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Abstract: Following a large continental earthquake, information on the spatial distribution of 

triggered landslides is required as quickly as possible for use in emergency response coordination. 

Synthetic Aperture Radar (SAR) methods have the potential to overcome variability in weather 

conditions, which often causes delays of days or weeks when mapping landslides using optical 

satellite imagery. Here we test landslide classifiers based on SAR coherence, which is estimated 

from the similarity in phase change in time between small ensembles of pixels. We test two existing 

SAR‐coherence‐based landslide classifiers against an independent inventory of landslides triggered 

following the Mw 7.8 Gorkha, Nepal earthquake, and present and test a new method, which uses a 

classifier based on coherence calculated from ensembles of neighbouring pixels and coherence 

calculated from a more dispersed ensemble of ‘sibling’ pixels. Using Receiver Operating 

Characteristic analysis, we show that none of these three SAR‐coherence‐based landslide 

classification methods are suitable for mapping individual landslides on a pixel‐by‐pixel basis. 

However, they show potential in generating lower‐resolution density maps, which are used by 

emergency responders following an earthquake to coordinate large‐scale operations and identify 

priority areas. The new method we present outperforms existing methods when tested at these 

lower resolutions, suggesting that it may be able to provide useful and rapid information on 

landslide distributions following major continental earthquakes.  

Keywords: landslides; emergency response; synthetic aperture radar 

 

1. Introduction 

The majority of continental earthquakes occur in mountainous regions, where they can trigger 

thousands of landslides over areas of several tens of thousands of km2 [1,2]. These landslides are 

responsible for more deaths globally than any other secondary earthquake hazard [3]. Earthquake‐

triggered landslides cause damage to power, transportation and communication infrastructure, 

isolating remote communities and disrupting emergency response efforts, and may cause further 

hazards such as dam‐outburst floods [4,5].  

Information on where landslides have occurred is therefore essential for emergency response 

coordination and for directing site‐specific investigations on the ground, e.g. [6,7]. This information 

must be rapidly generated and communicated in order to limit delays to resource allocation and 

therefore be of practical value [8,9]. The information may take several forms, from detailed maps of 

landslide locations, with individual events recorded either as points, polylines or polygons, to 
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landslide density maps that identify regions that have experienced high numbers or large areas of 

landslides [9]. 

Following past earthquakes that triggered extensive landsliding, landslide information products 

have been generated too slowly for use in emergency response. The most common method, which is 

to identify triggered landslides through comparison of pre‐event and post‐event optical satellite 

imagery, is labour‐intensive and reliant on the acquisition of cloud‐free imagery. In some cases, 

automation can alleviate the labour‐intensive nature of this process, e.g. [10], but cloud‐cover often 

presents an insurmountable barrier to rapid production of landside maps using optical imagery. This 

delays the supply of information to emergency response coordinators, as was the case in the 

aftermath of the 2015 Nepal and 2016 Ecuador earthquakes [9,11]. 

When cloud‐free optical satellite imagery is unavailable, emergency response coordinators must 

rely on ground‐based observations, which may not have wide or homogeneous areal coverage, and 

on the outputs from predictive models. Such models estimate where landslides are likely to have 

occurred based on factors such as peak ground acceleration, topographic slope and proximity to 

rivers or active faults, e.g. [12–14]. However, these models are generally static in time, empirical in 

nature, and are strongly dependent on input data quality. Peak ground acceleration, for example, 

may be poorly constrained immediately following the earthquake [15]. Additionally, the models may 

fail to capture differences in susceptibility for different regions, as illustrated by the significant 

differences in triggered landsliding between the 2008 Mw 7.9 Wenchuan earthquake and the 2015 Mw 

7.8 Gorkha earthquake [1]. The inclusion of observed landslide data in these models improves their 

predictive skill but the improvement is limited if these data are clustered, as they necessarily must be 

if mapped using optical satellite imagery through small gaps in cloud‐cover [14]. 

Synthetic Aperture Radar (SAR) satellite imagery, which uses active emission and sensing of 

electromagnetic radiation in the microwave rather than the visible light spectrum, can acquire 

useable imagery in cloudy conditions as radar is able to penetrate cloud cover. SAR may therefore 

provide a solution to the problem of mapping landslides when cloud obstructs optical imagery. In 

recent years the number of satellite‐based SAR systems has vastly increased, leading to a 

corresponding increase in the frequency and regularity of image acquisition everywhere on Earth 

[16]. For example, the European Space Agency’s (ESA’s) Sentinel‐1 satellite constellation (comprising 

the Sentinel‐1a and Sentinel‐1b satellites), imagery from which is used in this study, comprises two 

satellites and acquires imagery on ascending and descending tracks every 12 days for tectonic regions 

globally and every 6 days in Europe [17]. These data are freely available to download. 

SAR products are routinely used in other rapid response situations, for example in flood 

mapping or in the production of interferograms to map ground deformation after an earthquake or 

during an episode of volcanic unrest [18–20]. NASA’s Advanced Rapid Imaging and Analysis (ARIA) 

project uses SAR to produce damage proxy maps in urban areas following earthquakes, cyclones or 

wildfires [20,21]. SAR methods such as offset tracking, e.g. [22], persistant scatterer interferometry, 

e.g. [23,24] and traditional differential InSAR, e.g. [25] are also used in monitoring the movements of 

slow‐moving landslides. Persistent scatterer interferometry and traditional differential InSAR have 

been used in several cases to supplement pre‐existing inventories with ground surface deformation 

information, which can be used to evaluate the state of activity of the landslides [26–28]. However, 

the potential use of SAR in rapid production of landslide maps for emergency response has only been 

demonstrated on individual landslides or catchments, and with limited success [21,29]. 

A clear example of the limitations of landslide mapping using optical imagery, and the potential 

that SAR has to overcome these limitations was the Gorkha earthquake on 25 April 2015, which 

triggered over 25,000 landslides in the surrounding mountains (Figure 1) [2]. Figure 2 shows a 

timeline of mapping efforts carried out by an international team of researchers using optical satellite 

imagery and intended for use by emergency response coordinators [9]. Although the earthquake 

occurred during Nepal’s dry season, cloud cover caused severe delays to landslide mapping, with 

almost no cloud‐free imagery available in the first week following the earthquake and some areas 

remaining unmapped up until the onset of the monsoon on 9 June 2015, roughly one‐and‐half months 

later. The emergency response process evolves quickly in comparison. For example, the United 
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Nations response framework following a disaster mandates an initial assessment after 72 hours and 

a second after 2 weeks [9,30]. In the case of the 2015 Gorkha earthquake, the impending monsoon 

season applied additional time pressure, because the arrival of the monsoon would make cloud‐free 

optical image acquisition unlikely and because it was anticipated that the earthquake would increase 

the severity of rainfall triggered landsliding [7]. The acquisition of useable SAR imagery and 

generation of associated products occurred comparatively quickly (Figure 2). Five days following the 

earthquake, NASA’s ARIA team released an initial damage proxy map for building damage in 

Kathmandu based on SAR data acquired by the Italian Space Agency’s COSMO‐SkyMed satellite 

system. The first post‐event imagery acquired on each satellite acquisition track by ESA’s Sentinel‐1a 

satellite is shown on Figure 1, with the first of these being acquired 4 days after the Gorkha mainshock. 

