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Abstract: Assessment of disease incidence and severity at farm scale or in agronomic trials is 

frequently performed based on visual crop inspection, which is a labor intensive task prone to errors 

associated with its subjectivity. Therefore, alternative methods to relate disease incidence and 

severity with changes in crop traits are of great interest. Optical imagery in the visible and near-

infrared (Vis-NIR) can potentially be used to detect changes in crop traits caused by pathogen 

development. Also, cameras on-board of Unmanned Aerial Vehicles (UAVs) have flexible data 

collection capabilities allowing adjustments considering the trade-off between data throughput and 

its resolution. However, studies focusing on the use of UAV imagery to describe changes in crop 

traits related to disease infection are still lacking. More specifically, evaluation of late blight 

(Phytophthora infestans) incidence in potato concerning early discrimination of different disease 

severity levels has not been extensively reported. In this article, the description of spectral changes 

related to the development of potato late blight under low disease severity levels is performed using 

sub-decimeter UAV optical imagery. The main objective was to evaluate the sensitivity of the data 

acquired regarding early changes in crop traits related to disease incidence. For that, UAV images 

were acquired on four dates during the growing season (from 37 to 78 days after planting), before 

and after late blight was detected in the field. The spectral variability observed in each date was 

summarized using Simplex Volume Maximization (SiVM), and its relationship with experimental 

treatments (different crop systems) and disease severity levels (evaluated by visual assessment) was 

determined based on pixel-wise log-likelihood ratio (LLR) calculation. Using this analytical 

framework it was possible to identify considerable spectral changes related to late blight incidence 

in different treatments and also to disease severity level as low as between 2.5 and 5.0% of affected 

leaf area. Comparison of disease incidence and spectral information acquired using UAV (with 4-5 

cm of spatial resolution) and ground-based imagery (with 0.1-0.2 cm of spatial resolution) indicate 

that UAV data allowed identification of patterns comparable to those described by ground-based 

images, despite some differences concerning the distribution of affected areas detected within the 

sampling units and an attenuation in the signal measured. Finally, although aggregated information 

at sampling unit level provided discriminative potential for higher levels of disease development, 

focusing on spectral information related to disease occurrence increased the discriminative potential 

of the data acquired. 
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1. Introduction 

Site-specific crop management and characterization of different cultivars in breeding trials (i.e., 

phenotyping) are examples of tasks demanding the description of vegetation biochemical and 

biophysical properties with high spatial and temporal resolution [1,2]. Recent advances in sensing 

solutions and subsequent data analysis targeting these applications can provide alternatives to 

increase feasibility of the detailed description of crop traits and plant response to stress [3–5]. In this 

context, proximal or remote radiometric measurements of the vegetation canopy spectral response 

on discrete wavelength intervals in the visible (Vis), near infrared (NIR), and shortwave infrared 

(SWIR) have physically based relationships with leaf and canopy properties, and therefore have 

potential to be used for spatially explicit estimation of crop traits.  

More specifically concerning biotic stress monitoring, assessment of disease incidence and 

severity frequently relies on visual rating, which is a time consuming activity susceptible to errors 

related to several factors, such as the complexity of the disease symptoms presented by plants and 

the level of experience of the professional performing the evaluation [6]. Alternative solutions for 

identifying effects of pathogen development on crop traits based on radiometric measurements in 

the optical domain have been introduced for spectra acquired at leaf and canopy levels [7–14]. 

Although methods focusing on data acquired at leaf level demonstrate, in general, that a strong 

relationship between spectral changes and disease development exists, the same is not always 

observed in studies based on measurements acquired at canopy level. This fact is particularly true if 

discrimination between healthy and diseased vegetation is intended to be made during early stages 

of the pathogen development or under low disease severity levels [15]. As described by Behmann et 

al. [16], some aspects adding complexity and decreasing accuracy of early assessment of disease 

effects on crop traits based on spectral properties are: multiple factors simultaneously affecting the 

crop spectral response, besides disease-related changes (e.g., effects of nutrient and water availability 

or natural plant senescence); variability of canopy structure (e.g., leaf inclination), which together 

with changes in view-geometry and illumination conditions may have considerable impact on 

canopy reflectance measurements, in particular for data with very high spatial resolution; low signal-

to-noise ratio for the spectra acquired; and the fact that changes occurring due to early disease 

development are subtle (pre-visual), which makes it difficult to obtain reference data (labels) at a 

more detailed scale than the plant level or without being mixed with information corresponding to 

healthy tissue and background. 

Despite these limitations, several authors have reported successful discrimination between 

healthy and diseased crop patches and plants based on high resolution imagery acquired at canopy 

level by sensors mounted on Unmanned Aerial Vehicles (UAVs) or other airborne platforms. Many 

of the studies performed dedicate attention to the discrimination of diseased vegetation in perennial 

crops (e.g., Huanglongbing in citrus, leafroll disease and Flavescence dorée in grapevine, verticilum 

wilt and Xylella fastidiosa on olive trees, and red leaf blotch on almond orchards), using UAV-acquired 

multi- or hyperspectral data in the Vis-NIR, frequently coupled with thermal imagery and 

measurements of sun-induced fluorescence [13,14,17–22]. For annual crops, studies have also been 

conducted, for example, on yellow rust and powdery mildew in wheat [23,24] and on downy mildew 

in opium poppy plants [25] based on airborne or UAV multi- or hyperspectral imagery in the Vis-

NIR-SWIR and thermal infrared domains. In these studies, multiple features derived from the 

spectral information acquired have been tested to assess the impacts of disease incidence on crop 

traits, such as reflectance in single spectral bands, calculation of spectral distance metrics, derivation 

of vegetation indices, and estimation of crop traits from spectral measurements based on radiative 

transfer model (RTM) inversion. Usually, the features derived are subsequently used in parametric 

statistical analysis (e.g., analysis of variance and groups means test) or in parametric or non-

parametric modelling frameworks for assessment of disease incidence or severity using classification 
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or quantification methods (e.g., linear and quadratic discriminant analysis, support vector machines, 

classification and regression trees, etc.). With the variety of methods and features used, variable 

performance has also been reported for the discrimination between healthy and diseased plants and 

for the quantification of disease severity in the targeted areas. However, in most cases authors 

indicate that methods relying on optical imagery acquired at canopy level are sensitive enough to 

allow timely detection of disease incidence or accurate quantification of its severity. 

Besides UAVs or other airborne platforms, ground-based imaging systems have been evaluated 

in studies concerning disease assessment based on optical data [26–30]. In this case, the authors also 

focused on pathogens affecting different perennial and annual crops (e.g., Huanglongbing in citrus, 

cercospora leaf spot in sugarbeet, tulip breaking virus, yellow rust and fusarium head blight in wheat 

and barley) and tested several methods for discriminating diseased and healthy plants, or to quantify 

disease severity, achieving variable discriminative potential and accuracy. In addition to airborne or 

ground-based imaging system, a considerable number of studies have employed point-based spectral 

readings (mostly hemispherical-conical reflectance measurements [31]) at canopy level to evaluate 

the development of different pathogens, and similarly to other sensing approaches, reported variable 

degrees of accuracy or discriminative potential for the information acquired [32–36]. 

