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Abstract: Spatially explicit information on cropland use intensity is vital for monitoring land and 

water resource demands in agricultural systems. Cropping practices underlie substantial spatial and 

temporal variability, which can be captured through the analysis of image time series. Temporal 

binning helps to overcome limitations concerning operability and repeatability for mapping large 

areas and can improve the thematic detail and consistency of maps in agricultural systems. We here 

assessed the use of annual, quarterly, and eight-day temporal features for mapping five cropping 

practices on annual croplands across Turkey. We used 2,403 atmospherically corrected and 

topographically normalized Landsat Collection 1 L1TP images of 2015 to compute quarterly best-

pixel composites, quarterly and annual spectral-temporal metrics, as well as gap-filled eight-day 

time series of Tasseled Cap components. We tested 22 feature sets for binary cropland mapping, 

and subsequent discrimination of five cropping practices: Spring and winter cropping, summer 

cropping, semi-aquatic cropping, double cropping, and greenhouse cultivation. We evaluated area-

adjusted accuracies and compared cropland area estimates at the province-level with official 

statistics. We achieved overall accuracies above 90%, when using either all quarterly features or the 

eight-day Tasseled Cap time series, indicating that temporal binning of intra-annual image time-

series into multiple temporal features improves representations of cropping practices. Class 

accuracies of winter and spring, summer, and double cropping were robust, while omission errors 

for semi-aquatic cropping and greenhouse cultivation were high. Our mapped cropland extent was 

in good agreement with province-level statistics (r² = 0.85, RMSE = 7.2%). Our results indicate that 

71.3% (± 2.3%) of Turkey´s annual croplands were cultivated during winter and spring, 15.8% (± 

2.2%) during summer, while 8.5% (± 1.6%) were double-cropped, 4% (± 1.9%) were cultivated under 

semi-aquatic conditions, and 0.32% (± 0.2%) was greenhouse cultivation. Our study presents an 

open and readily available framework for detailed cropland mapping over large areas, which bears 

the potential to inform assessments of land use intensity, as well as land and water resource 

demands. 

Keywords: Land use intensity; land management; cropping intensity; agriculture; Turkey; spectral-

temporal metrics; composites; machine learning 
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Growing pressure on agricultural systems under rising requirements for sustainable production 

results in a growing need for land use intensity and land management datasets [1]. Spatially explicit 

information on land use intensity is crucial for tracking resource demands in the nexus of land, water, 

and food over space and time [2]. It is, therefore, crucial to develop mapping approaches that move 

beyond broad representations of cropland extent towards enabling the distinction of management-

driven cropland use intensity [3,4]. Better information on the areal extent and spatial distribution of 

cropping practices across large areas improves the estimation of current and future land and water 

resource demands [5–7]. 

The strong spatio-temporal variability of croplands and irregular clear-sky image acquisitions 

for optical data pose challenges for robust mapping of annual cropping practices [8]. Mapping efforts 

thus frequently relied on coarse-resolution imagery such as MODIS or AVHRR (500 m–8 km), for 

instance, in the context of cropping intensity [6,9,10] or irrigation [11,12]. Landsat(-like) medium 

spatial resolution data (10-30 m) represent cropland management more accurately [4,13], specifically 

in small-holder cropping systems [9]. Consequently, a variety of studies recently improved the 

remote-sensing-based characterization of cropland management practices, such as irrigation [14–16], 

field sizes [17], or selected crop types [18]. However, many studies target regional characterization of 

single management indicators, while large area mapping efforts trying to characterize various 

management practices remain scarce [4]. 

Major challenges for mapping cropping practices with medium resolution sensors stem from 

low revisit frequencies and resulting sparse and irregular observation densities. The Landsat sensor 

family has a nominal repeat frequency of 16 days at nadir. During times with two operational 

satellites, repeat coverage can be up to eight days, which can, however, be spatially and temporally 

fragmented, e.g., due to the failure of Landsat 7’s scan line corrector [19] or changes in long-term 

acquisition plans [20]. Higher repeat frequency can occur in lateral overlaps of two orbits [21]. 

However, cloud contamination largely reduces data availability on a pixel-level [22], limiting the 

large-scale applicability of traditional classification approaches, which relied on a manual selection 

of cloud-free single or multi-date imagery. Deriving temporally aggregated, (e.g., seasonal or annual) 

features from Landsat image time series can help to overcome such issues, and aid in improving the 

thematic detail, consistency, and quality of maps in agricultural systems [23–25]. Common techniques 

to generate standardized gap-free spectral features include pixel-based compositing [26–28], the 

computation of spectral-temporal metrics [29–31], as well as data fusion [32,33] or gap-filling 

techniques [34]. Such temporal features can be produced consistently for multiple periods and large 

areas [35]. Furthermore, they contain information on land surface phenology, which renders them 

suitable for mapping cropping practices across gradients of climate, topography, or land use intensity 

[36]. 

Land-surface phenology on annual croplands is particularly heterogeneous and dynamic, due 

to a variety of management-regimes. In water-scarce regions, for instance, growing cycles of 

cultivated lands are largely precipitation-driven. However, irrigation locally decouples cropland 

cultivation from precipitation-based restrictions in water availability. Consequently, the timing and 

amplitude of growing cycles of irrigated lands strongly deviate from the phenological cycles of 

rainfed crops [37,38]. Identifying the timing of phenological events relevant for characterizing 

different cropland management practices is a challenging task [39] and requires either regional expert 

knowledge or data-driven approaches to identify key phenological events in a spatially explicit 

manner [40]. This problem is further aggravated in the case of large area mapping, where diverse 

management regimes control for additional heterogeneity in the timing and number of growing 

cycles, as opposed to natural ecosystems, where climate or topography are primary drivers of shifts 

in phenology [27]. Additionally, the inter-annual variability of cropland management decisions, such 

as crop rotations, prohibits data pooling across multiple years, as can be used in more persistent 

environments such as forested ecosystems [41,42]. 

