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Abstract: Accurate and continuous monitoring of the production of arid ecosystems is of great 

importance for global and regional carbon cycle estimation. However, the magnitude of carbon 

sequestration in arid regions and its contribution to the global carbon cycle is poorly understood 

due to the worldwide paucity of measurements of carbon exchange in arid ecosystems. The 

Moderate Resolution Imaging Spectroradiometer (MODIS) gross primary productivity (GPP) 

product provides worldwide high-frequency monitoring of terrestrial GPP. While there have been 

a large number of studies to validate the MODIS GPP product with ground-based measurements 

over a range of biome types. Few studies have comprehensively validated the performance of 

MODIS estimates in arid and semi-arid ecosystems, especially for the newly released Collection 6 

GPP products, whose resolution have been improved from 1000 m to 500 m. Thus, this study 

examined the performance of MODIS-derived GPP by compared with eddy covariance 

(EC)-observed GPP at different timescales for the main ecosystems in arid and semi-arid regions of 

China. Meanwhile, we also improved the estimation of MODIS GPP by using in situ meteorological 

forcing data and optimization of biome-specific parameters with the Bayesian approach. Our 

results revealed that the current MOD17A2H GPP algorithm could, on the whole, capture the 

broad trends of GPP at eight-day time scales for the most investigated sites. However, GPP was 

underestimated in some ecosystems in the arid region, especially for the irrigated cropland and 

forest ecosystems (with R2 = 0.80, RMSE = 2.66 gC/m2/day and R2 = 0.53, RMSE = 2.12 gC/m2/day, 

respectively). At the eight-day time scale, the slope of the original MOD17A2H GPP relative to the 

EC-based GPP was only 0.49, which showed significant underestimation compared with 

tower-based GPP. However, after using in situ meteorological data to optimize the biome-based 

parameters of MODIS GPP algorithm, the model could explain 91% of the EC-observed GPP of the 

sites. Our study revealed that the current MODIS GPP model works well after improving the 

maximum light-use efficiency (εmax or LUEmax), as well as the temperature and water-constrained 

parameters of the main ecosystems in the arid region. Nevertheless, there are still large 

uncertainties surrounding GPP modelling in dryland ecosystems, especially for desert ecosystems. 

Further improvements in GPP simulation in dryland ecosystems are needed in future studies, for 

example, improvements of remote sensing products and the GPP estimation algorithm, 

implementation of data-driven methods, or physiology models. 
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1. Introduction 

Drylands, including arid and semi-arid ecosystems, cover 30%–45% of the Earth’s land surface 

[1,2], and play an important role in the global carbon cycle and future carbon sequestration [3,4]. 

Accurate and continuous monitoring of terrestrial ecosystem production in arid and semi-arid 

regions is of great importance to improve the understanding of the role of arid terrestrial 

ecosystems in the global carbon cycle. However, the worldwide paucity of measurement of carbon 

exchange in arid ecosystems has hindered the full understanding of the magnitude of carbon 

sequestration and the accurate prediction of the carbon cycle [5,6].  

Terrestrial gross primary production (GPP) is the largest component of the global carbon cycle 

and is essential to understand and quantify the contribution of terrestrial ecosystems to the global 

carbon cycle [7]. Satellite remote sensing provides continuous and temporally repetitive observation 

of land surfaces and has advanced tremendously over the past few decades that has become a 

useful tool in estimating the terrestrial ecosystem production across broad temporal and spatial 

scales. Production efficiency models (PEMs), developed for predicting global GPP with remote 

sensing, have been widely used to quantify the spatial and temporal variation of terrestrial 

ecosystem productivity [8–10]. In the absence of widespread ground observations, remote sensing 

models are also commonly used to estimate dryland CO2 exchange [11,4]. Previous data and remote 

sensing models comparisons have only included a few dryland sites [12]. Thus, there is a need to 

understand how well commonly used remote sensing models capture the magnitude and 

inter-annual variability of measured CO2 exchange [13]. 

Since 2000, satellite-based GPP estimation have increasingly used data from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) due to its continuous worldwide availability [8]. 

The MODIS GPP algorithm (i.e., MOD17) is a type of PEM, which provides high frequency 

worldwide observations of GPP [14,15]. To date, MODIS has issued multiple versions of GPP 

[14,16]. Currently, the MOD17 product has been updated to Collection 6 (C6), which has improved 

the algorithm parameters and forcing data of previous collections [15,17], as the spatial resolution 

has increased from 1000 m to 500 m. A large number of studies have validated the capacity of 

MODIS GPP products with eddy covariance (EC) measurements across multiple biomes, such as 

forests [18,19], shrublands [20], grasslands [21,22], savanna [23], croplands [24], and across biomes 

[12,25–27]. However, most of these studies validated previous versions of MODIS GPP products 

(i.e., Collection 4 and 5). Comprehensive evaluation of the performance of MODIS GPP C6 products 

in arid regions of China remains limited to this date [1]. 

Previous studies showed no consistent results in the validation of Collection 4 and 5 of MODIS 

GPP products. MODIS GPP may underestimate at some sites, such as at cropland sites [24], 

overestimate at some low productivity sites [25,28], or agree well [26] with tower-based GPP. 

Meanwhile, the MODIS GPP Collection 6 products (i.e., MOD17A2H) also tend to overestimate 

GPP in alpine meadows of the Tibetan Plateau [22] and underestimate flux-derived GPP at most 

sites across the globe [27]. However, because of inadequate observations in arid regions compared 

with other regions, it remains uncertain whether these biases also exist in other ecosystems in arid 

regions for the improved Collection 6 GPP products. Therefore, it is necessary to validate the 

performance of the latest version of MODIS products in arid regions. 

The overall uncertainty of carbon flux modelling includes uncertainty of input variables, 

model structure, and model parameters [29], which can significantly impact carbon flux at regional 

scales. Several attempts have been made to address the uncertainties of the PEM algorithm 

[26,27,30,31]. For the MOD17 products, inaccuracies in the parameterization of model parameters 

(such as maximum light-use efficiency (εmax or LUEmax)) were found to be one of the most important 

factors attributed to the bias of MODIS GPP [12,20]. The current MOD17 algorithm uses the 
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constant maximum LUE and other parameters for one ecosystem [18], which is not suitable for 

variability of climate conditions and ecosystems. Previous studies found that the LUE parameter in 

the MOD17 algorithm was underestimated [26]. Several attempts have been made to calibrate the 

maximum LUE parameters and to improve the performance of MODIS GPP estimation [24,26,32]. 