Consequently, considerable evidence exists that canopy based spectral data may provide useful 

information for discriminating between diseased and healthy plants or for assessing disease severity 

due to the direct impact of pathogen development on biochemical and biophysical properties of 

vegetation at leaf and canopy scales [22]. However, disease symptoms, resulting from pathogen 

development and from plant response to infection, are to certain extent specific to each crop and 

disease considered [9,10]. Therefore, not all results obtained in a specific context can be generalized 

to others. Also, many studies performing data acquisition at canopy level do not include a detailed 

description of the relationship between disease development and changes in crop spectral response, 

or do not discuss the implications of these changes in the results obtained during discrimination of 

healthy and diseased areas, or during modeling of disease severity. This fact may be attributed to the 

lack of detail in the available datasets, mainly regarding spatial and spectral resolution or timely 

assessment of disease development. For example, some studies [14,18,20,24] adopt plants or canopy 

patches with up to 5–10% disease severity to characterize low pathogen incidence, which may be a 

relatively high value for other crops or pathogens, depending on the management practice to be 

implemented and on how early the detection need to be made. 

Regarding late blight (Phytophthora infestans) incidence in potato (Solanum tuberosum), only a few 

studies are available relating disease development and crop heathy monitoring based on UAV 

imagery or other spectral datasets acquired at canopy level. Considering the importance of late blight 

assessment for potato management, as emphasized by Cooke et al. [37], this topic is certainly of 

interest. Sugiura et al. [38] presented an approach for assessing late blight severity using UAV optical 

imagery. This method involves RGB image color transformation and pixel-wise classification based 

on a threshold optimization procedure. Results obtained by these authors are relatively accurate, with 

reported R2 between the area under the disease progress curve estimated visually and by the image-

based approach, varying between 0.73 and 0.77. Duarte-Carvajalino et al. [39] performed machine 

learning-based estimation of late blight severity using very high resolution imagery acquired over 

the growing season, with a modified camera registering blue, red, and NIR bands. Despite using 

considerably different prediction approaches in comparison with that described by Sugiura et al. [38], 

the performance reported was similar in both studies. Other authors only described qualitative 

evaluation of late blight incidence using UAV multispectral imagery [40,41] or only assessed effects 

of advanced stages of the pathogen development on potato traits and crop spectral response using 

data acquired by an hyperspectral imaging system [42,43]. However, studies focusing on UAV or 

other sources of very high resolution imagery (with sub-decimeter resolution), including validation 

by means of ground truth data (e.g., measurement of crop traits and assessment of disease severity, 

etc.), and aiming a detailed description of spectral changes related to early pathogen incidence have 

not been made so far for potato infection with late blight. 
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Therefore, the objectives of the present study can be summarized as follows: (i) identify changes 

on the potato canopy reflectance in the optical domain related to late blight development, in different 

organic cropping systems (i.e., cultivation with a single cultivar in contrast to a mixture of different 

cultivars); (ii) compare alterations in the spectra observed using ground-based imagery (pixel size 

between 0.1 and 0.2 cm) with those detected through UAV data (pixel size between 4 and 5 cm); and 

(iii) evaluate the potential of UAV imagery for early discrimination of different late blight severity 

levels in potato, in particular identifying possible detectable changes in the canopy reflectance due to 

early disease development using sub-decimeter imagery. For that, ground-based and UAV images 

were analyzed using an up-to-date analytical framework, involving Simplex Volume Maximization 

(SiVM) and pixel-wise log-likelihood ratio (LLR) calculation, as similarly performed by other authors 

at leaf and canopy levels [9,44], in order to provide a sound basis for conclusions regarding the 

objectives of this research.  

2. Materials and Methods  

2.1. Study Area and Experimental Set-Up 

The data acquisition was realized during the spring and summer of 2016 in an organic strip-

cropping experiment (51.9917°N, 5.66332°E; WGS84) started in 2014 at the Droevendaal experimental 

farm of the Wageningen University, The Netherlands. In this site, plots cultivated with potato were 

followed mainly focusing on the assessment of late blight (Phytophthora infestans) development and 

general crop healthy status. Twelve plots, measuring 3 by 10 m (small plots), were established in a 

strip along the field (Figure 1), while buffer areas, measuring 3 by 5 m, were placed before and after 

each plot, in the same strip, in order to avoid border effects between plots. The same experimental 

configuration, but with larger plots (with 6 by 10 m, and buffer areas with 6 by 5 m), was repeated in 

a neighboring field. 
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Figure 1. Distribution of experimental plots and treatments (T1, non-mixed system; T2, mixed system) 

in the study site. Figures correspond to false color composite (735, 631, and 609 nm as RGB bands) for 

UAV imagery acquired 37 (a), 50 (b), 64 (c), and 78 (d) days after planting (DAP). White boundaries 

indicate small and large experimental plots. Original experimental arrangement is indicated by black 

connectors and new blocks used for treatments comparison (as described in section 2.6) are indicated 

in blue. 

Two different treatments were compared within the experiment: (a) plots in which a single 

cultivar, susceptible to late blight (“Raja”), was planted (non-mixed system, T1); and (b) plots in 

which a mixture of three cultivars (“Raja”, “Connect”, and “Carolus”) with different degrees of 

resistance (from low to high, respectively) to late blight were iterated in each crop row (mixed system, 

T2). It is worth drawing attention to the fact that in T2, the mixture was made systematically in each 

row, iterating the different cultivars during the planting operation, as already mentioned. 

Considering the treatments applied to the experimental plots, the minimum comparable area 

between plots, besides individual plants, corresponded to sampling units, including three 

consecutive plants arranged in the same row. Based on that, each plot was divided in multiple 

rectangular patches measuring 0.75 by 1 m, hereafter referred as sampling units (SUs). These SUs 

were used during ground truth measurements and also to extract spectral information from UAV 

imagery. 

Crop traits (leaf chlorophyll content and canopy height) were measured (as described in section 

2.6) in a selection of SUs within each plot in parallel, with acquisitions of UAV and ground-based 

spectral imagery (sections 2.2 and 2.3). Late blight occurrence and severity was visually assessed 

every 3 to 5 days after the first symptoms of the disease were detected, following the methodology 

described by the European and Mediterranean Plant Protection Organization [45]. For late blight 

assessment, four fixed sample units in the small plots (one per crop row) and one sample unit in the 

large plots were followed during the growing season. Also, six extra SUs were randomly chosen in 

each small experimental plot for disease assessment after late blight was first observed in the field, in 

order to better describe intra-plot variability. The final scores obtained at sampling unit level were 

summarized in 13 disease severity classes, as follows (bounded in relation to the previous class): 

healthy (no disease observed), ≤ 1.0%, ≤ 2.5%, ≤ 5.0%, ≤ 7.0%, ≤ 10.0%, ≤ 15.0%, ≤ 25.0%, ≤ 50.0%, ≤ 

75.0%, ≤ 90.0%, ≤ 97.5%, and > 97.5% of disease severity. It is worth noting that low disease severity, 

i.e., below 10% of leaf area affected, was assessed counting lesions observed in the leaves, while 

higher severity levels were estimated directly by visual evaluation of the percentage of leaf area 

affected, as recommended by the methodology adopted [45]. Scores were given for each plant and 

final severity class for a given sampling unit was calculated taking their average, after transforming 

the scores to area of affected tissue by area of sampling unit surface. 