Turkey has been, and is, undergoing policy-driven agricultural intensification. In this context, 

land consolidation efforts increased productivity by reducing parcel fragmentation across the 

country [43], and the expansion of irrigation infrastructure fostered regional development through 
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increased agricultural production [44]. On the one hand, these policies boosted crop production over 

decades, ranking Turkey amongst the world´s leading producers of cereals and other industrial crops 

[45]. On the other hand, they also resulted in a diverse agricultural landscape, dispersed along 

gradients in climate and topography, with a strong inter-annual variability in management practices 

[46]. Furthermore, low irrigation water use efficiencies [45,46], as well as the limited availability of 

land and water resources require optimization of cropland management towards a higher resource 

use efficiency. In this context, spatially explicit data on cropping practices is of high value to 

understand past and current patterns and drivers of land use intensity and associated resource 

consumption.  

Growing information needs demand for accessible and operational methodologies, and 

analysis-ready data (ARD), defined as cloud-screened surface reflectance products delivered in 

regular tiles [47], or higher level time-series products [48]. Such data can enable large area cropland 

management mapping, independent of costly calibration efforts, which rely on ancillary ground data 

or large area characterization of vegetation phenology [4]. The Landsat archive is the longest 

uninterrupted global satellite dataset and thus provides an accessible and consistent data basis for 

deriving such information. In this study, we compare different approaches for Landsat time-series 

aggregation. We used consistently produced Landsat Collection 1 data and openly available 

processing frameworks for generating ARD to promote readily applicable data and methods for large 

area mapping at medium spatial resolution. The key aim of this paper is to present a set of 

scientifically sound and openly accessible good practice recommendations for operational national 

scale mapping of cropland use intensity, demonstrated using the case of mapping cropping practices 

across Turkey. Specifically, our objectives are to: 

 Test the performance of Landsat time-series binning methods for mapping cropping practices 

on annual croplands in Turkey. 

 Investigate the spatial patterns of cropping practices across Turkey. 

 Compile a set of good practice recommendations for Landsat-based mapping of cropping 

practices over large areas. 

2. Materials and Methods  

2.1. Study Area 

Located at the intersection of the European and Asian continent, Turkey´s geopolitical role in 

agricultural production and trade has persisted through centuries. Turkey covers an area of 783,000 

km². To date, roughly one-third of the country´s land is cultivated [46]. Due to strong biophysical and 

cultural gradients, Turkey´s agricultural lands comprise nine distinct agro-ecosystems that differ in 

biophysical characteristics, crop types, and cropping practices [46]. In 2015, Turkey´s cultivated lands 

included 15.7 Mha of annual cropland, plus an additional 4.1 Mha of temporary fallow land [49]. 

Cereals represent nearly two-thirds of the harvested land in Turkey, most notably wheat (35%), 

barley (12%), and maize (10%) [49]. Additionally, sugar beets (25%), potatoes (7%), sunflower (3%), 

cotton (3%), and pulses (2%) are grown. As extensive parts of the country have semi-arid to arid 

climate, irrigation is key for economically viable agricultural production [45]. Rainfed cultivation 

during spring and the first summer months is possible in most parts of the country. Contrarily, 

cultivation during the dry summer months requires irrigation for successful crop development in the 

water-limited regions of Turkey, like Central and South-Eastern Anatolia. Summer cropping in these 

regions is indicative of irrigation [50]. Irrigation is widespread and currently present on 4.9 Mha, 

being subject to further expansion and projected to reach 8.5 Mha by 2030 [46]. Seventy-eight percent 

of the irrigated land is irrigated with surface water, which is mostly applied through surface 

irrigation (92%), followed by sprinkler (6%) and drip (2%) irrigation [46]. However, national water 

use efficiency was below 50%, causing substantial water losses [46]. Furthermore, up to 55% of the 

area equipped for irrigation was not irrigated on an annual basis due to mismanagement, water 

shortages, and institutional barriers at the local level, reflecting underused investments into irrigation 
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infrastructure [45], which can cause strong spatio-temporal dynamics of rainfed and irrigated 

cropping, and thus to a high variability in land use intensity. 

2.2. Data Pre-Processing and Class Catalogue 

We downloaded 1,143 Landsat 7 ETM+ and 1,269 Landsat 8 OLI images for the year 2015 that 

cover our study area of 63 WRS-2 scenes. As we aimed for achieving high radiometric and geometric 

consistency, we used exclusively Landsat Collection 1 Level 1 Tier 1 precision terrain corrected (C1 

L1TP T1) images with a cloud cover of less than 80%. For conversion into topographically normalized 

surface reflectance, we performed atmospheric correction and topographic normalization using a 

modified C-correction for topographic normalization to avoid topography-driven misclassification 

[51,52]. Generation of ARD, i.e., cloud and cloud shadow masking, radiometric correction 

(atmospheric, topographic, BRDF and adjacency effect correction), and data cubing (reprojection to 

ETRS89-LAEA projection and tiling into a 30 km x 30 km grid) were performed with the Framework 

for Operational Radiometric Correction for Environmental Monitoring (FORCE v. 1.1, freely 

available at http://force.feut.de), based on the algorithm described in Reference [53].  

For classification, we included several auxiliary features. We used the 1 Arc-Second (~30 m) 

digital elevation model acquired by the Shuttle Radar Topography Mission [54] to derive elevation 

and hillslope. Additionally, we generated per-pixel latitude and longitude in geographic coordinates 

to account for large-scale variability in land cover characteristics. 

We used a hierarchical class definition, first distinguishing annual cropland from other land 

cover and land use classes. In a next step, we classified annual croplands into five distinct classes of 

cropping practices, which characterize the annual cropland system of Turkey and relate to its use 

intensity (Table 1). The hierarchical approach enables the evaluation of the cropping practice maps 

independently of the respective cropland mask used. The areal extent of the cropping practice classes 

was expected to vary strongly. While wheat production in Turkey covers extensive areas, greenhouse 

cultivation only accounts for a marginal share of the cropland area [46,49]. Accurately capturing small 

classes in large area mapping poses additional challenges related to training data collection and 

validation [55]. However, due to our objective to characterize the annual crop production system in 

a holistic manner, as well as the relevance of classes like semi-aquatic cropping and greenhouse 

cultivation regarding land and water resource consumption, we decided to integrate these classes in 

our class catalog. Examples of the spectral-temporal dynamics of our target classes are available in 

Appendix B. 

Table 1. Description of the class catalog. 

Category 
Cropland 

classes 
Description  

Annual 

cropland 

Winter and 

spring 

cropping 

Start of the green-up possible in 2014, season peak around 

April/May 2015, followed by harvest. 
 