However, most of these studies overlooked the potential impacts of other model parameters’ 

uncertainty on the estimation of GPP, e.g. water-limited factors, which are important factors for 

GPP estimation, especially for ecosystems in the arid region.  

Research community have established that by adjusting the key parameters of the model can 

improve GPP estimation using MODIS GPP algorithm, which can compensate for the errors 

introduced by the model structures [23]. A model–data fusion approach provides powerful tools for 

optimizing the model parameters and quantifying the influence of uncertainties, and is being 

increasingly used to estimate the parameters of ecological models [33–38]. Model–data fusion 

approaches include Bayesian and non-Bayesian approaches. Non-Bayesian approaches, such as 

global optimization algorithms, can efficiently determine the optimal parameter solutions by 

minimizing (or maximizing) objective functions [36], but cannot quantify uncertainty. In contrast, 

the Bayesian approach can be employed to update the parameter distributions when new 

information becomes available [37], and produce reliable estimates of parameter and predictive 

uncertainty [38]. Some past studies have strengthened the importance of parameters estimation in 

carbon cycle models [32,39], but have mainly focused on single site to constrain the parameters of a 

given plant functional type (PFT), in addition, few studies have assessed the variability of 

parameters within a PFT [40]. For MODIS GPP validation, since the PFT parameters in the MOD17 

algorithm are obtained from flux towers worldwide, they are not appropriate for specific regions 

such as the arid regions of China. 

Thus, this study aims to examine the performance of newly released MODIS GPP C6 products 

and MOD17 algorithms in predicting GPP in a typical arid region of China. The overall goals of this 

study are to: (1) Evaluate the model performance of the MODIS GPP Collection 6 products at 

eight-day to annual time scale across various ecosystem types in a typical arid region of China; (2) 

analyze the uncertainty of remote sensing models in simulating GPP in typical arid regions; and (3) 

quantify the parameter uncertainties in GPP estimation for the main ecosystem types in arid regions 

of China by using a Bayesian approach with calibration of maximum LUE and water and 

temperature-limited factors. This research will contribute to the development and improvement of 

GPP estimates in arid regions.  

2. Materials and Methods  

2.1. In Situ Meteorological Observations and Carbon Flux Data  

The fluxes and meteorological data used in this study are mainly based on a flux observation 

network located in a typical inland river basin: The Heihe River Basin (HRB) in the arid region of 

Northwest China. The HRB (37.7°–42.7° N, 97.1°–102.0° E), second largest inland river basin in 

China, is located in the middle part of the Hexi corridor and covers an area of approximately 

1,432,000 km2 [41]. The HRB is a unique region in China and can be viewed as an epitome of the 

arid region of western China for its varied distributed landscapes of alpine meadow, wetland–

oasis–desert and natural oasis–desert ecosystems from upstream to downstream [42,43]. We 

constructed a comprehensive flux observation network in the whole river basin to investigate the 

complexity of hydrological and ecological processes in the arid region (Figure 1). In this study, we 

compiled 12 EC flux sites covering 3 grassland sites, 3 desert grassland sites, 3 cropland sites 

(including a wetland site), and 3 forest sites, which almost covered the major plant function types 

(PFTs) and typical ecosystem types in the arid region of an inland river basin. Figure 2 shows the 

meteorological observations of all the flux tower sites over HRB including precipitation, air 

temperature (T), and vapor pressure deficit (VPD). A large variability of climate conditions exist 

within and across the species. The specific locations and related information of the sites are shown 

in Table 1.  



Remote Sens. 2019, 11, 225 4 of 22 

 

 
Figure 1. Locations of the flux observation sites over Heihe River Basin (HRB). 

Table 1. Characteristics of the flux observation network sites used in this study. MAT (ºC) 

represented mean annual air temperature, MAP (mm) represented mean annual accumulated 

precipitation, and PET (mm) represented mean annual potential evapotranspiration. 

Site Code  PFTs Year Used 
Vegetation 

Cover 

Longitu

de 
Latitude 

MAT 

(ºC) 

MAP 

(mm) 

PET 

(mm) 

A’rou(ARZ) Grassland 2013–2016 alpine grassland  38.0473 100.4643 −0.29  444.70 636.18 

Dashalong(DSL) Grassland 2013–2016 alpine meadow 38.8399 98.9406 −3.91  314.43 698.07 

Yakou(YKZ) Grassland 2015–2016 alpine meadow  38.0142 100.2421 −4.68  500.79 653.16 

Huazhaizi(HZZ) Desert steppe 2012–2016 desert steppe 38.76519 100.3186 8.89  139.68 590.93 

Gobi(GBZ) Desert steppe 2012–2015 desert steppe 38.91496 100.3042 9.07  102.25 575.72 

Luodi(LDZ) Desert steppe 2013–2015 desert steppe 41.9993 101.1326 12.32 24.80 727.68 

Daman(DMZ) Cropland 2012–2016 maize  38.85551 100.3722 6.93 135.70 828.04 

Nongtian(NTZ) Cropland 2012–2016 cantaloupe 42.0048 101.1338 9.39  35.55 727.68 

Shidi(SDZ) Cropland 2012–2016 reed 38.97514 100.4464 9.19  119.9 1249.35 

Huyanglin(HYL) Forest 2013–2015 
populus 

euphratica 
41.9928 101.1236 10.33 26.00 922.91 

Hunhelin(HHL) Forest 2013–2016 mixed forest 41.9903 101.1335 10.04  35.53 1043.34 

Sidaoqiao(SDQ) Forest 2013–2016 tamarix forest 42.0012 101.1374 10.06  37.13 977.95 
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Figure 2. Plots of monthly accumulated precipitation, monthly averaged air temperature (T) and 

monthly averaged vapor pressure deficit (VPD) over HRB. 

The open-path eddy covariance (OPEC) system was used to measure carbon and water vapor 

fluxes in the flux observation network. The OPEC system at each site consists of a 3D sonic 

anemometer (CSAT-3/Gill, Campbell Scientific Instruments Inc., USA/Gill, UK) and an open path 

infrared gas analyzer (Li-7500/7500A, Licor Inc., USA). The meteorological variables were measured 

simultaneously at each site including air temperature, rainfall, solar radiation, photosynthetically 

active radiation (PAR), relative humidity and soil moisture. VPD was calculated using measured 

relative humidity and actual vapor pressure. The meteorological data were measured at automatic 

weather stations at every 10 min interval, which were carefully checked for quality and summed 

into 30 mins and daily timescales. The raw EC measurements of 10 Hz data were processed into 

half-hourly flux data using the flux processing software Eddypro 

(http://www.licor.com/env/products/eddy_covariance/software.html) developed by LI-COR 

Biosciences (Lincoln, NE, USA). The flux data processing steps included spike detection, coordinate 

rotation, time-lag correction, coordinate rotation, sonic virtual temperature correction, 

frequency-response correction, and density correction [44,45]. Then, the flux data were gap-filled 

using the marginal distribution sampling (MDS) method and partitioned into GPP and ecosystem 

respiration (Reco) following the flux partitioning algorithms from the REddyProc package [46].  