The experiment followed a generalized randomized block design, with three blocks and two 

replicates for each treatment (i.e., cultivation systems) in each block (Figure 1). From the three blocks 

included in the experimental site, only the first two were followed in this study (i.e., eight 

experimental plots), due to legal restrictions concerning the data acquisition (i.e., UAV flights) in the 

area of study. Analysis of the data acquired was adapted to these restrictions as described in sections 

2.6 to 2.8.  

2.2. UAV Optical Imagery with Sub-Decimeter Resolution  

Images were acquired on four dates during the growing season (Table 1) using a lightweight 

hyperspectral frame camera (Rikola Ltd., Oulu, Finland) on board of a UAV platform in order to 

follow the dynamics of crop and disease development over time. The camera used is based on a 

Fabry-Perot interferometer (FPI) [46] and was programmatically configured to register 16 narrow 

bands between 600 and 900 nm (Figure 2). These bands were chosen due to their importance to 

describe changes in biochemical (leaf chlorophyll content) and biophysical (e.g., leaf area index, 

ground cover, etc.) traits of vegetation at leaf and canopy levels [47]. 
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Due to intrinsic characteristics of the FPI system used, images corresponding to different 

wavelengths were acquired sequentially, since changes in the wavelengths measured depended on 

internal camera adjustments. Consequently, a mismatch between images corresponding to different 

bands in a given data-cube occurred, an issue solved during photogrammetric processing with a 

dedicated software (PhotoScan version 1.3, AgiSoft LLC, St. Petersburg, Russia). This procedure 

relied on the implementation of Structure from Motion (SfM) algorithm, with feature matching and 

self-calibrating bundle adjustment [48]. During image alignment and derivation of dense point 

clouds, imagery with full resolution was used (i.e., setting quality to “high” and “ultra-high” for these 

steps in the software processing chain, respectively). Optimization of retrieved camera position and 

orientation for each scene was performed based on 4 to 8 ground control points (depending on the 

acquisition date, Table 1), with coordinates registered using a RTK-GPS. Before the optimization step, 

sparse point clouds were filtered based on residuals and reconstruction uncertainty (10% of points 

with the largest values were removed in each case), as performed by Honkavaara et al. [49]. Dense 

point cloud depth filtering was set to “mild” to preserve details in the final 3D reconstruction of the 

crop surface. Considering the approximate flight height of 80 m, a ground sampling distance between 

0.04 and 0.05 m was achieved in the final orthorectified images. 

Table 1. General aspects related to the data acquisition using the Unmanned Aerial Vehicle (UAV) 

platform and a ground-based sensing setup (section 2.3). Days after planting (DAP), estimate general 

crop growth stage according to the BBCH (‘Biologische Bundesanstalt, Bundessortenamt and 

CHemical industry’) scale [50], illumination conditions, and number (nbr.) of ground control points 

(GCPs) used during photogrammetric processing. 

Date1 DAP Growth stage2 Ground data3 Illum.4 Integration time (ms) Nbr. of GCPs 

26/05 37 2–4 I, II Sunny 10 4 

08/06 50 4–6 I, II  Sunny 10 4 

22/06 64 6–7 I, II, III Cloudy 20 8 

06/07 78 7–8 I, II, III Sunny 10 7 
1 Flights were realized between 10:00h and 13:00h (GTM+2) to minimize angular effects of incident radiance 

on the measurements. 2 BBCH scale summary: 0 = germination, 1 = leaf development, 2 = formation of basal side 

shoots, 3 = main stem elongation, 4 = tuber formation, 5 = inflorescence emerging, 6 = flowering, 7 = fruit 

development, 8 = ripening of fruit and seed, 9 = senescence. 3 I = crop traits (leaf chlorophyll content, canopy 

height), II = canopy spectra acquired with camera in handheld mode for a selection of SUs, III = late blight 

severity assessment. 4 Sunny illumination conditions corresponds to clear sky while cloudy indicates partially 

overcast conditions. 

 

 

Figure 2. Specifications of the data acquired with the hyperspectral imaging system mounted on the 

UAV platform (red boxes, 16 spectral bands) and on handheld configuration (green boxes, 31 spectral 

bands; section 2.3). Center line in each box indicate spectral band center and extremities for the full 

width at half maximum for each band (FWHM; varying between 13 and 21 nm for UAV data and 

between 13 and 23 nm for ground-based images). 
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Conversion of digital numbers (registered with 12-bit radiometric resolution) to radiance, in W 

/m2 sr nm, was performed using camera manufacturer’s proprietary software (HyperspectralImager, 

v2.0, Rikola Ltd., Oulu, Finland). This step included the correction for dark current using images 

taken with the sensor lens completely covered (dark reference), acquired before each flight, and for 

flat field using factory calibration parameters. Radiance was converted into reflectance factor through 

the empirical line method using images of a Spectralon reference panel with nominal 50% reflectance 

(LabSphere Inc., North Sutton, NH, USA). These images were taken immediately before flight under 

the same general illumination conditions observed during data acquisition. 

The orthomosaics used to extract the radiometric information corresponding to the monitored 

areas were derived taking the average of all reflectance values measured in a given location (pixel). 

This product aggregated spectral information from different images, with variable angular properties 

due to the combination of UAV movement, overlaps between the images acquired and relatively 

large camera field of view. The reason to derive such a product was to mitigate the impact of angular 

effects on the radiometric data used to characterize the monitored patches along the field, in 

agreement with results obtained by Aasen and Bolten [3]. As introduced in section 2.1, spectral data 

was extracted within the experimental plots for a given number of SUs in each date. Before late blight 

development onset, four SUs in each small plot were considered during spectral data extraction, 

while after the disease was first detected (i.e., after 64 days after planting – DAP), 10 SUs per small 

plot were used. Large experimental plots had only one sampling unit per plot followed throughout 

the growing season that were included in the analysis. 

2.3. Ground-Based Optical Imagery with Sub-Centimeter Resolution 

Besides UAV data, images were acquired at the ground level using the same FPI camera system 

(section 2.2). This allowed a better description of the disease development on plants and leaves 

through images with increased spatial (pixel size between 0.1 and 0.2 cm) and spectral resolution 

from a perspective comparable to the UAV. Data acquisition with the handheld configuration of the 

FPI sensor was made after UAV flights were performed (Table 1). Images were taken in one sampling 

unit within each small experimental plot in the field (Figure 1). Illumination conditions constrained 

data collection on the third date (64 DAP) and only the first block of the experiment (i.e., first four 

plots) was imaged, but in this case two images per plot were acquired. The complete dataset obtained 

with the camera in this configuration comprises 32 data-cubes with 31 spectral bands and 

measurements from 500 to 900 nm, as described in Figure 2. 

The first step for processing the ground-based images was to transform raw digital numbers to 

radiance, as described in section 2.2. After that, correction for camera lens distortion was performed 

using an external reference pattern, following the approach described by Zhang [51]. Camera intrinsic 

parameters and lens radial and tangential distortion (represented by three and two coefficients, 

respectively) were estimated in order to improve geometrical representation of the area covered by 

the images. 

Due to the characteristics of the FPI sensor system described in section 2.2, the different bands 

measured using the camera in handheld configuration were not recorded simultaneously. 