Summer 

cropping 

Summer crops, start of the season in 2015, peak of the season 

between June and August, harvest in 2015. 
 

Semi-aquatic 

cropping 

Phenology similar to summer crops, with visible flooding of 

parcels before green-up.  
 

Double 

cropping 

Two growing cycles and harvests within 2015, comprising 

winter and spring as well as summer cropping. 
 

Greenhouse 

cultivation 

Spectrally bright due to foil cover with transmitted vegetation 

signal, which shows clear seasonality. Single or multiple seasons 

are possible.  

 

Other - 

Includes deciduous and evergreen forests and shrublands with a 

closed canopy, open woodland and shrubland canopy with 

exposed soil background, plantations and perennial crops, 

natural, semi-natural and managed grasslands, marginal lands, 
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such as bare soils without distinct phenology as well as built-up 

areas, wetlands, and surface water. 

2.3. Generation of Temporal Features 

We used all available clear-sky observations (CSO) for temporal binning of all images into gap-

filled eight-day, quarterly, and annual temporal features. While previous studies relied on annual 

temporal binning, we here introduced the quarterly binning as an intermediate trade-off between a 

high temporal resolution and an observation availability, which is sufficient for producing near gap-

free coverage. The gap-filled eight-day temporal window represents an ideal case, where clear 

observations are available on a near-weekly basis. We derived temporally aggregated features using 

time-series gap filling, best-observation compositing, as well as the computation of spectral-temporal 

metrics. All higher-level products were generated using FORCE v.1.1. 

2.3.1. Best-Observation Composites  

We used 2,403 atmospherically corrected and topographically normalized, cloud-screened 

Landsat Collection 1 L1TP T1 images to compute four best-observation composites [26] across 

Turkey. To identify the best observation, we conducted a parametric scoring which considered the 

temporal distance to the target day of the year, as well as the distance to clouds and cloud shadows 

and a haze score as parameters [27]. We used all available imagery from each quarter of 2015 to 

produce composites for the target days 15 February, 17 May, 16 August, and 16 November for the 

blue, green, red, near infrared, and both shortwave infrared bands, summing up to 24 features.  

For quality checking and interpretation, we derived compositing flags containing information 

on the quality, number of CSOs per pixel, the acquisition date of the best observation, the difference 

between the acquisition date and target day of the year (DOY), as well as the sensor. Additionally, 

we computed the CSO count for the entire year, considering all areas free of clouds, cloud shadows, 

snow, and ice, which were not compromised by radiometric saturation. 

2.3.2. Spectral-Temporal Metrics 

We generated eleven band-wise spectral-temporal metrics for each quarter and the entire year 

using the CSOs available in the respective period. We computed the minimum, 25th percentile, 

median, 75th percentile, and maximum, mean spectral reflectance as well as the inter-quartile-range, 

range, and standard deviation of all reflectance values during each period. Additionally, we 

calculated the skewness and kurtosis of the distribution of reflectance values in the respective period. 

In total, the eleven spectral-temporal metrics for each quarter and spectral band sum up to 264 

quarterly features, plus 66 spectral-temporal metrics from all observations of 2015.  

2.3.3. Equidistant Time Series of Tasseled Cap Components 

The Tasseled Cap transformation represents a linear transformation of the Landsat spectral 

bands into components which express selected physical scene characteristics [56]. We applied the 

Tasseled Cap transformation based on the coefficients for Landsat surface reflectance [57] on the 

CSOs to generate an equidistant eight-day interval time series of the Tasseled Cap Brightness, 

Greenness, and Wetness components. We used a data-density weighted ensemble of three Radial 

Basis Function (RBF) convolution filters for smoothing and gap-filling of the time series [34]. We 

chose to produce a time series of three Tasseled Cap components over a time series of standard 

vegetation indices since the Tasseled Cap transformation integrates the entire spectral information 

content of the six Landsat bands. While the vegetation signal is emphasized by the Tasseled Cap 

greenness component, the Tasseled Cap wetness, and brightness components potentially aid in the 

classification of our target classes such as semi-aquatic croplands and greenhouses.  

The RBF approach is an ensemble technique, which combines multiple kernels to reduce noise 

and outliers in a time series while enabling to capture the variability of the signal in managed systems. 

We defined an ensemble of Gaussian kernels with σ1 = 8, σ2 = 16, and σ3 = 32 days, respectively and 
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applied a kernel-cutoff parameter that restricted the absolute width of the Gaussian kernels to ± 21, 

41, and 82 days relative to the target date. These kernels are relatively narrow compared to previous 

studies with a focus on natural ecosystems [34,58] and provide a trade-off between data gap reduction 

and the description of dynamic events, such as harvests. We finally aggregated the three kernels by 

calculating a data-density weighted mean, which gives preference to kernels with a higher data 

density for the final estimation. 

The procedure resulted in a near gap-free eight-day time-series of three Tasseled Cap 

components for the year 2015, which consisted of 135 features. We further calculated the mean, 

standard deviation, minimum, and maximum of the Brightness, Greenness, and Wetness time series 

for the entire year, resulting in 12 additional features. 

2.4. Training Data & Classification 

We collected training polygons with a minimum extent of nine pixels (0.8ha), using the 

composites, an Enhanced Vegetation Index (EVI) time series for the years 2014–2016 (produced 

following the methods for the Tasseled Cap time series), and high-resolution imagery available in 

Google Earth. We collected 1,925 training polygons in the different agricultural regions, comprising 

the Middle North, Aegean, Thrace, Mediterranean, Northeast, Southeast, Black Sea, Middle East, and 

Middle South regions [46], to capture the heterogeneous management regimes across Turkey. We 

reduced the number of training samples to 15% of the pixels in each polygon, with a minimum of 

two and a maximum of 30 pixels, resulting in 10,340 training points (of which 50.2% represented 

annual croplands).  