2.2. MODIS Datasets 

The MODIS data used in this study include MODIS GPP data (MOD17A2H products), FPAR 

data (MOD15A2H products), and Surface Reflectance data (MOD09A1 products) with Collection 6 

at 500m spatial resolution were downloaded directly from the Oak Ridge National Laboratory 

Distributed Active Center (ORNL DAAC) website. FPAR is the fraction of photosynthetically active 

radiation (400–700 nm) absorbed by green vegetation, which is a critical component of the MODIS 

GPP algorithm. To correct inferior values caused by the effects of clouds and aerosols, we 

reconstructed the MODIS FPAR time series data with Savizky–Golay filter algorithm [47]. 

Meanwhile, to validate the performance of the MODIS FPAR data in the study area, we observed 
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the actual FPAR data of cropland and desert grassland sites in HRB using AccuPAR (METER 

Group, Inc., Pullman, USA) during the growing seasons of vegetation in 2012 [43], and then 

compared the observations with the MOD15A2H FPAR data at corresponding sites. In addition, we 

also used the MODIS surface reflectance data to derive vegetation indices, such as the normalized 

difference vegetation index (NDVI). For the site of NTZ, due to the growing season of cropland (i.e. 

cantaloupe) is short, the desert or low vegetation land cover was identified in the MOD15A2H 

product, and thus we calculated the FPAR from NDVI data following the empirical formula of: 

FPAR = 1.24 × NDVI – 0.168 [48].  

2.3. Description of MOD17A2H Algorithm 

The MOD17A2H algorithm is based on light-use efficiency (LUE) approach [49,50], which 

provides global GPP estimates of 8 day temporal and 500 m spatial resolution [15]. The MODIS 

GPP product is calculated from the following equation: 

GPP = ε��� × 0.45 × SW��� × FPAR × f(T���) × f(VPD) (1) 

where εmax is the maximum LUE obtained from the Biome-specified Parameters Look Up Table 

(BPLUT) on the basis of vegetation type. The BPLUT contains values specifying minimum 

temperature and VPD limits, specific leaf area and respiration coefficients for the standard land 

cover classes [48]. SWrad is shortwave solar radiation of which 45% is photosynthetically active 

radiation (PAR), FPAR is the fraction of PAR absorbed by vegetation and the scale factors f(Tmin) 

and f(VPD) reduce εmax under unfavorable conditions of low temperature and high VPD. The 

forcing data such as SWrad, Tmin and VPD in the MOD17A2H GPP product were implemented by 

the Global Modeling and Assimilation Office (GMAO) Reanalysis data. The MODIS GPP algorithm 

is described in detail in previous literature [12,15,18].  

2.4. Parameter Optimization and Uncertainty Analysis 

The current MOD17 BPLUT is too general for local regional application [20]. The same set of 

parameters was applied indiscriminately to diverse types of the same ecosystems, introducing large 

uncertainties for the simulation of GPP in the arid region. To improve the accuracy of the GPP 

estimation in desert–oasis–alpine ecosystems in the arid region, we calibrated the parameters of the 

MOD17 model based on in situ flux tower observations using Bayesian model-data fusion approach. 

The model parameters were calibrated against GPP time series from the flux tower measurement 

network through a Bayesian data model synthesis [33,38]. According to Bayesian theory, posterior 

probability density functions (PDFs) of model parameters () given the existing data (D), denoted 

P(|D), can be obtained from prior knowledge of the parameters and information generated by 

comparison of simulated and observed variables, and can be described as:  

P(|D) =
P()P(D|)

P(D)
 (2) 

where P(D) is the probability of observed GPP and P(D|) is the conditional probability density of 

observed GPP with prior knowledge, also called the likelihood function for parameter .  

Given a collection of N measurements, the likelihood function (L) can be expressed as: 

L = �
1

√2��
�

(�����)�

��

�

���

 (3) 

where � represents the standard deviation of the data-model error, �� represents the ith of � 

measurements, and �� is the model-derived estimates of a measurement. 

In our study, we assumed the parameter priors are uniform, and the posterior PDFs for the 

model parameters were generated from prior PDFs P() with observation data by a Markov chain 

Monte Carlo (MCMC) sampling technique [33]. Herein, the Metropolis–Hasting algorithm [51,52] 

was adopted to generate a representative sample of parameter vectors from the posterior 
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distribution. We ran the MCMC chains with 50,000 iterations each, and regarded the first 15,000 

iterations as the burn-in period for each MCMC run. All accepted samples from the runs after 

burn-in periods were used to compute the posterior parameter statistics of the models. 

In this study, the MOD17A2H GPP algorithm contains 5 parameters: Maximum light-use 

efficiency (εmax or LUEmax), temperature-constrained factors (Tmin_min, Tmin_max,) and the 

water-constrained factors (VPDmin, VPDmax). The lower and upper bounds of εmax (0.3–3.0 

gC/m2/day/MJ APAR) were determined from the range of εmax used in PEMs [9,15,53]. Following 

the related References [8,15,50,54], we specified the initial bounds of these parameters: Tmin_min (°C), 

Tmin_max (°C), VPDmin (Pa) and VPDmax (Pa) as [−35,−2], [6,30], [60,1000], and [1500,6500], respectively.  