Consequently, despite the fixed position of the camera during data acquisition (pointing to the center 

of the sampling unit at approximately one meter from the top of the canopy and oriented towards 

the orthogonal to the sun principal plane), small movements of the camera and crop canopy were 

still noticeable between bands of the same data-cube. In this case, band-to-band co-registration was 

performed to correct possible positioning mismatches between data corresponding to different 

wavelengths. For that, an area-based registration approach was implemented within the framework 

proposed by Lowekamp et al. [52]. In preparation for the band’s co-registration, the spectral dataset 

was divided in three subsets (503–660, 672–750, and 763–893 nm) and one reference band was selected 

for each one of them (620, 724, and 803 nm, respectively). After that, all bands were registered to the 

reference band in their respective subset. The reference bands were chosen using as criteria their 

intermediary position between the main expected spectral changes in the vegetation spectral 

response occurring in the wavelengths included in each subset. Although more objective approaches 
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have been proposed to divide data-cubes in representative spectral regions and to assign reference 

bands for band-to-band registration [53] in similar contexts, the simplified approach implemented 

here allowed selection of a relevant reference band sharing spectral similarities with all bands 

included in a given subset. The final alignment between bands was obtained registering the first and 

last subsets to the central set. This was achieved based on the transformation calculated for the nearest 

spectral band on a subset to the bands in the central set. In all cases (i.e., band-to-band alignment 

within and between subsets), two types of transformations were calculated, a rigid affine transform 

and a non-rigid displacement field transform. Mutual information was used as a metric to optimize 

the transformations applied [54]. Fine tuning of the registration parameters (e.g., configuration of 

multi-level registration framework and gradient descent line search algorithm) was based on 

assessment made using a small sample taken from the dataset before application on all images. 

Evaluation of the final registration accuracy was performed using point based automatic feature 

extraction (SIFT; [55]) and matching (FLANN; [56]), due to unavailability of control points in the 

imaged areas that could be used for this purpose. Registration accuracy of the transformations was 

evaluated by matching features in each spectral band with features detected in the reference band of 

their respective spectral subset. Root mean squared error (RMSE) was calculated considering all the 

matched points for a given band, while final RMSE reported corresponded to the average RMSE for 

a given spectral subset and transformation used. A final assessment was made comparing features in 

the closest band in each set to those in the reference band of the central set, in order to estimate the 

final alignment quality between subsets (Table A1). 

2.4. Estimation of Ground Cover for Background Removal from Ground-Based Imagery 

Ground cover was estimated for images acquired with the FPI-based camera on handheld mode 

using a straightforward approach, similar to that implemented by Behmann et al. [16]. First, the 

spectra of all images acquired in each acquisition date was subject to dimensionality reduction 

through linear Principal Components Analysis (PCA) in order to mitigate information redundancy 

and potentially enhance distinction between vegetation and soil present in the imaged areas. Features 

derived using PCA were then used as inputs to unsupervised segmentation through Gaussian 

Mixtures Modelling (GMM), which was separately applied to each data-cube. A suitable number of 

clusters to retain in each case was selected based on the gap statistic [57], considering up to 20 classes 

and selecting the segmentation providing the maximal value for this parameter. Binary classification 

of each cluster as background or vegetation was made using a logistic classification model trained, 

validated, and tested using pixel-wise manually labelled data. For that, nine regions of interest (ROI) 

were randomly selected to be manually labelled within each one of the 32 ground images. These ROIs 

had dimensions corresponding to the ground sampling distance estimated for UAV images acquired 

in the same date. This allowed derivation of a dataset taking into account resolution obtained in both 

cases, anticipating a posterior use of the outputs obtained during ground-based background removal 

for background effect mitigation on UAV images (section 2.5). Ground-based imagery resolution was 

estimated to be approximately between 1.17 to 1.59 mm and an approximate factor of 30 to 40 existed 

in relation to UAV images. Consequently, each ROI comprised a squared area with approximately 30 

to 40 pixels length in each side, depending on the acquisition date and sampling unit considered. 

Half of the manually labelled data was used for model training and validation, while the other half 

was used as test dataset in order to verify if the models obtained had a stable performance. In this 

case, accuracy was evaluated through the area under the precision versus recall curve, with values 

above 0.9 obtained during test for all dates. As input for the logistic classification models, a selection 

of vegetation indices (VIs) was tested (Table A2). In order to select only VIs contributing effectively 

to the distinction between bare soil and vegetation, the logistic model was coupled with elastic net 

regularization [58]. Final prediction of each cluster class was made based on the pixel-wise 

probability estimated using the logistic model obtained for each date. Clusters with more than 50% 

probability for the vegetation class were retained as foreground. In this case, instead of using the 

average or median probability estimate for pixels in a given cluster, different percentiles were 

calculated (from 0 to 100% in intervals of 0.5%) and the cluster class was assigned as vegetation if the 
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probability was greater than 50% for the considered percentile. The most suitable percentile for each 

date, as well as the accuracy of the overall segmentation process (Table A3), was obtained by 

calculating the RMSE of ground cover prediction in comparison with manually labelled data in the 

calibration and test datasets (i.e., comparing number of pixels labelled as vegetation at ROI level with 

classification outputs after cluster-wise prediction). 

2.5. Mitigation of Background Effects on UAV Imagery Using Vegetation Index Threshold 

Spectra corresponding to pixels with predominant bare soil fraction or most affected by spectral 

mixing of the UAV images were removed based on outputs of the segmentation analysis performed 

for the ground level data (section 2.4). For that, ground-based images were registered to UAV image 

patches, manually selecting one corresponding control point between both datasets for each sampling 

unit, as well as manually locating the central crop row in each image and determining its direction. 

This information allowed performance of ground and UAV image rotation to a common axis (i.e., 

crop row), and translation of the ground images to their approximate location in the field based on 

the correspondence with the UAV images. After the image-to-image registration, a selection of 

narrow and broad band Vis, including bands between 600 and 900 nm (Table A2), were evaluated for 

background removal in the UAV images. A threshold for each VI was defined by finding the value 

providing the most similar segmentation results (i.e., estimate of vegetation cover) to that derived 

using ground images with full spatial and spectral resolution. 

Adjustment of VI thresholds was performed using half of the SUs imaged at ground level in 

each date (n = 4), while the generalization potential for the values obtained was assessed based on 

validation performed with independent data (i.e., applying the thresholds obtained to the other half 

of the dataset). The final VI used for background removal in UAV images was chosen based on the 

lowest average RMSE for the validation dataset, considering all dates (Figure A1). Therefore, it was 

expected that the selected VI and its corresponding thresholds had considerable generalization 

potential and stability concerning changes in illumination, view-geometry, and background 

characteristics, despite the small sample set size used for threshold optimization in each date. This 

approach was based on the method adopted by Jay et al. [59] for background removal applied to 

ground-based imagery. The final optimal thresholds by VI and acquisition date can be found in Table 

A4. OSAVI was finally selected for background removal due to its frequent use in other studies, 

instead of NDVI*SR, which provided slightly lower RMSE values on the overall evaluation (Figure 

A1). 