We compiled 22 different subsets of the 505 input features (Table 2). We categorized the feature 

subsets based on the employed temporal binning. The annual scheme refers to annual spectral-

temporal metrics, combinations of composites and spectral-temporal metrics from all quarters of the 

year, all quarterly composites, all quarterly spectral-temporal metrics, or annual statistics derived 

from the Tasseled Cap time series. The bi-quarterly scheme refers to six combinations of two 

quarterly composites and spectral-temporal metrics; whereas the quarterly feature sets include 

composites and spectral-temporal metrics from one quarter only. For the quarterly and annual 

scheme, we further combined all quarterly feature subsets with annual spectral-temporal metrics. For 

the weekly scheme, we used the eight-day time series of Brightness, Greenness, and Wetness, as well 

as the time series together with the annual Tasseled Cap statistics. We used Random Forest 

classification models [59] for classification of each feature subset using n = 500 trees and included the 

square root of the number of features at each split. This procedure was used to separately produce 

binary cropland maps, as well as cropping practice maps for the study region. 

Table 2. Feature subsets and abbreviations, as well as total number of features, and number of features 

including the four auxiliary variables (latitude, longitude, elevation, and hillslope). 

Scheme Feature set Model abbreviation 
N 

feat.  

Annual 

All features ALL 505 

Annual spectral-temporal metrics ANNUAL_STM 70 

Quarterly composites & quarterly 

spectral-temporal metrics 
QRT_STM_CMP 292 

Quarterly spectral-temporal metrics QRT_STM 268 

Quarterly composites QRT_CMP 28 

TC statistics TC_STATS 16 

Bi-quarterly 

Q1 + Q2 composites & spectral-

temporal metrics 
Q1Q2_STM_CMP 148 

Q1 + Q3 composites & spectral-

temporal metrics 
Q1Q3_STM_CMP 148 

Q1 + Q4 composites & spectral-

temporal metrics 
Q1Q4_STM_CMP 148 
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Q2 + Q3 composites & spectral-

temporal metrics 
Q2Q3_STM_CMP 148 

Q2 + Q4 composites & spectral-

temporal metrics 
Q2Q4_STM_CMP 148 

Q3 + Q4 composites & spectral-

temporal metrics 
Q3Q4_STM_CMP 148 

Quarterly 

Q1 composites & spectral-temporal 

metrics 
Q1_STM_CMP 76 

Q2 composites & spectral-temporal 

metrics Q2_STM_CMP 76 

Q3 composites & spectral-temporal 

metrics 
Q3_STM_CMP 76 

Q4 composites & spectral-temporal 

metrics 
Q4_STM_CMP 76 

Quarterly & 

annual 

Q1 composites & spectral-temporal 

metrics & annual spectral-temporal 

metrics 

Q1_STM_CMP_ANN_STM 142 

Q2 composites & spectral-temporal 

metrics & annual spectral-temporal 

metrics 

Q2_STM_CMP_ANN_STM 142 

Q3 composites & spectral-temporal 

metrics & annual spectral-temporal 

metrics 

Q3_STM_CMP_ANN_STM 142 

Q4 composites & spectral-temporal 

metrics & annual spectral-temporal 

metrics 

Q4_STM_CMP_ANN_STM 142 

Weekly 

8-day TC time series & annual TC 

statistics 
WKL_TC_STATS 154 

8-day TC time series WKL_TC 139 

2.5. Validation Data & Accuracy Assessment 

Assuming user´s accuracies of 0.85 for all classes and targeting a standard error of the overall 

accuracy of 1% regarding binary cropland mapping and 2% for the cropping practice mapping, we 

determined a required sample size of 1,275 for the binary and 391 for the cropping practices map, 

respectively [60]. We performed a stratified allocation of the reference samples due to high 

imbalances in the extent of specific land uses. We produced a preliminary classification based on all 

quarterly spectral-temporal metrics and composites, which represented the five cropping practice 

classes plus nine sub-classes not related to annual croplands. This map provided the strata for 

implementing a stratified random sampling, allowing us to allocate samples in diverse types of non-

cropland areas, such as grasslands, shrublands, or urban environments. We calculated the confidence 

intervals of accuracies and area estimates for four different sample allocation schemes and 

determined an allocation scheme with a class-wise minimum of 50 samples, and the remainder was 

distributed according to class weights derived from the preliminary map as a suitable allocation [55]. 

The final sample comprised 1,447 validation points, 465 of which were annual cropland samples (166 

samples for winter cropping: 106 for summer cropping, 63 for semi-aquatic cropping, 67 for double 

cropping, and 63 for greenhouse cultivation).  

We pre-compiled relevant information for each validation point, containing image chips of pixel-

based composites displayed in false-color RGB at three different zoom levels, pixel spectra of the 

point locations, and an EVI time series spanning 2014–2016 (see Appendix B for examples). Based on 

this phenological information, we determined the class label for each validation sample. We further 

considered the pixel extent of each sample in Google Earth to verify the label against high-resolution 

imagery from 2015, or the closest acquisition year available. This was particularly useful to increase 
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the certainty for separating cropland from grassland and for identifying greenhouses. Two trained 

interpreters crosschecked 25% of the samples, finding interpreter agreement in more than 95% of all 

cases. Reference points where class labels could not be determined with high confidence were 

removed. We predicted the reference data points for each classification model and computed area-

adjusted overall accuracies as well as area-adjusted class accuracies [55]. 

3. Results 

3.1. Clear Sky Observation Density 

We registered an average of 20.42 CSOs per pixel (minimum 0; maximum 62) during the study 

period. A spatially explicit visualization of CSOs (Figure 1) revealed data-scarce areas in the Eastern 

parts of the Black Sea region, while observation density in the across-track overlap areas in South 

Eastern Anatolia (southeast Turkey, alongside the Syrian border) was the highest. Time windows 

covering single quarters of the year showed few gaps, except for the first quarter, where 9% of the 

study area remained unobserved (Table 3).  

  

Figure 1. Study area and clear-sky observation count for 2015. Overlay represents the 63 Landsat 

WRS-2 scenes covering Turkey. 

Table 3. Landsat clear sky observation statistics for Turkey, 2015. 