Sentinel‐1 coverage has since improved with the launch of a second satellite, Sentinel‐1b, in 2016. 

Had it been possible to use SAR products in mapping landslides following the Gorkha earthquake, 

critical information on landslide distribution could have been delivered to first responders and 

government agencies with greater areal coverage and better timeliness than was possible from optical 

satellite data.  

 

Figure 1. Location map of the 2015 Gorkha earthquake. A white star marks the epicenter of the 

mainshock on 25 April 2015. The density of earthquake‐triggered landsliding was calculated based 

on the inventory of Roback et al. [2]. The first post‐event Sentinel‐1a Synthetic Aperture Radar (SAR) 

acquisitions are shown with dashed lines: ascending track 085 (blue); descending track 19 (red) and 

descending track 121 (orange). The area of SAR imagery used in this study is from track 19 and is 

outlined in solid red. 
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Figure 2. Timeline showing satellite image acquisition and product release following the 2015 Gorkha 

earthquake for optical satellite imagery and for SAR. Modified from [9]. Timeline of NASA Advanced 

Rapid Imaging and Analysis (ARIA) products is taken from [21]. Optical imagery and products are 

in blue with maps produced by Durham University (DU) and collated maps coordinated with 

international partners (International Centre for Integrated Mountain Development (ICIMOD), 

MacDonald, Dettwiler and Associates Ltd, (MDA) and the National Geospatial‐intelligence Agency 

(NGA)) by the British Geological Survey. SAR imagery and products are in green and include the 

Sentinel‐1 (S‐1) imagery used in this study and the COSMO SkyMed (CSK) and ALOS‐2 imagery of 

Kathmandu used by the ARIA project.  

In this paper, we investigate automatic methods to detect landslides using SAR and present a 

new method based on SAR coherence. We tested this method on the landslides triggered by the 

Gorkha earthquake, using a comprehensive independent inventory of triggered landslides produced 

from manual analysis of optical satellite imagery [2]. Additionally, multiple reports have been 

published discussing the emergency response effort following the earthquake, allowing identification 

of how SAR landslide products could have been used if they had been available [5–7]. 

2. Materials and Methods  

2.1. Theory: Landslide Detection with SAR 

2.1.1. Synthetic Aperture Radar: Interferometry and Coherence 

Two SAR images acquired by the same satellite system and covering the same area at different 

times may be combined to form a radar interferogram (e.g. Figure 3a) [31]. To acquire each image, 

microwave radiation is emitted by the satellite’s antenna, back‐scattered from the Earth’s surface, and 

recorded again by the satellite as two components: amplitude and phase. An interferogram, such as 

the one shown in Figure 3, is a map of the difference in phase, Δφ, between the two images; the 

repeated bands of colour can be considered as contours of the change in distance between the satellite 

and the imaged surface. Figure 3 shows an example pre‐event interferogram before the 2015 Nepal 

earthquake, i.e., an interferogram made from two pre‐event SAR images. 

The coherence of a pixel is a measure of the signal to noise ratio of a point. A coherence map can 

be estimated from two SAR images to assess the spatial coherence in Δφ that is shown in the 

interferogram. SAR coherence, �,  is estimated as the correlation between Δφ of closely‐grouped 

pixels and can be calculated pixel‐by‐pixel for a pair of images (denoted A and B) from an ensemble 

of n pixels using the following equation [32]. 
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Here, i is an individual pixel and Ai and Bi are complex representations of phase and amplitude 

for images A and B respectively. The overline indicates the complex conjugate. The factor of 1/n is 

included here as a scaling factor in order to account for variations between pixels in the size of the 

ensemble, required for Section 2.1.4. In the widely used ‘boxcar’ coherence estimation, the ensemble 

is defined as a square box of pixels centred on the pixel in question. Pixels within the box will sum 

constructively if they have similar Δφ and destructively if not. Examples of areas with low and high 

estimated coherence are shown in Figure 3b and 3c respectively. 

 

 

 

 

Figure 3. (a) Sentinel‐1 interferogram produced using LiCSAR [33] for a pre‐event SAR image pair 

acquired on 24 March and 17 April 2015. Each band of colour shows a phase change between image 

acquisitions equal to 2.8 cm. Background intensity shows the amplitude of the image acquired on 17 

April. (b) An example of an area where many pixels are incoherent. In this case, neighbouring pixels 

do not have a similar phase change and so do not sum constructively, resulting in a low boxcar 

estimation of coherence. (c) An example of an area of high coherence. Neighbouring pixels have 

similar phase change so sum constructively, resulting in a high estimation of coherence 

The overall coherence of a pixel is determined by several factors, often illustrated by its 

decomposition into three components:  

������ = ��������� ∙ �������� ∙ ��������  (2)

where temporal is temporal coherence, spatial is spatial coherence, and thermal is thermal coherence [34]. 

Decorrelation of any one of these components will lead to decorrelation of the signal as a whole. 

Thermal coherence is related to noise within the signal, and its decorrelation is generally insignificant 

[34]. Spatial (or geometric) coherence is dependent on the topography of the target region, the 

imaging geometry of the satellite, the radar wavelength and the bandwidth of the radar sensor. The 

temporal component is dependent on the change in scattering properties of a target pixel, which in 

turn is dependent on modification to the ground surface. Surfaces such as bare rock or buildings tend 
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to retain the same scattering properties over time and so have a high temporal coherence, while 

vegetated regions, which are likely to move or grow between image acquisitions, tend to have a lower 

temporal coherence.  

Changes to the ground surface between the acquisition of two SAR images, for example due to 

fire, flooding, building collapse or construction, earthquake surface rupture or landslides, alter the 

scattering properties of each pixel, leading to low temporal coherence and so a low observed 

coherence. Previous studies have demonstrated that SAR coherence can be used to map changes of 

this nature [20,21,35–38]; and that these products can be rapidly generated and released for 

emergency response purposes [20,21]. We therefore used SAR coherence as a starting point in this 

study.  

