mapping result. In the proposed SRMSAM-PAN, first the pansharpening technique was utilized,
to improve the resolution of the original image in the novel pansharpening path, and the novel
fine-fraction images were obtained by unmixing the improved image. The finer-fraction images with
more spatial–spectral information are derived by integrating the novel fine–fraction images and the
existing fine-fraction images. Finally, the final mapping result was produced by the class allocation
method, according to the values predicted from the finer-fraction images. The experimental results
show that the proposed SRMSAM-PAN with the appropriate parameter obtained a better mapping
result, compared with the three SRMSAM methods: SPSAM, MSPSAM, and HSAM.

Since the performance of the proposed SRMSAM-PAN is related to the pansharpening technique,
a better mapping result can be obtained by the more effective pansharpening method. It is worth
in developing a more effective pansharpening method in the future. Moreover, the appropriate
parameter α is selected by multiple tests in this paper. To improve the final mapping result, an
adaptive method for selecting the most appropriate weight parameter α, is worth studying in future
work. Finally, we simulate the coarse remote sensing image by downsampling the original fine image.
Hence, the performance of the proposed method in the real coarse remote sensing image will be
further studied.
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