Quarter  

Mean 

CSO 

count 

Maximum 

CSO count 

No 

data  

Area with 

three or more 

CSOs  

Area with 

five or more 

CSOs  

Area with 

ten or more 

CSOs  

1 (Jan–

Mar) 

3.14 16 9.17% 57.92% 23.78% 0.67% 

2 (Apr–

Jun) 

6.37 22 1.09% 91.66% 70.13% 15.58% 

3 (Jul–

Sep) 

10.70 24 0.07% 99.48% 96.74% 55.74% 

4 (Oct–

Nov) 

6.61 22 1.12% 91.59% 73.91% 18.51% 
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3.2. Classification Accuracies 

We calculated the area-adjusted overall accuracies as well as their 95% confidence intervals for 

each binary cropland and cropping practice classification for all 22 input feature sets. The binary 

classification was robust (Error! Reference source not found., black signature) with overall accuracies 

exceeding 92% throughout, whereas variations in accuracy values were apparent for the cropping 

practice classification (Figure 2Error! Reference source not found., grey signature). 

Generally, features generated from annual data outperformed the seasonally restricted 

approaches, while the low accuracies of TC_STATS and ANNUAL_STM suggest that retaining 

seasonal information in temporal aggregates through seasonal binning is essential. We found no 

differences in overall accuracy when using only composites or only spectral-temporal metrics. 

Combining both, however, improved the overall accuracy. In the category of bi-quarterly inputs, 

involving data from the spring and summer months, performed well. Similarly, the single-quarter 

classifications showed that spectral-temporal metrics and composites from the summer quarter were 

sufficient for achieving overall accuracies above 85%. Using spectral-temporal metrics and 

composites from the data-scarce first and fourth quarters, however, yielded the lowest accuracies. 

Adding feature sets from other seasons generally increased accuracy. Including geographic location 

(latitude, longitude) and topography (elevation, slope) as auxiliary variables increased the overall 

accuracies by 1%–3% throughout, indicating their benefit for large area mapping.  

  

 

Figure 2. Area adjusted overall accuracies for binary annual cropland classification (black) and 

cropping practice classification (grey), for 22 feature subsets. Error bars indicate 95% confidence 

intervals, vertical dashed line marks 90% accuracy. 

Four models exceeded 90% overall accuracy in both binary cropland and cropping practice 

mapping (Table A1–A4). These were ALL (all features), QRT_STM_CMP (quarterly composites and 

spectral-temporal metrics), WKL_TC (eight-day time series of three Tasseled Cap components), and 
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WKL_TC_STATS (eight-day time series of three Tasseled Cap components complemented with four 

annual statistics). All these feature sets retain temporal information throughout the different seasons. 

Class wise user´s and producer´s accuracies of these four best models showed robust mapping of 

spring and winter cropping, summer cropping, and double cropping, whereas semi-aquatic cropping 

and greenhouse cultivation showed low producer´s accuracies (Figure 3Error! Reference source not 

found.).  

 

Figure 3. Area-adjusted producer´s (black) and user´s accuracies (grey) for the selected models. Error 

bars indicate 95% confidence intervals. Vertical dashed lines mark 90% accuracy. 

We based the following analyses on model WKL_TC_STATS, because the cropland extent was 

closest to official statistics (see Section on Cropland Area Estimates), and the spatial consistency was 

found to be the highest. 

3.3. Evaluating Cropland Maps 

Cropland area estimates of the maps with the highest accuracies ranged between 10.73 Mha and 

11.72 Mha (± 0.8 Mha; Table 4), thereby being substantially lower than reported statistics of cropland 

area extent, with a country total of 15.7 Mha [49]. 

Table 4. Error-adjusted cropland area estimates for Turkey in 2015. See Table 2 Error! Reference 

source not found. for abbreviations of model names. 

Feature subset Estimated cropland (Mha) 95% Confidence interval (Mha) 

ALL 11.41 0.81 

QRT_CMP_STM 10.73 0.83 

WKL_TC 11.36 0.77 

WKL_TC_STATS 11.72 0.79 

We compared province-level (NUTS3) cropland proportions (%) from the binary cropland map 

WKL_TC_STATS, CORINE Land Cover 2012 [61] as well as the GFSAD30 cropland extent product 

with the baseline year 2015 [62] with reported statistics of the sown area for the year 2015 [49] (Figure 

4). Linear regression revealed high correlation of the cropland extent estimates from 

WKL_TC_STATS (r² = 0.85) and CORINE 2012 (r² = 0.84), whereas the correlation with estimates from 

GFSAD30 was comparatively low (r² = 0.64). Regression coefficients revealed the systematic 

underestimation of cropland area for our cropland mask (slope of regression: β = 1.1), although it was 

much lower than the overestimation in CORINE 2012 (β = 0.7) and GFSAD30 (β = 0.5). For a more 

detailed comparison of the province-level estimates, we investigated the accuracy (bias), precision 

(repeatability) and uncertainty (root mean squared error) of mapped versus reported cropland for all 

three products. We found lower accuracy compared to CORINE 2012 (i.e., a higher bias), but higher 

precision (i.e., higher consistency of the prediction) and similar uncertainty (Table 5Error! Reference 

source not found.). Our cropland area estimates had the highest precision of all products investigated 

here, and their uncertainty was similar to estimates obtained from CORINE 2012. However, the 

overestimation of cropland in GFSAD30 as well as CORINE 2012, as compared to the national 



Remote Sens. 2019, 11, 232 11 of 26 

 

statistics, might partly be related to the product class definitions, which include temporary fallow 

croplands. 

Table 5. Model performance and summary statistics of linear regressions with NUTS3-level (n = 81), 

using cropland extent statistics as a dependent, and mapped cropland extent from WKL_TC_STATS, 

CORINE 2012, and GFSAD30 products as the independent variable. Accuracy, precision, and 

uncertainty in thousand hectares. 

Model Accuracy Precision Uncertainty r² 

WKL_TC_STATS 5.45 4.70 7.20 0.85 

CORINE 2012 -2.60 6.54 7.04 0.84 

GFSAD30 -21.84 12.38 25.11 0.64 

 

Figure 4. Comparison of province level fraction of cropland derived from maps and statistics from 

Turkish Statistical Institute at NUTS3-level (provinces; n = 81). Cropland extent mapped from 

WKL_TC_STATS (left), CORINE 2012 (center), and GFSAD30 (right). Grey line shows 1:1 line, the red 

dashed line represents linear regression line of the mapped area against statistics. 

We overlaid the binary cropland masks resulting from the four best classifications, finding 

agreement in 93.2% of the area, corresponding to 11.3% of cropland, and 81.9% of the other class. 