2.1.2. Absolute Coherence Method 

For two SAR images whose acquisitions span a landslide trigger event, landslide pixels are 

expected to have a low coherence. The occurrence of a landslide represents a significant modification 

of the ground surface and therefore its scattering properties. The simplest method of using coherence 

information to map landslides is to use this absolute coherence, assigning low‐coherence pixels as 

‘landslide’ and high‐coherence pixels as ‘not landslide’. For a few cases, landslides have been 

identified using this method, e.g. [37]. However, as low coherence may be due to factors unrelated to 

the trigger event, such as the presence of dense vegetation or unfavourable imaging geometry, this 

method is likely to result in a classification surface with many false positives – low coherence regions 

that are classified as ‘landslide’ but are not landslides. 

2.1.3. ARIA Method 

It has been suggested that differencing a pre‐event coherence map (calculated from two pre‐

event SAR images) and a co‐event coherence map (calculated from two SAR images spanning the 

event) can differentiate between areas where coherence is always low and areas where it has 

decreased, e.g. due to building collapse or landsliding [21,35,39]. The method developed by NASA’s 

ARIA project for rapid generation of urban damage proxy maps is based on this approach [21,39]. 

Figure 4 shows the steps which go into producing ARIA damage proxy maps, described by Yun 

et al. [21,39]. Two pre‐event SAR images and one post‐event image are taken and used to calculate 

pre‐event and co‐event coherence maps. The histogram of the coherence values in the co‐event 

coherence map is then ‘matched’ to the histogram of the pre‐event coherence map in order to mitigate 

any bulk changes in coherence between the two images, for example due to variability in weather 

conditions. This histogram matching process is shown for the simple case of 16 pixels in Figure 4b, in 

which the co‐event cumulative histogram is mapped onto the pre‐event histogram. For this step, pre‐

event and co‐event pixels are sorted by value. In order to obtain a strict ordering, co‐event pixels are 

sorted first by their value and then by the values of the eight pixels around them as in Coltuc et al. 

[40]. The ordered co‐event pixels are set equal to the values of the ordered pre‐event pixels, and then 

placed in their original spatial positions, resulting in a co‐event coherence map whose coherence 

frequency distribution is identical to that of the pre‐event map. The histogram‐matched co‐event map 

and the pre‐event map are then differenced to produce a classification surface. For their purposes, 

the ARIA team then classify pixels whose co‐event coherence is lower than their pre‐event coherence 

as ‘damaged’, with increasing confidence in more negative pixels (Figure 4c). 
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Figure 4. Workflow of the ARIA method [21,39] for identifying ‘damaged’ pixels, for example those 

which correspond to collapsed buildings or landslides given in 3 steps: (a) Generate coherence maps 

C12, C23. (b) Histogram match C23 to C21. (c) Calculate the difference between the two coherence maps. 

Darker grey pixels in (c) have a lower coherence in C23m and C12 and negative pixels in the 

classification surface are identified as ‘damaged’, i.e., those for which C23m < C12. 

The ARIA method was originally developed for urban damage mapping. However, when 

applying the method following the 2015 Gorkha earthquake, Yun et al. [21] noted that it showed some 

promise in landslide detection. Yun et al. [21] identified an area of decreased coherence spatially 

correlated with the Langtang Valley landslide, an exceptionally large and destructive landslide 

triggered by the earthquake [41]. However, Yun et al. [21] judged that overall, coherence was not 

sufficiently stable through time in vegetated regions, resulting in many false positives: pixels 

incorrectly identified as damaged due to coherence changes unrelated to the earthquake.  

2.1.4. Sibling‐Based Coherence Method 

The new method we have developed is outlined in Figure 5. As with the ARIA method, the aim 

is to produce an expected landslide‐free coherence surface, which is subtracted from the co‐event 

coherence map. However, where Yun et al. [21,39] subtract a pre‐event coherence map, we subtract 

a co‐event coherence map that is calculated in such a way as to be less sensitive to localised decreases 

in coherence such as landslides. Unlike the ARIA method, the new method is not based on the change 

in coherence through time and so is expected to have fewer false positives caused by variations in 

temporal coherence unrelated to landsliding. 

 

Figure 5. Workflow for the Bx‐S method, in which the difference between sibling‐based and boxcar 

coherence estimates is used in landslide classification 

As an alternative to the boxcar coherence described in Section 2.1 and used in the absolute and 

ARIA methods, SAR coherence can be calculated based on ensembles of ‘sibling’ pixels, which exhibit 
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similar behaviour to the target pixel, e.g. [42–44]. Here, we use the RapidSAR algorithm of Spaans 

and Hooper [44] for this process. For every pixel, a search is performed within a window of a given 

size, centred on that pixel, for pixels behaving similarly in terms of amplitude and amplitude 

variability throughout a time series of pre‐event imagery. These pixels are designated as ‘siblings’. 

The sibling ensemble of each pixel is then used in place of the boxcar of adjacent pixels in the 

summations in Equation (1). 

When using a boxcar ensemble in estimating the coherence of a pixel that lies within a landslide, 

the pixels used in the summation are adjacent and so are likely to also lie within the landslide when 

the landslide in question is similar in size or larger than the boxcar. Since a landslide modifies the 

scattering properties of the Earth’s surface, giving pixels within the landslide random Δφ, the 

ensemble is expected to sum destructively, resulting in a low coherence estimate. Additionally, any 

coherent pixels within the landslide will still be estimated as low coherence due to the random Δφ of 

their neighbours. However, the sibling‐based coherence estimate calculated using RapidSAR uses an 

ensemble of pixels dispersed throughout a window much larger than the size of a boxcar and 

specified to be larger than the expected size of individual landslides. Compared to the boxcar 

ensemble, we expect that proportionally fewer siblings of a landslide pixel will lie within the 

landslide. Pixels lying outside the landslide will not experience the random Δφ associated with it and 

so may sum constructively. The landslide pixel is thus given an estimated coherence value that is 

more dependent upon its siblings which lie outside the landslide. 