2.5. Experiment Configuration and Validation 

The original MOD17A2H GPP products used the GMAO Reanalysis data as the driving 

metrological database, and calculated the GPP with the biome based parameters look up table on a 

global scale. To validate and improve the performances of the MODIS GPP estimations and 

quantify the uncertainty of the MODIS GPP simulation algorithm (MOD17 model), we replaced the 

satellite-derived and meteorological inputs in the MOD17 model and compared the modeled GPP 

estimates with flux tower observations with the following experiment configurations: (1) We firstly 

assessed the performance of original MOD 17A2H GPP product at spatial resolution of 500m with 

the tower based GPP. The results of the model validation, in this study, is called GPP_MODIS; (2) 

we used in situ meteorological data to run the MOD17 algorithm to understand the influence of 

meteorological inputs (i.e. incoming solar radiation, minimum temperature and vapor pressure 

deficit) on GPP modelling rather than the GMAO Reanalysis dataset, we called this GPP_Insitu; 

and (3) we compared the performances between the calibration of one parameter only (εmax) and 

calibration of all parameters of the MOD17 model to examine the sensitivity of the water and 

temperature-limited parameters on GPP estimation. The results are called GPP_LUEopt and 

GPP_Fiveopt, respectively. To understand the effects of parameter uncertainty on GPP simulation, 

we compared the calibrated MOD17 model algorithm with in situ meteorological inputs from the 

flux tower network. Similar to GPP_Insitu, GPP_LUEopt, and GPP_Fiveopt were also calculated 

using the in situ meteorology data. However, for GPP_LUEopt, we only optimized the parameter of 

εmax by Bayesian approach and other parameters used the default BPLUT parameters in the MOD17 

algorithm. Whereas, for GPP_Fiveopt we optimized all the five parameters using the Bayesian 

approach.  

2.6. Statistical Analyses and Model Evaluation  

We firstly calculated the daily values of EC-based GPP and then aggregated to the eight-day 

and annually values for seasonal and yearly GPP validation. To evaluate the performance of the 

MOD17A2H GPP model, we compared the modeled GPP with the flux tower-estimated GPP both 

in 8-day and annual time steps. We extracted the eight-day composite MODIS C6 GPP product 

(MOD17A2H) and the other MODIS products (e.g. MOD15A2H and MOD09A1 products) from the 

pixels centered on the flux towers, and compared the MODIS GPP product with the EC-based GPP 

observations. 

The model performance (i.e. differences between simulated and tower-based GPP) were 

quantified by using the coefficient of determination (R2), root mean squared error (RMSE), and 

relative RMSE (rRMSE):  

RMSE = �
1

�
�(����,� − ����,�)�

�

���

 (4) 

rRMSE =
1

����,�
�������

× �
1

�
�(����,� − ����,�)�

�

���

 × 100 (5) 
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Where, Ysim and Yobs represent the simulated and observed GPP data, respectively, and n is the total 

number of samples. All the statistical analyses and results presentation are performed in Matlab 

R2016b software (Mathworks, Natick, MA, USA).  

3. Results 

3.1. Evaluation of MODIS GPP Products and MOD17 Algorithm in the Arid Region 

3.1.1. Site-Specific Evaluation of MODIS GPP Products and MOD17 Algorithm 

The eight-day EC flux tower GPP (GPP_obs) was compared with the results of MOD17A2H 

GPP (GPP_MODIS), GPP simulated with the in situ meteorology forcing data (GPP_Insitu), and 

GPP simulated with optimized maximum LUE parameter (GPP_LUEopt) and with optimized all 

five parameters (GPP_Fiveopt). As illustrated in Figure 3a, the overall eight-day MOD17A2H GPP 

products were significantly underestimated when compared with the EC-observed GPP. The RMSE 

between MOD17 products and in situ flux observations of all sites was 1.80 gC/m2/day, while R2 

was 0.71 and the slope of the model was 0.49, which means the model could only contribute 71% of 

the tower-observed GPP. As shown in Figure 3b, when we used the in situ meteorology data to 

simulate the MOD17 model, a better correlation between simulation and observation was found. 

The model could explain 79% of the observation (the slope was 0.43, R2 was 0.79), with a large 

biases close to that of MOD17A2H products. However, the modeled GPP still underestimate as 

compared to the observed GPP, which means that the meteorology forcing data were not the main 

reasons for the underestimation of GPP. By contrast, when we optimized the maximum LUE 

parameter (Figure 3c), a significant improvement of model performance for all sites was seen, with 

R2= 0.86, RMSE = 1.01 gC/m2/day, rRMSE = 6.99%, and the slope of the regression lines was closer to 

the 1:1 line, which signifies the importance of the LUE parameter in GPP modelling. Furthermore, 

as we optimized all parameters, a better performance of the model occurred. Almost all the points 

were close to the 1:1 line (Figure 3d), with R2 = 0.91, RMSE = 0.81 gC/m2/day, and rRMSE = 5.59%, 

which indicates the best performance in these simulations. 
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Figure 3. Comparisons of eight-day gross primary productivity (GPP) of MOD17A2H products and 

GPP simulations by MOD17 model with the flux tower GPP for all sites. Eight-day GPP scatter plots 

of the EC-observed GPP and (a) the original MOD17A2H products; (b) in situ meteorology forcing 

data; (c) only LUE optimized results; and (d) all parameters optimized results. The units of RMSE 

and rRMSE are gC/m2/day and %, respectively. 

As we accumulated the observed and simulated GPP at a yearly timescale for every site, a 

significant underestimation of MOD17A2H GPP products also existed (Figure 4), which were 

similar to the results of the eight-day time scale. On an annual time scale, the simulated GPP 

showed a generally good agreement with the tower-observed GPP across all sites with R2 = 0.69, 

RMSE = 347.31 gC/m2/y and rRMSE = 60.48% (Fig. 4a) A better relationship was found between the 

modeled GPP and tower-observed GPP (R2 = 0.73). The model was improved by using in situ 

climate forcing data. However, the modeled GPP was still underestimated as compared with 

observation. Moreover, the modeled GPP was significantly improved as we optimized the model 

parameters (Figure 4c and 4d). The modeled GPP was closer to the observed GPP (almost all points 

close to the 1:1 line), and all five parameters optimization results were better than for LUEmax 

parameter optimized only with R2 of 0.87 and 0.92, respectively. The rRMSE was 23.93% and 19.55%, 

respectively, which signifies the importance of optimizing the temperature and water-constrained 

factors in arid regions.  
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Figure 4. Comparisons of annual GPP of MOD17A2H products and GPP simulations by MOD17 

model with the flux tower GPP for all sites: (a) Original MOD17A2H products; (b) in situ 

meteorology forcing data; (c) only LUE optimized results; and (d) all parameters optimized results. 

The units of RMSE and rRMSE are gC/m2/y and %, respectively. 