2.6. Measurements of Crop Traits and Treatments Comprison Based on Linear Mixed Effects Models 

Crop traits were measured at each acquisition date to assess direct impacts of disease severity 

on plant biophysical and biochemical properties. Besides, these measurements allowed evaluation of 

general differences between treatments that could be potentially related not only to disease incidence 

but also to cultivar intrinsic characteristics. In addition to the estimation of ground cover (section 2.5), 

leaf chlorophyll content and canopy height were measured. Leaf chlorophyll content was derived 

based on SPAD (Soil Plant Analysis Development; [60]) meter readings (SPAD-502; Minolta 

Corporation Ltd., Osaka, Japan). In this case, one measurement was made per plant in each sampling 

unit selected for data acquisition. This measurement was made on one leaflet of the most developed 

leaf of the plant, totaling three readings in each sampling unit.  

Conversion from SPAD units to chlorophyll content per leaf surface area (µg∙cm-2) was 

performed based on the equation provided by Uddling et al. [61], and the average for three 

measurements made within each sampling unit was the final leaf chlorophyll content evaluated. 

Similarly, canopy height was measured from the potato ridge to the highest leaf in each plant and the 

average represented the final values used to describe the canopy in each sampling unit. It is worth 

noting that since leaf chlorophyll content and canopy height were measured in three SUs within each 

small experimental plot (Figure 1), ground cover was estimated considering the same SUs for all data 

acquisitions (i.e., from 37 to 78 DAP). Only SUs in the small plots were considered for treatment 

comparison. It is worth reminding that a more complete dataset (as indicated in section 2.2 and 
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comprising observations made in the small and large plots) was used to evaluate spectral changes 

over the growing season (as described in sections 2.7 and 2.8). 

Besides the crop traits listed above, values of Weighted Difference Vegetation Index (WDVI) 

were used as proxy to leaf area index (LAI), considering its strong relationship with this specific crop 

trait [62]. This approach was necessary to allow a better interpretation of spectral changes potentially 

related to the crop canopy structure. Therefore, in this manuscript reference to levels of LAI are made 

based purely on the spectral data, assuming that other canopy traits, such as leaf angle distribution, 

had lower impact on the results observed in comparison with changes related to LAI. This way, 

consideration related to canopy structure refers mainly to changes in LAI, except if indicated 

otherwise. 

The crop traits, together with vegetation indices providing the greatest discriminative potential 

between treatments in the last data acquisition, were used for assessing whether differences between 

treatments were significant in each acquisition date. For ranking vegetation indices according to their 

discriminative potential, logistic regression was used to classify all pixels within the measured SUs 

as corresponding to a given treatment (i.e., non-mixed or mixed systems). C-statistic [63,64] values 

were then calculated from the classification outputs for each VI and used for evaluation (larger values 

corresponding to greater discriminative potential). 

Statistical significance for differences observed between treatments were evaluated based on 

linear mixed effects models (LMMs; [65]) fitted separately to each response variable, comprising traits 

and VIs. As covariates used for modelling the variables of interest, treatment and acquisition date 

together with their interaction were included as fixed effects, while experimental block and sampling 

unit (SUs) ID (nested within block) were adopted as random effects in each model. Three blocks were 

considered in the analysis after rearranging the initial experimental set-up by excluding two plots 

from the last of the original blocks in the field (i.e., last experimental plot for each treatment, shown 

in Figure 1). This rearrangement was made in order to better represent the potential variability 

existent in the field (by dividing the area to be analyzed in a larger number of blocks), since the 

complete experiment could not be sampled. Temporal trends within the groups considered (SUs ID 

nested within blocks) were represented through an autocorrelation structure of order 1. Treatment 

comparison for each acquisition date was performed deriving marginal means for the models using 

contrasts calculated by the package emmeans [66] in R, while the LMMs were fitted using the nlme [67] 

package in the same environment. Selection of fixed and random effects for consideration (LMMs 

structure) and evaluation of model assumptions was made based on Akaike information criterion 

(AIC) and on residuals derived for each model. 

2.7. Descrition of Crop Canopy Spectral Variability through Simplex Volume Maximization (SiVM) 

The effects of late blight incidence on the potato canopy reflectance, related to pathogen 

development and plant defense response, were assessed using the matrix factorization approach 

described by Thurau et al. [68,69]. This method has been successfully applied in studies aiming to 

relate changes observed on the canopy reflectance with effects of water stress and disease infection 

in plants grown under laboratory or field conditions [8,11,44]. The first step of this approach consists 

of deriving a series of archetypal spectral signatures from the complete dataset comprising spectra of 

healthy and stressed plants in order to describe the variability observed. These archetypes are derived 

through convex constrained non-negative matrix factorization, and consequently, correspond to real 

measurements within the dataset (e.g., pixels from the images acquired). The general optimization 

problem targeted can be described as the minimization of the Frobenius norm between the original 

dataset and the reconstructed data through the matrix W of base vectors and the coefficients matrix 

H [8]. This is obtained during analysis by retaining only bases that contribute the most to maximize 

the volume of the simplex described by the vectors included in W. As a computing efficient 

alternative to this procedure, Thurau et al. [68,69] proposed the so called Simplex Volume 

Maximization (SiVM) method, which relies on distance geometry rather than on the simplex volume 

itself [8,70]. The matrix H of coefficients is obtained through constrained quadratic optimization and 
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describes the optimal abundance of each component W for reconstruction of the spectral signatures 

being modelled. 

In this study, the number of archetypes retained in W to represent the ground-based and UAV–

borne datasets to be analyzed was set empirically to 25, as performed by Wahabzada et al. [8] and 

Thomas et al. [11]. It was verified that this number of bases provided good reconstruction accuracy 

while avoiding the oversampling of the feature space, which may be beneficial considering 

reconstruction accuracy [71], but might bring problems during further analysis due to the so called 

“curse of dimensionality” [72]. Each dataset (i.e., ground-based and UAV images) for a given 

acquisition date was analyzed separately to mitigate impacts of changes in view of geometry and 

illumination conditions over time on analysis outputs. As an example, archetypes extracted for the 

ground-based and UAV datasets acquired 78 DAP are presented in Figure A2. Two pixels were 

chosen in a UAV image patch acquired on that date. Weights derived for reconstructing these pixel 

spectra from the archetypes are illustrated for both datasets (UAV- and ground-based images). 

The only difference between the steps involved in the application of SiVM to ground and UAV 

data was related to the inputs used for the selection of archetypes. While for UAV images all spectra 

extracted from the monitored areas were considered, for the ground-based data a pre-selection of 

spectra was performed based on the outputs of the segmentation (GMM) performed during 

background removal (section 2.4). For that, the spectral angle [73] between each spectrum in a given 

cluster and its “average spectra” (i.e., band-wise reflectance average) was calculated, and spectral 

signatures corresponding to the 1st, 25th, 50th, 75th, and 99th percentiles of spectral angle distance to the 

average were selected. The cluster-wise pre-selected spectra for all images were then used as input 

for the SiVM-based extraction of 25 archetypes, which finally represented the variability of ground-

based spectral data acquired on a specific date. Furthermore, Standard Normal Variate (SNV) [74] 

transform was applied to the ground-based spectral dataset before SiVM implementation, in order to 

minimize effects of illumination changes within the canopy on the analysis [75]. 

After the chosen number of bases was derived (W), the abundance coefficients (H) obtained for 

pixels from different treatments (i.e., non-mixed and mixed cultivation systems) or disease severity 

classes were used to estimate a probability density distribution for each group. In this study, the 

multivariate Dirichlet distribution was adopted and its parameters were estimated by maximum 

likelihood. With the probability distribution estimated, pixels in the image were mapped according 

to specific treatment or severity class based on the Bayes factor (i.e., log-likelihood ratio, in this case, 

LLR, since no prior information on the data distribution was taken into account), as described by 

Wahabzada et al. [8]. This mapping was performed comparing the difference between the logarithm 

of probabilities, for coefficients h corresponding to each spectral signature (i.e., pixel-wise 

comparison), within distributions from different treatments or severity classes considered. 