The sibling‐based coherence calculated by RapidSAR is relatively insensitive to small spatial 

scale changes in the ground surface such as landslides. This map can therefore be thought of as the 

co‐event coherence map we would expect if there were no landslides. The method we propose is to 

subtract this sibling‐based coherence map from the co‐event boxcar map, producing a classification 

surface, which will be referred to subsequently as boxcar‐sibling (Bx‐S). Landslide pixels should have 

a lower boxcar coherence than sibling‐based coherence and so be negative in the Bx‐S surface. Since 

the same pair of images is used in the coherence calculation with both methods, the histogram 

matching step carried out in the ARIA method [21,39] becomes unnecessary and the potential for 

other sources of temporal decorrelation is decreased. 

2.2. Case Study: The 2015 Gorkha Earthquake 

2.2.1. Validation Data 

We analysed the classification ability of the three methods presented in Section 2—absolute 

coherence, ARIA and Bx‐S—using the inventory of landslides triggered by the 2015 Gorkha 

earthquake that was compiled by Roback et al. [2]. The inventory consists of 24,915 landslides 

mapped as polygons that include both scar and runout. The majority of landslides were mapped 

using pre‐ and post‐event imagery from DigitalGlobe Worldview‐2 and ‐3 with some landslides 

mapped using Pleiades and Google Earth imagery. Due to restrictions on the SAR imagery available 

for the event, we use a subsection of this area containing 16,539 landslides, the extent of which is 

shown on Figure 1 (solid red line).  

2.2.2. SAR Data and Processing  

C‐band Sentinel‐1a SAR imagery acquired on descending track 19 (dashed red line, Figure 1) 

was used in this study. Acquisition dates are shown in Figure 6. This includes a long time‐series of 

pre‐event imagery, which is required for sibling calculation in the new method presented in Section 

2.4. The occurrence of the Gorkha earthquake early in the lifetime of Sentinel‐1a and prior to the 

launch of Sentinel‐1b meant that there were not sufficiently regular data acquisitions before the 

earthquake on ascending track 085 (Figure 1). Ascending imagery was therefore not used in this 

study. Similarly, descending track pre‐seismic imagery of east of Kathmandu on track 121 (Figure 1) 

was acquired prior to the earthquake less frequently than on track 19 and so is not used here. 

Interferograms and coherence maps were produced for consecutive date pairs using the LiCSAR 

software package [33], which uses GAMMA software to process Sentinel‐1 single look complex data. 
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A 1‐arcsecond digital elevation model (DEM) derived from Shuttle Radar Topography Mission data 

[45] was used in this processing. The raw SAR data had a pixel size in the radar coordinate system of 

2.3 m × 14.0 m (range × azimuth). Images were multilooked by a factor of five in range and one in 

azimuth, giving a pixel size of 12 m × 14 m. 

Boxcar coherence was calculated using pixels within a 3 × 3 pixel window. To calculate the 

sibling‐based coherence, we used the RapidSAR algorithm of Spaans and Hooper [44]. For every 

pixel, a window of 41 × 41 pixels was searched and between 15 and 100 pixels were identified which 

behaved similarly in terms of amplitude and amplitude variability throughout 11 pre‐event images 

acquired up until 5 April 2015 (see Figure 6 for acquisition dates). 

 

Figure 6. Timeline of Sentinel‐1a image acquisition for the study area (see Figure 1) over the months 

preceding the Gorkha earthquake (red star), showing the imagery used in each method. Black 

diamonds show satellite overpasses at intervals of 12 days. Those where imagery was acquired are 

labelled with dates. 

Once the three classification surfaces had been calculated according to the methods outlined in 

Section 2.1, these were converted to a geographic coordinate system, with a pixel size of 20 m × 22 m, 

which reflects the multilooked resolution of the data. We carried out the analyses presented in Section 

3 in this coordinate system. Each classifier surface was then rescaled to produce a surface with values 

between 0 and 1, where 1 was most likely to be a landslide. 

2.2.3. ROC Analysis 

A common problem in classification is the choice of threshold at which to assign classes given a 

continuous classifier. This choice of threshold is strongly dependent on the user requirements and 

their relative tolerance for false positives and false negatives and so it is preferable to test the 

performance of a classifier before setting this threshold. We therefore used Receiver Operating 

Characteristic (ROC) analysis to test the landslide detection ability of each of the three classification 

surfaces described in Section 2. ROC curves are commonly used to measure the ability of a continuous 

classifier to correctly identify a binary array [46], in this case, a map of landslides and non‐landslide 

pixels. For a range of classifier threshold values, the true positive rate (the fraction of mapped 

landslide pixels that are correctly classified as ‘landslide’) is plotted against the false positive rate (the 

fraction of mapped non‐landslide pixels that are incorrectly classified as ‘landslide’). As the threshold 

is relaxed from a value where all pixels are classified as ‘non‐landslide’ to one where all are classified 

as ‘landslide’, a good classifier will identify true positives at a faster rate than it accepts false positives. 

The ROC curve plots the true positive rate against the false positive rate, with better classifiers 

resulting in a curve that lies closer to the upper left‐hand corner of the plot. The overall performance 

of a classifier can therefore be quantified by the area under the curve (AUC). For a random 

classification surface where any pixel has a 50% chance of being classified as landslide or non‐

landslide, the ROC plots as a straight line between (0,0) and (1,1) with AUC = 0.5. A classifier AUC is 

expected to lie between 0.5 and the perfect case, for which AUC = 1.0. 

2.2.4. Masks 
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In order to test the classification ability of each surface, it was necessary to mask pixels which 

were either not mapped in the landslide inventory or which were not well imaged by the SAR system. 

Based on the data of Roback et al. [2], we applied masks to remove pixels that were either outside the 

mapped area or obscured by cloud in the optical satellite imagery (Figure 7). 

 

Figure 7. Regions that were masked before analysis was carried out, either due to being unmapped 

by Roback et al. [2] (green, blue) or because of poor SAR image quality, identified using the 

contributing pixel area (orange, red). Underlying surface shows topography. 

We also masked areas where the SAR system was not likely to capture useable data based on 

viewing angle of the satellite and topography. The SAR system images the Earth’s surface at an 

oblique angle, locating pixels according to their two‐way travel time and Doppler shift, and 

projecting them onto a two‐dimensional image. Steep topography can distort this image, leading to 

phenomena known as shadowing, foreshortening and layover (detailed in [47]). In order to assess 

this effect, we used the σ0 radar backscatter normalisation area calculated using the pixel area 

integration method described in [48]. This method divides the DEM surface covering the SAR image 

into small patches. The patches of the DEM surface that correspond spatially to each radar pixel are 

then integrated in order to approximate the area on the ground that contributes to each pixel. We 

used this σ0 normalisation area to identify distorted pixels. A mask was applied to remove all pixels 

for which this contributing area is 0 and those for which the contributing area was >1000 m2 (around 

6 times larger than the pixel spacing in radar coordinates) since these were expected to contain little 

information on landsliding. The selection of this threshold of 1000 m2 is justified in appendix A. 