3.1.2. Biome-Specific Evaluation of MODIS GPP Product and MOD17 Algorithm 

The MOD17A2H GPP products and the other three model estimated GPP based on MOD17 

algorithm were compared with the flux-derived eight-day time scale of GPP values for various 

biome types (Figure 5). We divided the original grassland into two types, grasslands, and desert 

grasslands, because of the large diversities in species and climate conditions in these sites. As 

shown in Figure 5, the original MOD17A2H GPP products were significantly underestimated in 

grassland, cropland and forest ecosystems, but not in the desert ecosystems. A good correlation 

between MOD17A2H GPP products and EC-observed GPP is illustrated in grassland ecosystems 

(R2 = 0.82), followed by the cropland ecosystems (R2 = 0.80) and forest ecosystems (R2 = 0.53), while 

the weakest was in desert ecosystems (R2 = 0.42). In addition, the slope of the linear regression for 

the scatter plot can also revealed the biases between MOD17A2H GPP and tower-observed GPP. 

We can see the slope of linear regression at the forest ecosystems is far from the 1:1 line, which 

demonstrates the largest biases between MOD17A2H GPP and the tower based GPP, followed by 

those of the cropland ecosystems, then the grassland and desert ecosystems. Therefore, it indicates 

that larger biases existed in most ecosystems in the arid regions of China, especially for the forest 

and cropland ecosystems. As we used the in situ forcing data, we did not find significant 

improvement for all biome types, and the simulations of GPP forced with in situ data in most 

ecosystems were still underestimated. However, as we optimized the parameters of the MOD17 

model, the GPP simulation results were improved significantly in most ecosystems. The scatter 

points of modeled GPP and EC-measured GPP were distributed closely around the 1:1 line, 

indicating that the GPP simulation results can be improved after the parameter optimization of 

LUEmax and other parameters in most ecosystems in the arid region. However, a larger bias still 
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existed even after parameter optimization. The impacts of parameter optimization on GPP 

simulation of desert ecosystems were less, indicating that it is difficult to effectively simulate the 

GPP in desert ecosystems in the current MOD17 model.  

 

Figure 5. Comparison between eight-day GPP of MOD17A2H products and GPP simulations by 

MOD17 model with the flux tower GPP for the major ecosystems including: (a) Grassland; (b) 

cropland; (c) desert steppe; and (d) forest. The unit of RMSE is gC/m2/day. The blue points represent 

original MOD17A2H products; green points represent in situ meteorology forcing data; pink points 

represent only LUE optimized results; and red points represent all parameters optimized results. 

3.1.3. Site-Specific Evaluation of MODIS GPP Products and MOD17 Algorithms 

The flux tower-observed GPP were compared with the original MOD17A2H GPP and GPP 

estimated from the MOD17 model with in situ meteorology forcing data (GPP_Insitu), LUE 

optimized (GPP_LUEopt) and five optimized parameters (GPP_Fiveopt) (Figure 7 and Table 2). 

Figure 6 illustrates the scatter plots between EC GPP and simulated GPP at the eight-day time scale 

at all sites. From the slope of linear regression for the scatter plot in Figure 6, most of the slope values 

were less than 1.0, which revealed the MOD17A2H GPP in most of the sites were obviously 

underestimated, as compared with the flux tower-observed GPP (Figure 6), except for the three 

desert grassland sites, where MODIS GPP was close to the observed GPP in most cases. However, 

relatively large biases existed in the desert sites. While all sites of MODIS GPP were underestimated 

except the desert sites, a good correlation between MOD17A2H GPP and tower-observed GPP was 

shown in grassland and cropland sites (coefficients of determination were greater than 0.7), followed 

by forest and desert ecosystems. After modelling GPP using in situ climate data, a better correlation 

between modeled GPP and observed GPP occurred in most sites. However, there were still 
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apparently underestimations in most sites, which means the forcing data were not the main reason 

of the underestimation of GPP. Instead of the forcing data, the inappropriate BPLUT parameters 

were the main source of the uncertainty of GPP simulation. After the optimization of LUE and other 

parameters in the MOD17 model, GPP in most sites was improved significantly. Meanwhile, the 

performance of optimization of five parameters was better than that of only optimization of the LUE 

parameter. As shown in Table 2 and Figure 6, good performance of GPP simulation was observed in 

DMZ, ARZ, and SDZ (R2 were greater than 0.9). However, the MODIS GPP showed a moderate 

performance in capturing the corresponding GPP simulation of desert ecosystems. Overall, the 

current MODIS GPP model correctly simulated the dynamics of GPP at most sites in the arid region. 

After the parameter optimization, the coefficients of determination were improved apparently, and 

the RMSE of most sites was less than 1 gC/m2/day.  

Table 2. A summary of the performances of the MOD17 algorithm (GPP_MODIS) and the in situ 

metrological data forced GPP, LUEmax parameter optimized GPP (GPP_LUE), and five parameters 

optimized GPP (GPP_Fiveopt). GPP_LUE and GPP_Fiveopt were estimated from the in situ climate 

data. In the GPP_Insitu and GPP_LUE algorithms, the default values for model parameters were 

used in MOD17 for the original land cover types and optimal parameter values for the optimization 

approach. 

 GPP_MODIS GPP_Insitu  GPP_LUE GPP_Fiveopt 

 R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

ARZ 0.85 1.13 0.92 1.58 0.92 1.58 0.92 0.82 

DSL 0.79 1.01 0.86 1.18 0.85 0.74 0.82 0.59 

YKZ 0.72 0.41 0.76 0.30 0.76 0.58 0.78 0.65 

HZZ 0.38 0.42 0.40 0.32 0.40 0.53 0.40 0.54 

GBZ 0.37 0.28 0.41 0.27 0.41 0.60 0.42 0.68 

LDZ 0.50 0.44 0.73 0.41 0.73 0.59 0.72 0.61 

DMZ 0.86 3.43 0.94 3.69 0.94 1.27 0.96 0.96 

NTZ - - 0.63 2.30 0.55 1.82 0.63 1.42 

SDZ 0.85 1.55 0.88 1.76 0.88 1.16 0.91 0.98 

HHL 0.57 2.48 0.77 2.30 0.68 1.21 0.87 0.75 

SDQ 0.56 1.68 0.81 1.46 0.74 0.85 0.85 0.66 

HYL 0.54 2.14 0.76 1.86 0.67 1.10 0.89 0.65 
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Figure 6. Time series of eight-day MODIS GPP and GPP simulations derived from the MOD17 model 

with the tower-estimated GPP. The full name for each site is listed in Table 1. The blue points 

represent original MOD17A2H products; green points represent in situ meteorology forcing data; 

pink points represent only maximum LUE optimized results; and red points represent all parameters 

optimized results. 