The description provided in this section is a simplified overview of the methodology 

implemented. For a more comprehensive explanation, including mathematical formulation and 

notation used, we refer to Thurau et al. [68,69], Wahabzada et al. [8], and Kersting et al. [70]. For most 

of the steps described in this section, open source libraries in Python were used, notably PyMF, to 

implement SiVM, and Dirichlet MLE, to estimate parameters for Dirichlet distributions. 

2.8. Pixel-wise Comparison Framework to Identify Relevant Spectral Information Assciatedto Late Blight 

Development 

For assessing the impact of disease development on ground-based and UAV data, two different 

approaches were adopted. First, considering the reduced number of images acquired at ground level 

only comparison between treatments (“non-mixed” and “mixed” cultivation systems, T1 and T2) was 

possible. In this case, all ground-based images acquired on a given date (n = 8) had their pixel-wise 

probability estimated considering distributions of coefficient H for T1 and T2. These probabilities 

were then compared using the LLR, as described in section 2.7. Probability distribution 

corresponding to T1 was considered as hypothesis H1 (“group of interest”) and compared to the null 

hypothesis H0 (“reference”) represented by probability estimated for T2, since healthier plants were 

expected to be observed in this treatment. A parallel was made between results obtained for ground 
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data and those observed for UAV-based imagery. However, the latter case comprised considerably 

more observations (as described in sections 2.2 and 2.3). 

Besides the comparison at treatment level, more specific evaluation was made for each disease 

severity class observed using data acquired by the UAV platform in the last two acquisitions (64 and 

78 DAP). In this case, the healthiest observations were adopted as null hypotheses (H0), during LLR 

calculation, for comparison with each severity class (classes with at least 10 observations, Table A5). 

Also in this case, only observations from a single treatment were used to represent a given severity 

class. Consequently, comparison between hypotheses H0 and H1 could be made within the same 

treatment for observation with relatively low disease severity levels (below 5.0% severity). For that, 

from observations made 64 DAP, only those from T1 were evaluated on this phase. In addition, for 

data acquired 78 DAP, two SUs from each treatment were eliminated from the analysis (as indicated 

in Table A5). 

To summarize, differences detected during the comparisons, LLR values for SUs from the classes 

of interest (H1) were grouped in discrete intervals (e.g., from 0 to 15, in steps of 0.5). This allowed 

representation of the gradual spectral changes associated with the increase in the association between 

spectral information and the specific group considered. In the case of treatments comparison, only 

SUs cultivated with T1 were taken into account to summarize the differences between spectral 

information relatively weakly associated with T1 (i.e., LLR values below 0.5) and that with stronger 

relation with this treatment (i.e., higher LLR values). Similarly, when focusing on the evaluation of 

different disease severity classes only image patches corresponding to SUs scored within the specific 

class of interest were evaluated. 

To further facilitate the interpretation of the outputs, the ratio between the average reflectance 

for each LLR interval and that corresponding to the first interval (i.e., lowest LLR values observed) 

was derived. This calculation was expressed in percentage and referred as “ratio”, as performed by 

Naidu et al. [76]. Besides this metric, the difference between the percentage of observations (number 

of pixels divided by the total) within a given LLR interval for the group of interest was subtracted 

from the percentage of observations in the same LLR interval for the reference group, a parameter 

referred as delta (Δ). In this case, the metric derived allowed visualization of proportional changes in 

the frequency of LLR values observed within the discrete intervals, considering the treatment or 

disease severity classes of interest in relation to the reference. Also, the cumulative absolute delta 

(delta total – Δt; i.e., sum of delta values) was calculated to give a general overview concerning the 

changes in LLR value distribution between treatments or between a given disease severity class and 

the healthier reference adopted. 

3. Results 

3.1. Evaluation of Crop Traits and Disease Severity over the Growing Season 

The crop development during the period evaluated was characterized by continuous decrease 

in leaf chlorophyll content coupled with a general increase in canopy height and ground cover 

(Figure 3a–c). Differences between treatments occurred mainly later than 64 days after planting 

(DAP), with higher leaf chlorophyll content, canopy height, and ground cover observed on the mixed 

cropping system (T2). Despite the higher values of leaf chlorophyll and of traits associated with 

canopy structure on T2 later in the growing season, lower values of these traits were observed for 

plants in this treatment during early crop development (i.e., first acquisition, 37 DAP), indicating a 

smaller initial growth rate for T2. 

Contrasts between treatments were not significant for chlorophyll content, while being more 

frequently significant for traits related to canopy structure (Figure 3a–c). In all cases, differences 

observed were generally larger and more significant in the last two evaluation dates (i.e., 64 and 78 

DAP). Differences observed for vegetation indices with relatively good discriminative potential for 

the different treatments (according to results presented in Table A6) followed similar patterns to 

those described by the crop traits (Figure 3d–f). It is worth noting that CIre (Chlorophyll Index red 

edge, Table A2) was selected due to its good discriminative potential for data corresponding to the 
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last two acquisitions, while having comparatively lower discriminative potential for the first 

acquisitions, a desirable feature in the application evaluated in this research since late blight was not 

observed in the field during the initial data collections.  

The relationship between crop traits and spectral information (vegetation indices) is further 

explored in Figure A3. The indices selected (CIre and REP) were both affected by changes in leaf 

chemistry and canopy structure and were not able to indicate alterations strictly associated to a single 

crop property. Besides CIre and REP, results for WDVI were also evaluated in the Figure 3f due to its 

close relationship with leaf area per unit of ground surface (i.e., LAI), an important trait related to 

canopy structure. While comparable trends are observed in the last two acquisitions between WDVI 

and the measured canopy properties (i.e., crop height and ground cover), in the initial evaluations 

(i.e., 37 and 50 DAP) the trend observed for WDVI is in part the opposite of that described by these 

crop traits (Figure 3, b–c). This indicates that ground cover and canopy height might not have been 

sufficient to describe all differences between treatments regarding canopy architecture (i.e., other 

canopy traits, such as LAI, varied between treatments), in particular for these first two data 

acquisitions. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3. Leaf chlorophyll content (a), canopy height (b), ground cover (c), and vegetation indices 

(Table A2), namely, CIre (Chlorophyll Index red edge, d), REP (Red Edge Position, e), and WDVI 

(Weighted Difference Vegetation Index, f) derived from UAV imagery, describing crop growth under 

different cultivation systems (T1 and T2, “non-mixed” and “mixed” treatments, respectively). Points 

indicate within plot measurements (n = 3 sampling units per plot), while each cross represent the 

average at plot level. Lines connect the average for each treatment over time. Numbers in blue 

correspond to the p-value for each acquisition date. Asterisks communicate the same p-values, 

indicating contrasts significant at 0.05 (*), 0.01 (**), and 0.001 (***). 