3. Results 

Both maps of individual landslides and of landslide density are useful in the emergency 

response process [9]. We therefore assessed each classification surface in terms of their ability to: (1) 

identify individual landslides at a pixel‐by‐pixel scale; and (2) identify areas that had experienced 

extensive landsliding at a series of increasingly coarse spatial scales. To do this we produced 

aggregate classification surfaces, for which the original surface was divided into N × N pixel squares 

and the mean pixel value within each square was taken as the aggregate classifier value. These were 

then normalised as before to produce a surface of values between 0 and 1 for each classifier. A 

landslide density surface was calculated as the percentage mapped landslide area of each aggregate 

pixel. For the purpose of ROC analysis, which requires a binary validation dataset, we assigned 

aggregate pixels with over 50% landslide density as ‘landslide’ and those with under 50% ‘non‐

landslide’, although we also test the sensitivity of all methods to this choice. 

Figure 8 shows a map of landslides from Roback et al. [2] and each normalised coherence‐based 

classification surface. Two areas are shown, selected to contain different sizes of landslides. The first 

is around the Village Development Committee (an administrative region) of Jharlang, located in the 
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Himalayan foothills within Dhading District. The second area covers the Langtang Valley in Rasuwa 

District, where an exceptionally large landslide with an area of 1.7 km2 led to hundreds of fatalities 

[6,41]. As was found by Yun et al. [21], the large landslide in the Langtang Valley is visible in the 

ARIA classification surface. However, in the Jharlang area, where landslides were smaller, the ARIA 

method was less successful, and the surface is noisy. The new method, Bx‐S struggles to differentiate 

between landslide and non‐landslide pixels in both locations, as does absolute coherence, which 

suffers from false positives.   

 

Figure 8. Classification of individual landslides for two example locations. Each column shows 

mapped landslide polygons (pink) [2] and the normalized classification surface calculated from each 

method for the Jharlang (left) and Langtang Valley (right) regions. Colour bars are non‐linear but 

linear between the white lines and labelled with the percentage of pixels across the two areas that lie 

in this linear range. The main body of the Langtang Valley landslide is indicated in white. 
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ROC analysis confirms that all three methods perform poorly as landslide classifiers on a pixel‐

by‐pixel scale, with AUC <0.6 (Figure 9). However, Bx‐S and to a lesser extent ARIA and absolute 

coherence are more successful at identifying areas of intense landsliding. ROC analysis shows that 

increasing pixel size through aggregation results in improved performance for all methods. In 

particular, Bx‐S outperforms the two existing methods at all aggregations and does better with 

increasing aggregation. ROC AUC for Bx‐S increases from 0.56 to 0.77 when aggregated from 20 m × 

22 m pixels to 300 m × 330 m. For the same aggregation, absolute coherence ROC AUC increases from 

0.55 to 0.72 and the ARIA method ROC AUC increases from 0.57 to 0.68.  Figure 10 shows 

classification surfaces for the whole area at an aggregated pixel size of 200 m × 220 m (10 × 10 pixels), 

along with a smaller region within Gorkha district. In this smaller region, Bx‐S appears relatively 

successful in recreating the spatial pattern of landslide density, while ARIA and absolute coherence 

have many false positives, making it difficult to identify the correlation with landslide density.  To 

allow direct comparison, the inset region in Figure 10 is shown in Figure A2 (Appendix B) prior to 

aggregation. 

 

Figure 9 ROC curves for three different SAR coherence‐based classifiers, plotted at a range of 

resolutions from individual 20 m × 22 m pixels up to 300 m × 330 m aggregate pixels. The dotted lines 

show the performance of a random classifier (AUC=0.5). Masks shown in Figure 7 were applied to 

the data before calculation. The Bx‐S method outperforms the other classifiers for aggregated pixels. 
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Figure 10. Classifier surfaces for 200 m × 220 m aggregate pixels. (a) the percentage of each aggregate 

pixel made up of landslide pixels. (b, c, d) the mean value of the classification surface for each method 

within each aggregate pixel. These surfaces are normalized to a range between 0 and 1 with 1 being 

most likely to be a landslide. Colour bars are non‐linear, but linear between the white lines and 

labelled with the percentage of pixels across the whole area that lie in this linear range. 

Several factors exerted a relatively strong influence on classification ability for the different 

classifiers: one related to spatial scales, a second to the time window of SAR acquisition, and a third 

to the definition of ‘landslide’ pixels. First, increasing the size of the boxcar window worsens 

performance for all three classifiers. We have presented all results in this study using a 3 × 3‐pixel 

window but we also tested 5 × 5 and 20 × 20 windows. In most cases increasing the size of the boxcar 
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window reduced ROC AUC, although not for the Bx‐S classification surface (Table 1). We carried out 

the comparison on aggregates of 10 × 10 individual pixels. This was in order to lessen the effect of 

coarsening resolution on classification ability discussed above.  

Table 1. ROC AUC values for each method for boxcar window sizes 3 × 3, 5 × 5 and 20 × 20. ROC AUC 

are shown for 200 m × 220 m aggregate classifier surfaces. 

 3 × 3 5 × 5 20 × 20 

Absolute 0.68 0.68 0.66 

ARIA 0.69 0.69 0.64 

Bx‐S 0.73 0.73 0.73 

 

Second, for all three classifiers, classification ability worsened when the time window between 

SAR image acquisition was increased. This was expected as a longer time window will have increased 

temporal decorrelation unrelated to landsliding, particularly in vegetated areas. Third, results were 

affected by how aggregate ‘landslide’ pixels were defined. For the purposes of ROC analysis, an 

aggregate landslide pixel was defined as one comprising at least 50% individual landslide pixels. In 

varying this threshold, we found that ROC AUC was higher when landslide pixels were more strictly 

defined by a higher threshold (Table 2). The classifiers are therefore better able to identify a region 

that has experienced more severe landsliding, which may affect how they can be applied. We also 

tested the effect of altering the size of the RapidSAR search window from 41 × 41, which is used 

throughout this study, to 21 × 21, 61 × 61 and 81 × 81. This had little effect on ROC AUC on both 

individual and aggregated pixel surfaces (No more than 0.01 difference) but computation time was 

noticeably different. The time taken for an 81 × 81 window was around double that of the 21 × 21 

window. 