3.2. Uncertainty of Satellite Data in MODIS GPP Simulation over Ecosystems in the Arid Region 

3.2.1. Impacts of the Accuracy of the Land Cover Classification on MODIS GPP Simulation 

One of the first MODIS products used in the MOD17 algorithm is the Land Cover Product, 

MOD12Q1. The importance of this product cannot be overstated as the MOD17 algorithm relies 

heavily on land cover type through use of the BPLUT [15]. Based on the locations of the flux tower 

sites, we obtained the land cover type of each site from the MCD12Q1 results, and compared them 
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with the actual land cover types. We found that MCD12Q1 misclassified most of the sites 

downstream of the HRB (Figure 7), which is an artificial oasis ecotone with sparse vegetation in the 

extremely arid region of China. For example, in our study, the land cover type of the NTZ site is a 

cropland ecosystem; however, it was classified as grassland in the MCD12Q1 land cover data 

(Figure 7). In addition, MCD12Q1 also misclassified the forest types at the sites of HHL, SDQ, and 

HYL as grassland. 

    
(a) (b) (c) (d) 

Figure 7. Misclassification of land cover in the MOD12Q1 products at the downstream HRB, which 

classified the land cover of forest (i.e. SDQ, HHL, HYL) and cropland (NTZ) as the grassland type in 

MOD12Q1 data. (a) SDQ, (b) HHL, (c) HYL, and (d) NTZ. 

3.2.2. Impacts of Uncertainty of FPAR Data on MODIS GPP Simulation 

Figure 8 showed the comparisons of AccuPAR observed FPAR data with the MOD15A2H 

FPAR data in the corresponding sites in HRB. We found the MODIS FPAR data was overestimated 

compared to the observations in the growing season of desert grassland sites, as well as the low 

values of FPAR in the cropland sites, and underestimated in some stages of the high values of 

FPAR in the cropland sites. The overestimated FPAR impacted the APAR, thus leading to an 

overestimated GPP. In contrast, the underestimated FPAR would underestimate the GPP. 

Meanwhile, a good correlation between MODIS FPAR and observed FPAR occurred in cropland 

sites, while in the desert grassland sites, no significant relationship was found. This revealed that 

the accuracy of the current MOD15A2H FPAR data in the arid region needs to be further improved, 

and could also be an important source of uncertainty for the estimation of GPP in desert 

ecosystems. 
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Figure 8. Validation of MODIS FPAR compared with FPAR measured by AccuPAR. The left plot is 

the validation at DMZ and SDZ, the right plot is the validation at GBZ and HZZ. 

3.3. Uncertainty and Variability of Biophysical Parameters for Diversity Ecosystems in Arid Regions 

Since the performance after calibration of all five parameters of the MOD17 model was better 

than after the calibration of only the parameter εmax, indicating the important role of temperature 

and water-constrained factors in the estimation of GPP in the arid region. We thus calibrated all the 

parameters of MOD17 algorithms (Table 3). Our study illustrated that variability of biophysical 

parameters not only exist across different ecosystems, but also within the same ecosystems, such as 

the diverse biophysical parameters of grassland ecosystems and the desert grassland ecosystems. 

The current version of MOD17 BPLUT does not consider the differentials of these two types—they 

shared the same BPLUT parameters of grassland. However, there are different climate conditions 

and species in these two ecosystems in the study region. Meanwhile, there are different 

photosynthesis paths between C3 cropland and C4 cropland, which have many differences in their 

biophysical properties. However, these two types are also shared in the current version of MOD17 

BPLUT.  

Table 3. Prior distribution (initial value and range) and posterior distribution (mean value and 95% 

confidence interval) of the parameters of the MOD17 model for all sites. For the parameters εmax 

(gC/MJ APAR), Tmin_min (°C), Tmin_max (°C), VPDmin (Pa), and VPDmax (Pa), we set the original values of 

MOD17 BPLUT as the initial values (with bold font). 

Sites εmax Tmin_min Tmin_max VPDmin VPDmax 

Prior 

range 
(0.3, 3) (−35,−2) (6,30) (60,1000) (1500,6500) 

ARZ 
1.044,  

2.10(1.62,2.94) 

−8,  

−10.29(−11.33,−9.29) 

12.02,  

15.52(10.16, 26.63) 

650, 

151.37(64.48,296.64) 

4300,  

3252.21(2801.68, 4009.33) 

DSL 
1.044,  

1.24(0.90,1.75) 

−8, 

−30.28(−34.79,−22.79) 

12.02,  

18.84(6.78, 29.44) 

650, 

430.98(81.46,961.71) 

4300,  

3960.64(1732.84, 6361.79) 

YKZ 
1.044,  

1.80(0.97, 2.53) 

−8, 

−15.30(−32.13,−3.62) 

12.02,  

20.49(6.94, 29.58) 

650, 

567.33(96.08,978.23) 

4300,  

4136.91(1760.66, 6397.26) 

HZZ 
1.044,  

1.68(1.21, 2.42) 

−8, 

−20.76(−34.33,−3.14) 

12.02, 

 22.62(7.30, 29.53) 

650, 

608.86(81.31,977.20) 

4300,  

4936.72(3135.86, 6400.44) 

GBZ 
1.044,  

2.46(1.87, 2.95) 

−8, 

−18.93(−34.14, −2.95) 

12.02,  

13.71(6.47, 27.14) 

650, 

592.37(92.14,982.30) 

4300,  

4654.96(3150.60, 6424.90) 

LDZ 
1.044,  

1.16(0.89, 2.04) 

−8, 

−17.23(−34.07, −2.79) 

12.02,  

13.83(6.39, 28.65) 

650, 

568.79(98.05,977.54) 

4300,  

5006.36(3050.36, 6436.59) 

DMZ 0.860,  −8, 12.02,  650, 5300,  
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2.89(2.73, 2.99) −3.91(−4.82,−3.08) 16.37(15.66, 17.58) 176.02(66.63,377.42) 6089.55(5664.46, 6457.04) 

NTZ 
0.860,  

3.0(2.98, 3.0) 

−8, 

−28.59 (−34.78, −11.21) 

12.02,  

8.27(6.14, 11.13) 

650, 

991.88(961.92,999.73) 

5300,  

6486.19(6432.50, 6499.42) 

SDZ 
0.860,  

1.59(1.41, 1.74) 

−8, 

−32.82(−34.91,−27.88) 

12.02,  

25.76(19.61, 29.68) 

650, 

237.30(66.65,519.04) 

5300,  

6329.98(5928.29, 6492.67) 

HHL 
1.051, 

2.89(2.63, 3.0) 

−8, 

−18.54(−26.41, −10.64) 