Changes on ground cover over time for sampling units (SUs) imaged using ground-based and 

UAV sensors during the growing season are presented in Figure A4. Values of vegetation index 

(OSAVI) in both cases agree with results presented in Figure 3 (d–f) and Figure A3 (d), with a general 
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reduction in chlorophyll content and in canopy structure-related traits on the last acquisition, in 

particular for the “non-mixed” system (T1). In addition, the visual correspondence between the 

datasets acquired by both sensing methods (Figure A4) indicate that despite potential image-to-image 

residual registration errors and view-geometry dissimilarities, comparison between images is valid 

in the context of this research. Figure A5a provides a quantitative comparison of OSAVI median 

values in the SUs evaluated corresponding to both sensing approaches (i.e., ground-based and UAV). 

Disagreement between the values observed are found mainly in the first acquisition (38 DAP), which 

may be related to residual background effects on the data corresponding to the UAV imagery due to 

its coarser resolution. 

Assessments of disease incidence and severity indicated considerable differences between 

treatments over time (Figure 4 and Table A5). Since the first late blight symptoms were identified in 

the field (64 DAP), SUs cultivated with the T1 presented higher levels of disease incidence or severity. 

Assessments made on the same dates in which UAV and ground-based data were acquired indicate 

that these datasets provide a good description of the early stages of disease development (up to 15% 

disease severity). The last assessment made together with a UAV flight (i.e., performed 78 DAP) 

corresponds to the date with the largest contrasts between treatments concerning leaf chlorophyll 

content and traits related to canopy structure, amongst all dates having UAV and ground-based 

imagery available (Figure 3 and 4). Therefore, crop traits followed the observed levels of disease 

severity and changes on vegetation biochemical and biophysical properties observed 64 and 78 DAP 

were potentially related to disease development. The association between disease severity and crop 

traits was also verified through the rank correlation coefficients calculated between disease severity 

classes and vegetation indices derived from UAV imagery acquired 64 and 78 DAP (Table A7). For 

instance, a negative correlation of approximately -0.55 was observed between disease severity and 

REP, a vegetation index related to leaf and canopy properties (Figure A3), indicating a considerable 

relationship between disease severity and canopy properties in this specific assessment date. 

Correlations between disease severity and vegetation indices corresponding to 64 DAP are 

substantially less strong and not significant in comparison with those obtained for 78 DAP (Table 

A7), which can be attributed to the lower levels of disease incidence and severity observed on this 

date. 

 

Figure 4. Distribution of visual disease scores into specific classes of late blight severity (according to 

approximate percentage of affected leaf area at sampling unit level) for each assessment date. T1 and 

T2 correspond to systems cultivated with a single cultivar (“non-mixed”) and with a mixture of 

different cultivars (“mixed”), respectively. Only assessments made 64 and 78 Days After Planting 

(DAP) were followed by acquisition of ground-based and UAV data (*). 

3.2. Assessment of General Spectral Changes Related to Different Cropping Systems and Late Blight 

Infection 
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In Figure 5, average reflectance is presented for pixels grouped in discrete intervals of LLR. In 

this case, higher LLR values indicate higher probability for coefficients h in distribution estimated for 

T1 in comparison to distribution estimated for T2. Although differences in spectra with relatively 

stronger relationship with T1 (i.e., higher probability in the distribution for T1), in comparison with 

spectra having weaker association with this treatment, could be detected by both sensing approaches, 

the relationship observed between spectral information and the treatment of interest (T1) using UAV 

imagery was generally less intense. For example, in results corresponding to the first data acquisition 

(37 DAP), considerable differences in the visible and near-infrared are observed when comparing the 

first LLR interval (Figure 5a, blue line) with other intervals (Figure 5a, color scale), for ground-based 

data. However, these differences were attenuated (i.e., lower variation indicated by ratio values and 

smaller range of LLR) in UAV images (Figure 5b). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e)  

 

(f) 
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Figure 5. Average reflectance for pixels from T1 (“non-mixed” system) grouped according to log-

likelihood ratio (LLR) in discrete intervals, between 0 to 15, in steps of 0.5. LLR, compares pixel-wise 

probability estimated for T1 (H1) in contrast to T2 (H0; “mixed” system). Ground (a,c,e,g) and UAV-

based (b,d,f,h) data are presented for all acquisition dates. Colors of the average spectral signatures 

indicate the average LLR value for pixels included in a given interval. Ratio indicates the results for 

the division of the reflectance (band-wise) corresponding to a given LLR interval by that from the 

interval with the lowest LLR values (i.e., pixels with LLR below 0.5; indicated by blue dashed line). 

Delta (Δ) corresponds to the percentage of observations (pixels) within a given LLR interval for T1 

subtracted from the percentage of observations in the same LLR interval for T2 (reference group). 

Delta is plotted in front of the average spectral signatures representing each LLR interval. Delta total 

(Δt) indicates absolute cumulated delta values. 

In addition, spectral variation observed for both data sources in the first acquisition (37 DAP) 

indicate that plants from T1 had potentially smaller leaf area index in comparison with those from 

T2 (i.e., lower reflectance in the NIR). This trend follows the values of WDVI observed at the sampling 

unit level on this date (Figure 3f). For images acquired 50 DAP (second data acquisition; Figure 5c–

d), results obtained using camera on-board of the UAV platform differ from those observed at ground 

level. While the patterns derived from UAV data (Figure 5-d) indicate mainly that plants from T1 had 

relatively larger leaf area index, results aligned with the ground truth (Figure 3f), ground-based 

images indicated in general a larger variability for plants in T1, i.e., with some areas of the canopy on 

T1 characterized by larger leaf area index (i.e., higher reflectance in the NIR) and others by the 

opposite characteristic. The third data acquisition (64 DAP) was characterized by small spectral 

differences between pixels with stronger and relatively weak association with T1, for both datasets 

(ground and UAV images) (Figure 5e,f). However, larger differences were detected between T1 and 

T2 by ground-based data in this date. Finally, comparable outputs between ground-based and UAV 

images (Figure 5g–h) were obtained for the last data acquisition (78 DAP). Both sensing approaches 

measured lower reflectance in the NIR together with higher reflectance in the visible for spectra with 

a stronger relationship with T1, following trends described by the ground truth observations (Figure 

3 and 4), i.e., potentially smaller leaf area index and lower leaf chlorophyll content coupled with 

higher levels of disease severity for plants in T1. 

In Figure A6, the pixel-wise LLR is presented for areas imaged using both sensing approaches 

(i.e., camera on handheld mode and on-board of UAV platform) from 37 to 78 DAP. Differences 

between treatments in the first two acquisitions (37 and 50 DAP) are small and related to cultivar 

intrinsic characteristics concerning mainly canopy structure, as already observed in Figure 5. 

Although late blight development started to be observed in the third acquisition (64 DAP), with 

higher disease incidence in plants cultivated with T1, spectral differences detected between 

treatments were small (Figure 5 and A6). In the last acquisition (78 DAP), late blight incidence and 

severity increased on plants cultivated with T1, affecting the canopy spectral response in comparison 

to T2. Pixels indicated with relatively higher LLR values on ground-based images can be found 

spread across different parts of the canopy, but especially in areas with reduction in canopy (i.e., LAI) 

or leaf structure (i.e., compact layers originating the interface between air and cells within the 
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mesophyll, as described by Jacquemoud et al. [77]) due to disease development (Figure 5g and A6g). 