Table 2. The effect on ROC AUC of varying the % landslide area threshold required for an aggregate 

pixel to be defined as ‘landslide’ for 200 m × 220 m aggregate pixels 

 10 % 20% 30% 40% 50% 60% 

Absolute 0.65 0.67 0.68 0.69 0.68 0.69 

ARIA 0.65 0.65 0.67 0.68 0.69 0.69 

Bx‐S 0.67 0.70 0.72 0.73 0.73 0.75 

 

4. Discussion 

4.1. Pixel Aggregation 

We found SAR coherence methods to be more successful in landslide detection at lower spatial 

resolutions. There are several potential reasons for this. First, any disagreement in landslide shape or 

location between the SAR classifier and the validation map will have a negative effect on the ROC 

analysis since non‐overlapping ‘landslide’ pixels between the two maps result in both false positives 

and false negatives. Therefore, any problems in geo‐referencing in either the coherence maps or the 

validation inventory will adversely affect classifier performance. This is particularly relevant in the 

case of Nepal, where Roback et al. [2] note considerable difficulty in orthorectifying and 

georeferencing the imagery from which the landslides were mapped. Furthermore, any additional 

landslides or change in existing landslide shape through landslide reactivation between SAR and 

optical image acquisition would have the same effect. Reactivation is likely to occur due to unstable 

ground conditions, rainfall and aftershock activity. The SAR imagery used here was collected 4 days 

following the earthquake, whereas the optical imagery used by Roback at al. [2] was acquired over a 

period of several months. It is also worth noting that as well as landslides, our method may detect 

other forms of damage, such as collapsed buildings or damaged roads. Although this may be a useful 
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application of our method for future studies, here this may result in additional false positives, as 

these areas would not be included in the inventory of individual landslides. 

Second, there are likely to be limitations on the size of an individual landslide that can be 

detected both by the individual collecting the optical landslide inventory and by the SAR classifier. 

Of the 24,915 landslides mapped by Roback et al. [2], 6,028 (<25%) are under 400 m2 in area, the size 

of one SAR pixel, while more than half are smaller than the 3 × 3 pixel boxcar window. (Figure 11). 

The calculation of the boxcar coherence as a spatial average means that sub‐pixel landslides are 

unlikely to be visible and sharp boundaries in coherence are blurred. Using a 3 × 3 pixel window, 9 

pixels will be used in the summation in equation 1. For two adjacent pixels, 6 of these will be the 

same. Sharp coherence changes are therefore spread across the boxcar window [44]. The blurring 

between neighbouring pixels may mask the signal of small landslides, making pixel scale detections 

problematic. This affects all three methods, as all use a boxcar coherence estimate to detect landslides. 

However, this problem is reduced when using SAR coherence to estimate coarser resolution landslide 

density, since a mean is taken of neighbouring pixels in the aggregation process. 

 

Figure 11. Histogram of landslide areas derived from the inventory of [2]. Landslides over 20,000 m2 

in area are omitted for clarity. The sizes of an individual pixel (red) and of the window used in 

calculation of the boxcar coherence (blue) are marked. 

4.2. The Maximum Detectable Landslide Size 

The size of the search window used by RapidSAR for sibling identification is likely to set an 

upper limit on the maximum size of a landslide that can be detected using the Bx‐S method. The 

method relies on a sibling‐based coherence estimate using proportionally fewer landslide pixels in 

the summation than the boxcar estimation (Equation (1)). We make the assumption that siblings of a 

given pixel will generally be distributed widely throughout the search window and will not be 

clustered around it as immediate neighbours. However, for a pixel located at the centre of a landslide 

that is larger than the RapidSAR window, both of the ensembles of pixels used by the boxcar and 

sibling‐based coherence estimates will lie entirely within the landslide. Both estimates of coherence 

therefore yield a low value and the difference between them will be small, leading to a false negative. 

This effect will decrease towards the edges of the landslide.  

The largest landslide included in the Roback et al. [2] inventory is the Langtang Valley landslide 

(Figure 8), which has an area around 1.7 km2. Here we used a 41 × 41‐pixel window, equivalent to an 

area around 270,000 m2. In radar coordinates, the Langtang Valley landslide is 221 pixels in length 

but has a mean width of just 30 pixels. At its widest point, it is 58 pixels wide. In the centre of the 

Langtang Valley landslide, we therefore expect to approach the point where both coherence estimates 



Remote Sens. 2019, 11, 237 16 of 24 

 

are very low. Therefore, although decreasing the size of the search window decreased computation 

time, we did not use a smaller 21 × 21 window in this study. In future studies, where the maximum 

landslide size is unknown, it will be necessary to increase the size of the RapidSAR search window 

in order to ensure that large landslides are not masked.  

4.3. Ascending and Descending Track SAR 

In Section 2.2.4, a mask was applied to remove areas of the classification surfaces that were not 

expected to contain useful information due to the topography and satellite image acquisition 

parameters. Application of this mask resulted in exclusion of 23% of the study area. However, 

exclusion is strongly biased towards those slopes facing away from the sensor and is thus often 

limited to one side of a valley. Therefore, if landsliding occurrence is assumed independent of slope 

aspect, it remains possible to obtain a relative estimation of regional landslide density. We do note, 

however, that care should be taken in areas where vegetation cover varies with slope aspect, as this 

could introduce aspect‐related variations in landslide susceptibility.  

It is also important to note that, since the locations of these masked regions are dependent on 

the viewing angle of the satellite, they are different for ascending and descending track SAR. We used 

descending track imagery, which is acquired from a west‐facing sensor, so that steep, west‐facing 

slopes were not well imaged and had to be masked. For ascending track imagery, the opposite would 

be true. Here, ascending track SAR imagery was unavailable; however, it will be advantageous in 

future studies to combine both ascending and descending track SAR imagery in order to maximise 

the area that can be mapped using SAR. 

4.4. Combining Classifiers 

Predictive landslide models, e.g. [12–14], rely on a combination of predictors of landslide 

distribution that together provide a more accurate model than any one individual predictor. One 

possible way of improving the classification ability of SAR‐based methods would be to combine them 

with one or more such empirical predictors. Various possible landslide predictors such as slope, 

lithology and distance to rivers and faults; and means of combining them have been tested and 

developed [12–14,49]. Using SAR data as an additional input for one of these models would allow 

incorporation of observed data into models that are traditionally static in time based on pre‐

earthquake conditions and prior knowledge of landslide likelihood. 