8.61,  

22.26(19.30, 26.62) 

650, 

771.23(229.59,992.57) 

4800,  

6435.17(6233.17, 6497.78) 

SDQ 
1.268,  

2.33(1.80, 2.94) 

−8,  

−18.07(−33.83, −2.82) 

9.09,  

20.25(11.59, 29.25) 

800, 

523.27(82.79,972.83) 

3100,  

5947.81(5274.70, 6461.10) 

HYL 
1.165,  

2.71(2.28, 2.98) 

−6, 

−6.20(−13.10,−2.44) 

9.94,  

25.11(21.11, 29.50) 

650, 

619.61(108.53,980.37) 

1650,  

6410.51(6143.55, 6496.60) 

The value of εmax is biome specific, representing the maximum LUE of the corresponding 

vegetation in the process of photosynthesis. For a given biome type, the value of εmax is constant and 

assigned by the MOD17 BPLUT. While the newly released version of BPLUT has corrected and updated 

the εmax values, the εmax value were still significantly underestimated in the main ecosystems in arid 

regions (Table 3). The mis-estimation of their values inherently further reduced the accuracy of GPP 

estimations. 

Meanwhile, the large variations in the temperature and water-constrained stress factors also 

existed due to the diversity of climate conditions in different parts of HRB (Table 3). For example, 

the climate is cold and humid in the upstream HRB, therefore, the temperature stress factor has a 

great impact on GPP estimation in the grassland ecosystems in the upstream HRB. However, as 

Table 3 reveals, the original MOD17 BPLUT overestimated the parameters of the minimum 

temperature stress factors and the VPDmax values. In comparison, the climate is extremely arid in 

the downstream HRB, however, the original MOD17 BPLUT underestimated the parameters of the 

maximum temperature stress factors and the VPDmax values. 

In addition, the Bayesian approach can estimate the posterior distribution of model parameters, 

which is a useful tool to reduce model uncertainty. Using the Bayesian approach, the uncertainty of 

model parameters was reduced significantly for some sites (e.g., the NTZ site) located in the 

extremely arid region (Figure 9). 

 

Figure 9. Relative reduction of parameter uncertainty (95% confidence interval) from prior to 

posterior distribution. The green bar and blue bar represent the reduction of uncertainty in model 

parameters for the MOD17A2H model at the NTZ and DMZ sites. 

4. Discussion 

4.1. Evaluations of the MOD17A2H Products over Diversity Ecosystems in the Arid Region 

The MODIS Collection 6 GPP products improved the spatial resolution of GPP estimation, 

which means the estimated GPP is more comparable with the footprint in the areas with 
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heterogeneous landscapes in the desert–oasis–alpine ecosystems in the arid region. Meanwhile, the 

MOD17A2H products updated the meteorological forcing data, FPAR data and land cover data, 

which highlight the better spatial resolution of 500 m. However, compared to the flux tower-based 

GPP data, the MOD17A2H GPP products still illustrate some limitations in the simulations of 

magnitude and spatial-temporal variation of GPP in the desert–oasis–alpine ecosystems in the arid 

region. From the slope of linear regression for the scatter plot in Figures 3a and 4a, the slope values 

were only 0.49, which revealed significant underestimation of the GPP in the study region. When 

compared to the site level of flux tower-based GPP (Figure 6), the slope values in most sites of the 

study regions were also less than 1.0, except for some desert ecosystem sites. This showed that the 

MOD17 product underestimated GPP in most high productivity sites of cropland, grassland, and 

forest ecosystems in the arid region, but overestimated GPP at some low productivity sites of desert 

ecosystems compared with tower-based GPP, consistent with the results of Reference [12] and 

Reference [27].  

4.2. Uncertainty of Input Data in MODIS GPP Estimation in Diversity Ecosystems in the Arid Region  

The accuracy of GPP estimation highly depends on the precision of all input data of the 

MOD17A2H GPP algorithm. Therefore, uncertainties of GPP products arise mainly from the 

climate drivers, parameter variability, and land cover classification [20]. There are three 

meteorological data types (PAR, Tmin and VPD), as well as FPAR and land cover classification data 

involved in the MOD17A2H GPP algorithm, which could be the main source of error in the GPP 

estimates. The MOD17A2H products used GMAO Reanalysis data for direct meteorological inputs, 

which is an hourly time-step data set with about a half-degree spatial resolution (0.5 latitude degree 

by 0.67 longitude degree) generated by the Goddard Earth Observing System Model, Version 5 

(GEOS-5) data assimilation system [15]. In this study, we replaced the GMAO dataset with in situ 

meteorological data and recalculated the MOD17 algorithm with default parameters in comparison 

(GPP_Insitu). Our study revealed that using the in situ forcing data can improve the relationship 

between modeled GPP and tower-observed GPP compared to the original MOD17A2H products 

both at eight-day and annual timescales (Figure 3 and 4); the determination coefficients (R2) of these 

sites were slightly higher than that of the original MOD17 products (R2 ranging from 0.71 to 0.79 for 

eight-day step and 0.69 to 0.73 for annual step). However, larger biases still exist between 

GPP_Insitu and GPP_tower. Using in situ meteorological data did not result in obvious 

improvements of the GPP estimation performances; on the contrary, some sites were not even as 

accurate as those calculated with the GMAO datasets (ARZ, DSL, DMZ, and SDZ in Table 2), 

which is similar to the other results from validation of the MOD17 GPP products [21,27,32]. 

This is caused by some missing values in the original MOD17A2H GPP products making a 

shorter length of model evaluations, thus reducing the model errors of the GPP_MODIS. The 

other implication of the results is that an improvement in meteorological data did not have a 

significant effect on the MODIS GPP estimation, which means the meteorological data is not the 

main source of uncertainty in GPP simulation in the arid region.  

An accurate land cover classification map is vital to MOD17 GPP simulation [18]. 