Disagreement across cropland masks (Figure 5Error! Reference source not found., first column) 

occurred on parcel boundaries, within seasonally inundated wetlands and lakes, and in small-scale, 

fragmented or low-intensity cropping systems. 

A comparison of the map products further demonstrated how these differences unfolded 

spatially and revealed some advantages of the presented cropping practice map (Figure 5Error! 

Reference source not found.). For instance, we captured parcels of temporary fallow croplands (e.g., 

Figure 5 A, B, C). Furthermore, our mapping methods are pixel-based and thus not restricted to a 

minimum mapping unit, which allowed for capturing small parcels in fragmented landscapes (e.g., 

Figure 5 C). Additionally, we found very high agreement between our semi-aquatic cropping class 

and CORINE´s rice field class (Figure 5 D, E). The thematic detail of our maps allowed for identifying 

greenhouse cultivation (Figure 5 C) or the distinction between winter, summer, and double cropping 

in intensively irrigated systems (Figure 5 F). 
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Figure 5. Image subsets (rows A to F) of cropland mask overlay (first column), cropping practice 

product (second column), CORINE 2012 (third column) and GFSAD30 product (fourth column). 

Center coordinates of each subset indicated to the left.  
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3.4. Spatial Patterns of Cropping Practices 

Error-adjusted class area estimates across the four models were consistent (Figure 6Error! 

Reference source not found.). According to the selected model (WKL_TC_STATS), spring and winter 

crops cover 71.3% (± 2.3%), and summer crops 15.8% (± 2.2%) of the total cropland area. Double 

cropping occurred on 8.5% (± 1.6%), and semi-aquatic crops were cultivated on 4.0% (± 1.9%) of the 

cropland area. Greenhouses accounted for only 0.32% (± 0.2%) of the cropland area, corresponding 

to an estimated 36,752 ha, which is well in line with the 38,605 ha reported in official statistics [49]. 

 

Figure 6. Error-adjusted area estimates of cropping practice classes (from left to right: winter/spring 

cropping, summer cropping, double cropping, semi-aquatic cropping, greenhouse cultivation)across 

the four best classification models (see Table 2Error! Reference source not found. for abbreviations). 

Error bars indicate 95% confidence intervals. 

We visually identified regional differences in cropping practices across Turkey (Figure 7Error! 

Reference source not found.). Semi-aquatic cropping, i.e., paddy rice cultivation, was prevalent in 

Sinop province in the Black Sea region (Figure 7 Error! Reference source not found.A) and the Evros 

river valley alongside the Turkish-Greek border. Here, misclassifications of summer crops on the 

unflooded parcel-boundaries were apparent (Figure 7 Error! Reference source not found.B). Distinct 

patterns of summer and double cropping occurred in the river valleys flowing into the Aegean Sea, 

most notably in the provinces of Aydın, Maniza, and İzmir (Figure 7 Error! Reference source not 

found.C). Central parts of Anatolia contained large-scale cropping systems (Figure 7 Error! 

Reference source not found.E). Agglomerations of greenhouses characterized the agricultural 

landscape along the Mediterranean coastline, e.g., East of Antalya (Error! Reference source not 

found.D, F). We found intensive cultivation patterns in the Şanlıurfa and Mardin provinces of the 

South-East Anatolia Project irrigation scheme (Error! Reference source not found.G). The cropping 

system in Eastern Anatolia showed heterogeneous parcel sizes and management systems, consisting 

of winter, summer, and double cropping (Error! Reference source not found.H, I).  

Province-level (NUTS-3) shares of annual cropland by province showed spatial hotspots of 

cropland in the Northwest, Central Anatolia, and South-Eastern Anatolia (Error! Reference source 

not found.). Fractions of cropping practices in 2015 revealed the dominance of spring and winter 

cropping across Turkey. Fifty-three provinces were dominated (>60%) by winter and spring 

cropping. Summer cropping was the second most common cultivation strategy and distributed 

across almost all provinces, with spatial clusters along the Aegean Sea and the Eastern Mediterranean 

Sea. Double cropping occurred on less than 9% of croplands and clustered spatially in South-East 

Anatolia, e.g., Mardin (40%) and Şanlıurfa (21%), in the river valleys of the Aegean Sea region, e.g., 

İzmir (37%), and parts of the Black Sea region where cropland was limited. Semi-aquatic cropping 

was relevant in Edirne (21%) along the Greek border and Sinop (21%) in the Central Black Sea region. 

Greenhouse cultivation clustered along the Mediterranean coastline, especially Antalya (17%) and 

İçel (10%). 
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Figure 7. National-scale cropping practice map for the year 2015 (upper section), based on eight-day 

time-series of Tasseled Cap Brightness, Greenness, and Wetness including four annual statistics 

(WKL_TC_STATS). Black rectangles indicate location of subsets A to I (lower section). 
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Figure 8. Province-level (NUTS-03) share of annual cropland on total province area (top left) and 

shares of cropping practices in percent of all cropland (remainder). 

4. Discussion 

The openly accessible Landsat archive provides unseen opportunities for informing land use 

intensity assessments over large areas. The presented study generated a set of good practice 

recommendations for mapping cropping practices over large areas, considerations for transferring 

the presented approaches into eras with different sensor constellations, uncertainties related to our 

approach, as well as insights concerning Turkey´s cropland management regimes. 

4.1. Good Practice Recommendations  

We highlight that the binning of dense image time series within pre-defined temporal windows 

is an efficient technique to produce widely consistent image features over space and time. Overall, 

the robustness, high classification accuracies and spatial consistency of our maps demonstrate the 

applicability of currently operational sensor constellations for mapping cropping practices across 

environmental and management gradients. We were able to identify some patterns when testing 

several temporal binning schemes and methods, which translate into a set of good practice 

recommendations. 

First, retaining the seasonal information contained in the intra-annual time series is of the utmost 

importance for mapping cropping practices. Our tests revealed that annual binning into spectral-

temporal metrics or time series statistics performed poorly, as the phenological information is lost 

(Figure 2Error! Reference source not found.). In line with a recently presented approach on crop type 

mapping [63], increasing the temporal resolution of the included features had a positive impact on 

classification accuracies. We thus suggest narrow, e.g., near-weekly binning wherever data 

availability, allows for satisfactory spatial coverage during cloud-prone seasons. Alternatively, 

quarterly binning provided a good trade-off between temporal detail and observation availability 

that allowed for producing robust results on national, up to continental scales [25].  
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Second, summer composites and spectral-temporal metrics produced satisfactory overall 

accuracies for Turkey. Thus, images from June to September essentially describe the spectral-

temporal characteristics of our target classes. However, other seasonal windows might be more 

important when applying the approach in regions with different climate or management regimes. 