Alternatively, landslides mapped by SAR could be used to calibrate predictive models. Robinson 

et al. [14] used small areas of mapped landslides as training data to predict landslide occurrence 

across Nepal following the Gorkha earthquake. They found that while the input of observed landslide 

data improved model performance, the improvement was considerably reduced if these observations 

were clustered. This clustering is common in optically‐derived datasets if mapping is only possible 

through small gaps in cloud cover. SAR methods may provide a more uniformly distributed set of 

observations that could be used in the calibration of predictive models. Areas where the SAR 

coherence was likely to be most reliable could be identified for this purpose, either by masking areas 

with high normalised backscatter as we have done here, by identifying areas where coherence was 

consistent and non‐zero in pre‐event imagery or by using a method such as that of Rees [50] to predict 

areas where topographic effects (e.g. shadowing) might be problematic based on DEM data and 

satellite image acquisition parameters. For our case study, we were still able to make landslide 

observations across a wide area, lessening the clustering effect, even after masking unreliable SAR 

data. 

SAR products other than coherence may also be used in landslide identification. For example, 

SAR amplitude has shown some capacity for mapping landslides in other studies, although not 

enough to be used alone in large‐scale landslide identification [51]. SAR amplitude is dependent on 

the proportion of microwave energy that is scattered at the Earth’s surface. Vegetation tends to scatter 

a relatively high proportion of this energy when compared to exposed rock or bare ground so that 

the amplitude of the signal when it is returned to the satellite is lower for vegetation than for rock. 

Since landslides remove vegetation, they are expected to correspond to bright areas in an amplitude 
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map and to increased amplitude in time. We tested SAR amplitude in our initial analysis but found 

it to be outperformed by coherence‐based classifiers, so do not report it here. However, SAR 

amplitude methods are likely to perform better in highly vegetated regions, and therefore may be 

complementary to coherence‐based methods, that are adversely affected by low background 

temporal coherence in these areas. 

4.5. SAR Frequency Band 

Sentinel‐1a C‐band SAR was used in this study because it had good temporal coverage in the 

months prior to the 2015 Gorkha earthquake, the short 12‐day revisit time improves temporal 

coherence, the data are easily and openly available, and frequent coverage means that this satellite 

constellation may be used in future emergency response. Many SAR‐based landslide studies also use 

either X‐band or L‐band SAR [21–24,26–29]. X‐band SAR has a shorter wavelength than C‐ and L‐

band, which makes it able to detect smaller ground movements at higher spatial resolution. However, 

due to increased penetration of SAR microwaves through the canopy at longer wavelengths, L‐band 

SAR retains higher temporal coherence than C‐band in vegetated regions [21,24,25], whilst coherence 

of X‐band SAR imagery for the same regions is very low [21,29]. Since all three methods discussed 

here rely on non‐landslide pixels having a reasonable background coherence, we did not attempt to 

use X‐band data for our case study, due to the heavy vegetation cover in our target region. Whilst the 

higher temporal coherence of L‐band SAR may provide a significant advantage in vegetated regions, 

this may be negated if there is a long time between image acquisitions. When testing the ARIA 

method using L‐band imagery collected by the ALOS‐2 satellite system for the Gorkha earthquake, 

Yun et al. [21] found L‐band SAR to perform poorly in rural, vegetated areas. In order to obtain the 

two pre‐event and one co‐event images required for their method, Yun et al. [21] were required to 

use imagery spanning 7 months. Over this time, vegetated regions underwent considerable change, 

resulting in changes in coherence unrelated to landsliding or earthquake damage. Since the Gorkha 

earthquake occurred early in the lifespan of ALOS‐2, the pre‐event imagery acquired was not 

sufficient for the sibling identification required by the Bx‐S method presented here, so it could not be 

tested with L‐band SAR. However, for future events with more complete pre‐event image acquisition, 

the increased coherence of L‐band SAR in vegetated regions may increase the classification ability of 

SAR‐coherence‐based methods. Equally, these methods may perform even better with C‐band SAR 

for regions that are less densely vegetated than our case‐study area. 

4.6. Alternative Methods of Coherence Estimation 

The method we present here exploits the difference between a boxcar estimation of coherence 

and a sibling‐based estimation. Here we used the RapidSAR algorithm to calculate this sibling‐based 

estimate; however other methods of identifying sibling pixels have been put forward, e.g. SqueeSAR 

[43] and NL‐InSAR [42]. There may be advantages to other methods of sibling calculation that are 

worth exploring. For example, NL‐InSAR calculates siblings from a single SAR image. This would 

remove the need for a long time‐series of pre‐seismic imagery, which may not always be available, 

and would decrease the number of SAR images to be processed and stored. However, RapidSAR has 

several attributes that make it particularly well suited to our study. First, it is fully automated and its 

intended purpose of volcano monitoring means that it was designed to process imagery rapidly, 

making it suitable for our purpose of emergency response. Second, it allows additional SAR scenes 

to be incorporated as they are acquired. Third, unlike SqueeSAR, RapidSAR does not require sibling 

pixels to be interconnected. This allows siblings to be more dispersed through the search window, so 

that siblings of a landslide pixel are less likely to lie within the landslide.  

4.7 Application 

The data required for the production of the classification surfaces described in this study are 

available globally, albeit with varying temporal coverage. Two datasets are required: the SAR 

imagery and the DEM used to process it. The SRTM 1‐arcsecond DEM used here is a global product 
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available between 60° North and 56° South and is openly distributed [45]. SAR imagery is available 

from a variety of platforms but here we use Sentinel‐1 imagery which is acquired at regular intervals 

globally and is also openly distributed. The classification surfaces produced in this study could 

therefore be produced in most locations across the world following a landslide trigger event. 

It has been stressed in multiple studies that the speed at which information can be produced and 

disseminated is vital to its application [8,9]. The applicability of SAR‐derived landslide products in 

emergency response is therefore largely determined by the time taken to produce them. The ARIA 

team have demonstrated that damage proxy maps can be generated within 1 day of post‐event 

imagery being acquired. Although the new method we present here requires more SAR data to be 

processed, the majority of the processing steps can be performed while waiting for this post‐event 

image to be acquired. Preparation of the DEM, downloading pre‐event SAR imagery, processing this 

to obtain interferograms and calculating sibling locations can all be performed without the post‐event 

image. Once this image has been acquired, the final steps could be carried out within 1 day: 

downloading and processing the post‐event image, calculating boxcar and sibling‐based co‐event 

coherences and differencing these. Less time may be required for landslide events that affect a smaller 

region than the 2015 Gorkha earthquake. 