Misclassification of the land cover directly determines the value of maximum light use efficiency 

and the other MOD17 BPLUT parameters, thus further influencing the inaccuracies of GPP 

calculation [20]. We validated the MOD12Q1 vegetation maps with our site observations and found 

the MODIS data misclassified almost all sites of forest and cropland types in the downstream HRB 

(Fig. 7). Study suggested that the accuracies of MOD12Q1 vegetation maps are within 65–80%, and 

most inaccuracies are in between similar classes [55]. Since large desert–natural oasis ecosystems 

are distributed in the downstream HRB and most of the vegetation cover was less than 30%, the 500 

m unit of MODIS land cover classification could pose a risk at such a coarse resolution. Mixed 

pixels, composed of varied ecosystem types, may occur in the sparsely vegetated region, thus 

making it difficult to describe the biophysical parameters properly. This incorrect classification of 

land cover types will therefore lead to an inaccurate GPP calculation. 
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In addition, FPAR is also an important input physiology variable in the MOD17 model, which 

directly modulates the essential energy input to photosynthetic processes [8,9]. In our study, we 

compared the MOD15A2H FPAR products with the observations in the study area, and found it 

significantly overestimated the ecosystems with low productivity (such as the desert ecosystems) 

and underestimated the ecosystems with high productivity (such as the crop ecosystems) in MODIS 

FPAR products in the HRB (Figure 8). This will greatly impact the energy redistribution in 

photosynthetic systems, and thus the GPP estimations in arid regions. Research revealed that FPAR 

often produces misleading signals in GPP estimations due to contamination by atmospheric 

characteristics [19]. The overestimation of FPAR data is caused by sparse vegetation cover and the 

effects of large desert cover that impacts the signals of vegetation detection in arid regions. To 

improve the FPAR estimation in the arid region, we can use the improved FPAR retrieval products 

with the multi-angle vegetation index information in the future [56].  

4.3. Uncertainty and Variability of Biophysical Parameters in Modelling GPP over Diversity Ecosystems In 

Arid Regions 

To estimate GPP across varied worldwide ecosystems, MOD17 algorithms use the biophysical 

variability of parameters generated from look up tables, which include five biome-specific 

physiological parameters in the model, i.e., εmax, Tmin_min, Tmin_max, VPDmin, and VPDmax [56]. In this 

study, we optimized the maximum LUE, one of the most important parameters for GPP estimation, 

with the tower-based GPP. An obvious improved performance of GPP simulation can be found in 

Figures 3c and 4c, which show good agreements between the observed GPP and the simulated GPP 

with the parameter optimized (GPP_LUE). The R2 increased from 0.71 to 0.86, and rRMSE decreased 

from 12.45% to 6.99%, at an eight-day timescale. Those improved performances were also seen at an 

annual timescale, with R2 increasing from 0.69 to 0.87, and rRMSE decreasing from 60.48% to 23.97%. 

Table 2 reveals the performance of the GPP_LUE model and flux GPP observation were better than the 

results of only using the ground forcing data; the determination coefficients increased significantly when 

using optimized εmax parameter, with smaller RMSE, which revealed greater improvements after 

performing LUE optimization.  

Calibration of the maximum LUE parameter improved the performance of MODIS GPP 

estimation was in accordance with other studies [24,27,32]. In addition, we also investigated the 

potential impacts of uncertainty of the other model parameters (e.g. VPD-limited factors) on GPP 

monitoring, which has been overlooked by other researchers. In fact, water stress is one of the most 

important limiting factors controlling terrestrial primary production, especially in arid regions. 

Previous studies showed that the MOD17 products underestimate water stress, and thus 

overestimate GPP in some extremely arid regions lacking in water [57]. In our study, we found that 

optimizing the VPD-limited factors can further improve the performance of the GPP estimations. 

From the eight-day time step of the overall performances, the R2 increased from 0.86 for the results 

of only optimizing the LUE parameter to 0.91 for the results of optimizing all parameters, and 

rRMSE decreased from 6.99% to 5.59% (Figure 3). These results were mainly distributed in some 

sites in the extremely arid region (i.e., SDQ, HHL, HYL etc.), which revealed the important role of 

the parameters of water-constrained factors in GPP simulation in arid regions.  

4.4. Uncertainty of GPP Modelling of the Desert Ecosystems and its Implications for GPP Simulation in 

Arid Regions 

The current MOD17 model can effectively simulate GPP of main ecosystems in the arid region, 

however, there are still some difficulties in simulating GPP more accurately in the desert 

ecosystems. Model analyses indicate the importance of arid regions in the global carbon cycle, 

while the models suffer from a lack of data in water-limited regions [3,4]. The large errors of GPP 

simulation in desert ecosystems is caused by the uncertainty of remote sensing vegetation products 

in regions with large heterogeneity of landscape and low vegetation cover. Moreover, the 

uncertainty of flux tower observation in desert ecosystems makes it is difficult to estimate a relative 

‘true’ value of GPP [58]. To improve GPP estimation in arid regions, several directions can be 
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explored further in the future. For example, improving the estimation of MODIS FPAR and land 

cover classification products in arid regions using data-driven approaches [59] and improving 

model structures [60] could be better choices for improving GPP simulation in arid regions.  

Meanwhile, since the biome-specific look up tables (BPLUT) are constant for a given biome at 

any time. Since the current BPLUT of the MOD17 cannot meet the needs of accurate definition of 

the parameters for all ecosystems [19,61], especially for the diverse and complex ecosystems in arid 

regions, further research needs to be done to update these BLUPT of the model. In addition to 

update the parameter of εmax, the water and temperature-limited parameters are also of great 

importance in GPP estimation, especially for the ecosystems in arid regions. As the development of 

eddy covariance technique, there are more than 900 EC flux sites in the world currently [62]. With 

the availability of these large number of flux datasets, it provided us the opportunity to retrieve the 

biome specific parameters for each vegetation type more reasonable, which may improve the 

accuracy of the current GPP simulation in the arid region.  

5. Conclusions 

This study validated and optimized the performance of MODIS-derived GPP compared with 

EC-observed GPP at seasonal and annual time scales for the main arid ecosystems relying on flux 

networks constructed in arid and semi-arid ecosystems in China. Our study revealed that the 

current MODIS GPP products were significantly underestimated, as compared with the 

tower-observed GPP for most types of ecosystems in the arid region of China, especially the 

irrigated cropland and forest ecosystems, due to uncertainty of meteorological data and model 

parameters. Using ground-based meteorological data and updated land use data can improve GPP 

estimation. In addition to the light-use efficiency parameters, the temperature-limited stress factors 

and the VPD-limited factors also need to be recalibrated for ecosystems in arid regions. After using 

the proper model parameters, great improvements to the GPP model can be performed through a 

Bayesian approach. However, it is difficult to estimate GPP accurately in desert ecosystems because 

of the uncertainty of remote sensing vegetation products in arid regions. Hence, improvements in 

modelling GPP in desert ecosystems are needed in future studies. Moreover, this study implies that 

the current MODIS-derived GPP product requires further improvements to provide accurate 

monitoring of terrestrial ecosystem productivity in arid regions worldwide.  
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