Similar to a study focusing on continental scale cropland mapping [25], classification accuracies 

increased when features from all quarters were included. Doing so presents an alternative to data-

driven identification of the phenologically relevant season for accurate class discrimination or expert 

knowledge acquisition, as the first is challenging to implement and the latter is commonly not 

available in a spatially explicit manner across large areas.  

Third, including auxiliary features describing geographic location and topography improved 

mapping accuracy. In line with other studies [64], we thus recommend the integration of such 

features in large area mapping as a common practice.  

Our mapping efforts were relatively inexpensive. Two trained interpreters conducted the 

collection of training data and labeling of validation points in 320 work hours. Overall computation 

times were below two weeks for pre-processing, computation of all temporal features, and 

classification. However, we performed all computations using multi-core processing, which reduced 

processing times substantially. Storage space requirements were highest for pre-processed Landsat 

data (2.6 TB), composites and spectral-temporal metrics (0.8 TB), as well as Tasseled Cap time series 

and statistics (0.4 TB), but can be further reduced via image compression. In cases where processing 

and storage infrastructure is not available, processing can alternatively be performed using readily 

available ARD on cloud processing platforms [65]. The map product presented in this paper is 

available online (PANGAEA data publisher: https://pangaea.de/), 

4.2. Temporal Transferability 

The applicability of individual methods is dependent on the operational sensor constellation 

during the period of interest. For past decades, highly irregular inter-annual acquisition densities in 

the Landsat archive pose challenges for long-term mapping approaches [28]. Seasonally restricted 

spectral-temporal metrics are promising tools for mapping land use across large areas in past decades 

[31]. Average clear-sky observation density across Turkey between 1984 and 2017 is rarely below 

three observations during summer, suggesting that efforts targeting the mapping of cropping 

practices in Turkey over past decades are potentially worthwhile. However, these demand analyses 

of the quality of spectral-temporal features under scenarios of scarce and temporally disperse 

observations.  

On the contrary, mapping cropping practices in the years past 2015 will benefit from novel 

sensor constellations with higher revisit frequency, which increases the probability of cloud-free 

acquisitions. Improvements of sensor integration [66,67] and automated image processing [68] now 

enable the combined use of intra-annual Landsat 8 and Sentinel 2A+B acquisitions for agricultural 

mapping applications [63]. Increased observation density will likely improve the mapping of 

cropland management interventions, such as harvests, or flooding of semi-aquatic crops. Recent 

advances also suggest the applicability of radar data to further supplement mapping efforts at high 

thematic detail [69], which can also be temporally aggregated for large area applications [70]. 

4.3. Uncertainties and Limitations 

The products generated here meet common quality criteria regarding classification accuracy, 

and the high spatial consistency and thematic detail of these maps have the potential to satisfy the 

growing need for land use intensity datasets covering large areas [1,2]. However, remaining 

uncertainties relate to underestimated cropland extent and the omission of semi-aquatic cropping. 

We underestimated cropland extent by 25%, mostly due to confusion between spring crops and 

grasslands, as both classes represent herbaceous vegetation layers underlying precipitation-driven 

phenology and management interventions. Differences in cropland area estimates can be reduced by 

employing adaptive thresholds for classification probability, in order to match higher quality 

cropland area estimates, such as province-level statistics [18]. The omission of semi-aquatic cropping 
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occurred due to the confusion with summer cropping, owing to strong phenological similarities. This 

insight supports the hypothesis that image availability during the flooding stage is crucial for 

accurate representation of semi-aquatic crops, such as paddy rice [71].  

While our study aims at the characterization of annual croplands, spatially explicit information 

on grasslands and perennial croplands is essential for a better characterization of agricultural land 

use intensity [1]. In 2015, permanent pastures accounted for 14.6 Mha and perennial croplands for 3.3 

Mha in Turkey [49], highlighting the need for detailed characterization of perennial crop systems to 

improve the understanding of the entire production system. However, the mapping of perennial 

croplands and grasslands poses various challenges from a remote sensing perspective [72–74]. These 

arise from heterogeneous class characteristics (crop type, grass species, phenology, planting density, 

irrigation, and mowing frequency) and the lack of datasets that allow for discriminating natural from 

managed grasslands, as well as cropped plantations from timber plantations. 

4.4. Cropland Intensity and Water Resources in Turkey  

Cropland management strongly determines agricultural water requirements [75,76]. We show 

that vast areas of annual croplands exist in semi-arid parts of Turkey, where total annual precipitation 

ranges between 200mm and 600mm, with near-zero precipitation during summer and particularly 

high evaporation rates [46]. While we show that spring and winter cropping, covering extensive areas 

of winter cereals with relatively low water requirements, dominate in Turkey [46,77], our results 

reveal that 28% of the national cropland area was cultivated during summer in 2015 (including 

summer, double, and semi-aquatic cropping). The recent expansion of irrigated agriculture, coupled 

with high irrigation water requirements led to a 48% increase in agricultural water requirements 

between 1992 and 2008 [78]. In the case of the South-East Anatolia Project, the expansion of irrigated 

cotton cultivation successfully boosted the regional economy [79], yet this occurred at the cost of 

drastic water consumption increases [50,80].  

Current irrigation water use in Turkey is excessive and inefficient [45]. Generally, low water 

prices due to a lack of volumetric pricing schemes foster excessive water use [81]. Irrigation 

efficiencies in Turkey commonly do not exceed 50%, mostly due to the prevalence of surface 

irrigation, and high conveyance losses [82]. While the Turkish government envisions a 73% expansion 

of irrigated agriculture until 2030 [83], doing so without drastic institutional, agronomic, and 

engineering changes poses a threat to the national water resource base. Climate change further 

aggravates crop water deficits across Turkey [84], causing yield declines on rainfed and irrigated 

croplands [85,86]. The adoption of more efficient irrigation techniques offers water savings potential 

in the region [87], whereas saved water can be re-allocated and enable irrigation in other production 

systems [83,88]. Improving water use efficiency through reduced conveyance and evaporative losses 

is thus imperative to foster more sustainable production and should be of the utmost priority of 

planning authorities to prevent water scarcity and maintain environmental flow requirements in 

future intensification pathways [89]. 