Exactly when these classifiers could be produced is therefore dependent on the acquisition of 

SAR imagery. The post‐event image used in this study was acquired on day 4 following the 

mainshock, meaning that a classification surface could have been produced by day 5. However, as is 

shown on Figure 1, imagery further east of Kathmandu was not acquired until day 10, meaning that 

it would take 11 days to form a complete classification surface for the affected area. Ascending data 

on track 85 were acquired 7 days following the mainshock and cover the entire affected area so that 

classification surfaces from these data could have been produced within 8 days. The frequency at 

which areas are imaged in SAR varies depending on location globally. The launch of Sentinel‐1b in 

2016 means that Sentinel imagery is now acquired with a 6‐ rather than 12‐day revisit time across 

Europe [17]. These data are freely accessible soon after acquisition. Other satellite constellations, such 

as ALOS‐2 or Cosmo‐Skymed may also provide imagery of affected areas. 

Possible uses for a SAR based map of relative landslide density can be illustrated using the case 

of the Nepal earthquake. Williams et al. [9] divide the emergency response into several phases each 

with different information requirements. In the first 3 days the ‘situational analysis’ phase aimed to 

identify, at a broad scale, the spatial extent and severity of the damage. It is conceivable for SAR 

products to be produced within this time window, although this would depend on the wait time for 

post‐event imagery. After this 3‐day period, the requirements of disaster managers begin to transition 

to more detailed information on specific areas of concern [9]. Based on our findings here, SAR‐

coherence methods alone would not be capable of mapping individual landslides but could still 

direct managers toward the areas that were most badly affected – especially if aggregated landslide 

density maps could be combined with pre‐existing population data. 

The Gorkha earthquake occurred at the end of April, meaning that the onset of the monsoon was 

expected around 2 months later. Since earthquake‐triggered landsliding correlates spatially with 

areas of ground weakened by shaking and since existing landslide deposits may be remobilised as 

debris flows, causing more damage, earthquake‐triggered landslide maps were used as input for 

predictive monsoon‐triggered landslide hazard maps [7]. A landscape‐scale landslide density map 

could have been used in this process and would have the advantage of being homogeneous, the 

whole area having been imaged by a single satellite. 

Finally, landslide density could be used in directing field investigations such as those carried 

out by Collins and Jibson [6], who targeted sites of potential landslide dams. Since landslide mapping 

was incomplete when they began their investigation, it was necessary to add target sites while the 

investigations were ongoing. The initial list of target sites was determined at the start of their field 

investigation, 32 days after the Gorkha mainshock, meaning that SAR products could easily have 

been made available during this time. 

Although here we have focussed on earthquake‐triggered landslides, SAR‐based approaches 

have as much or more potential in identifying monsoon‐ or typhoon‐triggered landslides. Since 
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rainfall events are generally accompanied by cloudy weather conditions which obstruct optical 

mapping, a SAR‐based classifier could be particularly advantageous. The ARIA team have released 

damage proxy maps for urban damage following typhoons in the USA, Tonga and Puerto Rico [20]. 

There are various factors, however, which could complicate the use of SAR products in mapping 

rainfall‐triggered landslides. In the case of typhoons, one such complication would be the damage to 

vegetation caused by the typhoon, which would be likely to decrease coherence, possibly leading to 

false positives. SAR coherence methods may prove unable to distinguish between landslides and 

damaged vegetation, although combination with SAR amplitude or other predictors might 

ameliorate this. Monsoon‐triggered landslides represent a different problem: since the trigger 

extends over several months, pairs of SAR images would contain both old and new landslides as well 

as reactivated or partially reactivated old landslides. The signals associated with each of these would 

be different, which might cause confusion, particularly if aggregating pixels containing several 

landslides triggered at different times. Landslides which pre‐date a SAR image pair and are stable 

would be expected to have a higher coherence than new landslides and possibly higher than the 

surrounding vegetation. 

5. Conclusions 

We have tested three potential SAR‐coherence‐based landslide classification methods at a range 

of resolutions against a manually mapped landslide inventory for events triggered by the 2015 

Gorkha, Nepal earthquake [2]. We have tested two classifiers that have previously been suggested to 

contain landslide information: absolute coherence and the ARIA method for urban damage proxy 

mapping. We have also presented a new method for landslide classification, in which the difference 

between boxcar and sibling‐based coherence (Bx‐S) is used as a classifier. Using ROC analysis, we 

showed that none of the methods tested here were able to identify landslides at a pixel‐by‐pixel (20 

m × 22 m) scale. However, all three classifiers were more successful when the resolution was 

coarsened by aggregating pixels, which corresponds to the real‐world application of classifying 

larger regions of high landslide density. Our Bx‐S method is more successful than existing SAR 

coherence methods, with an ROC of 0.77 for 300 m × 330 m aggregate pixels. This suggests that our 

new method may be able to provide useful and timely information on the large‐scale distribution of 

landslides following future triggering events, such as earthquakes, even under heavy cloud 

conditions that limit the applicability of optical satellites for this purpose.  
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Appendix A 

Figure A1a shows a map of pre‐seismic coherence (image pair 5 April 2015, 17 April 2015) for 

the region of Jharlang. An example of a slope along which pixels have been distorted is indicated, 

where the pixels are visibly elongate and the image appears striped. In order to identify these 

distorted pixels, we calculated the geographic area which contributed to each pixel in radar geometry. 

Across our study area, this pixel contributing area ranged between 0 and 19,000 m2. In contrast, each 
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multilooked pixel in geographic coordinates is around 400 m2 in size. We masked pixels with a 

contributing area above a given threshold. This threshold was incrementally lowered from 5000 m2 

to 2000 m2 to 1000 m2 (Figure A1b, c, d respectively). With the threshold set at 1000 m2, visibly 

distorted pixels were removed from the image (Figure A1d). We therefore did not lower the threshold 

further, as this would have removed data without justification. 

 

Figure A1 (a) Pre‐event coherence map for Jharlang with white arrow indicating distorted pixels. (b, 

c, d) The effect of masking pixels for which the contributing area was over 5000, 2000 and 1000 m2 

respectively 

Appendix B 

 The smaller area shown in Figure 10 before pixel aggregation. 
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Figure A2 (a) The percentage of each 10 × 10 aggregate pixel made up of landslide pixels. (b,c,d) The 

classifier value before aggregation for the surfaces produced by absolute, ARIA and Bx‐S methods 

respectively. Each surface has been normalised to range between 0 and 1 with 1 most likely to be a 

landslide. Colour bars are non‐linear, but linear between the white lines and labelled with the 

percentage of pixels across the whole area that lie in this linear range. The area shown corresponds to 

the smaller area shown in Figure 10 
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