5. Conclusions 

We based our approach exclusively on openly available datasets (Landsat Collection 1 imagery) 

and algorithms (FORCE v1.1) that allow for streamlining pre-processing chains and producing 

analysis-ready datasets. We thereby demonstrated the benefits of openly accessible satellite image 

datasets and pre-processing frameworks for improving our understanding of agricultural land use 

intensity across large areas. This study provides a robust mapping framework to disentangle annual 

cropland management, using Turkey as a case study.  

The fine spatial and temporal detail of the resulting maps allow for tracking cropping practices 

at 30 m spatial resolution and at annual intervals. Our maps can reveal areas of low cropland use 

intensity, such as rainfed cultivation on small parcels or fallow croplands, as opposed to intensity 

hotspots, such as double-cropped areas, flood-irrigated croplands, or areas with greenhouse 

cultivation. This is a substantial improvement compared to statistics at aggregated units, or other 

map products of reduced thematic detail, or coarser spatial or temporal resolution. The detail of our 
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maps has the potential to inform stakeholder-related processes and assessments of land and water 

resource consumption over large areas. 

We formulated good practice recommendations for binning Landsat time-series into temporal 

features for wall-to-wall characterization of cropping practices. We recommend binning into 

quarterly or finer temporal windows, wherever data availability is sufficient. We achieved the best 

classification results by using quarterly composites and spectral-temporal metrics, or gap-filled time 

series of Tasseled Cap components as input features. Auxiliary features on topography and 

geographic location improved classification accuracies throughout. Knowledge of regional 

phenological characteristics of the target classes is essential. However, we generally recommend the 

integration of features from multiple seasons, when difficulties in identifying key phenological 

windows prevail.  

The generic temporal binning of all available clear sky observations into eight-day or quarterly 

time windows was a successful strategy in a Mediterranean setting but is likely applicable in climatic 

zones with a good data availability in the growing season. In this light, transferring our approach to 

other regions and eras requires investigating the effect of observation density on the consistency of 

temporal features, to determine minimum data requirements and subsequent trade-offs in mapping 

accuracies. The presented methods are potentially applicable across yearly time series to get insights 

into the inter-annual cropland management dynamics and to derive efficiency indicators such as 

irrigation ratios. Complementing the presented methods with techniques for detecting parcel sizes 

(e.g., References [17,90]) could enable the long-term evaluation of governmental land consolidation 

policies. Such information could ultimately improve our understanding of long-term developments 

of cropland management, and thus land and water resource demand at the regional to continental 

scale.  
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Appendix A 

Table A1: Confusion matrix for variable subset "ALL". Cells populated with probabilities according 

to Olofsson et al. (2014). WC: winter cropping, SC: summer cropping, AC: semi-aquatic cropping, DC: 

double-cropping, GH: greenhouse cultivation. 

    Reference 

  

  WC SC AC DC GH 

C
la

ss
if

ic
a

ti
o

n
 WC 0.6953 0.0085 0.0042 0.0127 0.0000 

SC 0.0129 0.1528 0.0258 0.0110 0.0018 

AC 0.0000 0.0014 0.0050 0.0001 0.0000 

DC 0.0047 0.0071 0.0000 0.0544 0.0000 

GH 0.0000 0.0001 0.0000 0.0000 0.0021 

Table A2: Confusion matrix for variable subset "QRT_CMP_STM". Cells populated with adjusted 

probabilities according to Olofsson et al. (2014). WC: winter cropping, SC: summer cropping, AC: 

semi-aquatic cropping, DC: double-cropping, GH: greenhouse cultivation. 

    Reference 

  

  WC SC AC DC GH 

C
la

ss
if

ic
a

ti
o

n
 WC 0.6996 0.0085 0.0042 0.0085 0.0000 

SC 0.0166 0.1620 0.0184 0.0037 0.0037 

AC 0.0000 0.0014 0.0050 0.0001 0.0000 

DC 0.0083 0.0154 0.0000 0.0426 0.0000 

GH 0.0000 0.0001 0.0000 0.0000 0.0021 

Table A3: Confusion matrix for variable subset "WKL_TC". Cells populated with adjusted 

probabilities according to Olofsson et al. (2014). WC: winter cropping, SC: summer cropping, AC: 

semi-aquatic cropping, DC: double-cropping, GH: greenhouse cultivation. 

    Reference 

  

  WC SC AC DC GH 

C
la

ss
if

ic
at

io
n

 WC 0.6953 0.0085 0.0042 0.0127 0.0000 

SC 0.0129 0.1473 0.0313 0.0129 0.0000 

AC 0.0000 0.0015 0.0049 0.0001 0.0000 

DC 0.0047 0.0083 0.0000 0.0520 0.0012 

GH 0.0000 0.0000 0.0000 0.0002 0.0020 

Table A4: Confusion matrix for variable subset "WKL_TC_ST". Cells populated with adjusted 

probabilities according to Olofsson et al. (2014). WC: winter cropping, SC: summer cropping, AC: 

semi-aquatic cropping, DC: double-cropping, GH: greenhouse cultivation. 

    Reference 

  

  WC SC AC DC GH 

C
la

ss
if

ic
a

ti
o

n
 WC 0.6953 0.0085 0.0042 0.0127 0.0000 

SC 0.0129 0.1436 0.0313 0.0166 0.0000 

AC 0.0000 0.0016 0.0048 0.0001 0.0000 

DC 0.0047 0.0047 0.0000 0.0556 0.0012 

GH 0.0000 0.0000 0.0000 0.0001 0.0020 
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Appendix B 

 

Figure B 1: Validation pixel protocol for class spring / winter crop. 

 

Figure B 2: Validation pixel protocol for class summer crop. 
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Figure B 3: Validation pixel protocol for class semi-aquatic crop. 

 

Figure B 4: Validation pixel protocol for class double cropping. 
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Figure B 5: Validation pixel protocol for class greenhouse. 
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