Changes in leaf chlorophyll content also potentially occurred in areas affected by the disease, as 

indicated by variations observed in the green, red, and red-edge spectral regions in Figure 5g. UAV 

data followed the same patterns observed for ground-based images, with higher values of LLR for 

spectra corresponding to areas with smaller canopy and leaf structure, as well as lower leaf 

chlorophyll content, although differences between T1 and T2 are attenuated in the lower resolution 

UAV imagery (Figure 5h and A6h). A general quantitative assessment of the correspondence between 

ground- and UAV-derived LLR values is provided in Figure A5b. From the patterns described by the 

median LLR values, it is possible to observe that in general both data sources provided similar 

outputs, despite some differences concerning the distribution of the LLR values within the sampling 

units and the attenuation of the disease effects detected by the UAV imagery in comparison with the 

ground-based data (as described in Figure A6 and 5). 

Figure A7 illustrates the identification of areas from the canopy affected by late blight based on 

log-likelihood ratio for images acquired at ground level. It is worth noting that UAV imagery 

followed similar patterns observed on ground-based data, as observed in Figure A6, but the 

relationship with disease development was less pronounced and areas of the canopy potentially 

affected by the pathogen were eventually removed after background classification, since these areas 

were normally characterized by smaller leaf area index and ground coverage, which could result in 

higher spectral mixing between vegetation and background components. This may have affected the 

analysis outputs, however it was preferred to remove this information from the dataset to be 

analyzed, since otherwise the potential of the method implemented could be overestimated. 

3.3. Effects of Specific Late Blight Severity Levels on the Crop Spectral Response 

Different late blight severity classes were observed within each treatment. Therefore, a more 

specific evaluation of progressive effects of the diseased development on the canopy reflectance are 

of interest in order to better describe changes strictly related to the infection by the pathogen. 

In Figure 6, average reflectance for pixels within discrete intervals of LLR are described. In this 

case, LLR values correspond to the evaluation of SUs classified according to a specific disease severity 

level (H1) against healthier SUs used as reference (H0). Only small differences between spectra with 

relatively stronger relationship with diseased areas in contrast with those weakly associated with 

these patches are observed for disease severity up to 1.0% or between 1.0% and 2.5% (Figure 6a–b). 

Conversely, larger differences were detected for disease severity levels starting between 2.5% and 

5.0% until between 10.0% and 15.0% (Figure 6c–f). In these cases, differences are mainly observed in 

the red-edge and NIR spectral regions, indicating that wavelengths in this interval may have greater 

discriminative potential concerning reflectance measured for healthy and diseased areas. 

Spectral signatures corresponding to pixels with higher LLR for each severity class (i.e., 

“characteristic” spectral signatures  of each class) change as disease intensity increases, in particular 

when severity levels between 2.5% and 7.0% (Figure 6c–d) are compared with those between 7.0% 

and 15.0% (Figure 6e–f). These differences indicate that characteristic spectra of lower disease 

intensities (between 2.5% and 7.0%; Figure 6c–d) correspond mainly to areas with potentially smaller 

leaf area index, since reflectance in the NIR region is especially low in these cases. As disease severity 

increases, reflectance in the NIR also increases for characteristic spectra of diseased patches, which 

indicates that in part these spectral signatures correspond to areas with larger canopy architecture 

(i.e., LAI) in comparison with lower disease intensity areas.  
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Figure 6. Average reflectance for pixels within discrete intervals of log-likelihood ratio (LLR) between 

0 and 5.5, in steps of 0.5. LLR, in this case, compares pixel-wise probability estimated for diseased 

sampling units (SUs; H1;≤ 1.0%, ≤ 2.5%, ≤ 5.0%, ≤ 7.0%, ≤ 10.0% and ≤ 15.0% disease severity, in a–f, 

respectively) in contrast to healthier SUs (H0; only healthy plants for 64 DAP or disease severity below 

1.0% for 78 DAP). Colors of the spectral curves indicate the average LLR value for pixels included in 

a given interval. Ratio indicates the division of reflectance corresponding to a given LLR interval by 

that from the interval with the lowest LLR values (i.e., for pixels with LLR below 0.5; indicated by the 

blue line). Delta (Δ) corresponds to the percentage of observations (pixels) within a given LLR interval 

for SUs from a specific disease severity class subtracted from the percentage of observations in the 

same LLR interval for the healthier SUs used as reference. Delta is plotted in front of each average 

spectral signature for the corresponding LLR interval. Delta total (Δt) indicates absolute cumulated 

delta values. 

These trends are confirmed by Figure 7, which shows the distribution of LLR values for each 

severity class, in SUs imaged 64 and 78 DAP. Crop patches with disease severity between 2.5% and 

7.0% (Figure 7c,d) have higher LLR values concentrated in regions with low leaf area index, mainly 

in the boundary of the region retained during background removal. Conversely, patches with 

severity between 7.0% and 15.0% (Figure 7e,f) have pixels with higher LLR values spread in different 

areas of the sampling unit, although segments with low canopy structure (i.e., low LAI) in the 

boundary of the vegetated area are still frequently identified as strongly related to late blight infected 

plants. 
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(d) 

(e) 
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Figure 7. Distribution of log-likelihood ratio (LLR) within sampling units (SUs) scored for late blight 

development 64 and 78 DAP. Date of UAV image acquisition and corresponding disease severity class 

(DS) are indicated above the images representing eight SUs selected from those observed for each 

class. Crop patches cultivated with T1 (“non-mixed” system) are indicated by red frames and those 

cultivated with T2 (“mixed” system) by black frames (images chosen for illustration were randomly 

selected from those observed in each disease severity class, as indicated in Table A5). Diseased 

severity classes from up to 1.0% until between 10.0% and 15.0% are represented in images (a–f). Scale 

bars in the left upper corner of each image represent 25 cm. 

Pixels with the highest values of LLR for SUs with disease severity between 1.0% and 2.5% (low 

severity level; Figure 7b) are mostly concentrated in specific parts of the canopy. Since this severity 

class was exclusively observed in SUs cultivated with T2 (“mixed” system), areas with higher LLR in 

this case may be related to specific potato cultivar(s) with lower resistance to late blight. Therefore, 

characteristic traits for these cultivars may be the reason why differences between average spectra 

for diseased in contrast to healthier plants indicate potentially larger leaf area index (i.e., higher 

reflectance in the NIR) for areas related to disease incidence. 

Finally, the distribution of pixels with relatively higher LLR values in SUs with the lowest 

severity class considered (i.e., up to 1.0% severity; Figure 7a) are associated with areas with smaller 

leaf area index in the boundary between vegetation and background, or eventually spread in different 

parts of the sampling unit. Despite the fact that the characteristics observed are typical of disease 

development, the small spectral differences observed and low LLR values obtained indicate that these 

differences were small and of difficult detection (i.e., weak evidence of considerable contrast between 

healthy and diseased areas).  

In Figure 8, distribution of values from vegetation indices with relatively good performance 

(according to results in Table A8) concerning the discrimination between SUs with very low late 

blight incidence (≤ 1.0%; reference) from those with higher disease severity levels (between 2.5 and 
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5.0% and between 10.0 and 15.0% severity) are presented, for data acquired 78 DAP. It is possible to 

notice that considering all pixels for each disease severity class (Figure 8a,d,g), differences with 

respect to the healthier reference are observed only for the highest level of disease severity (≤ 15.0%). 

After selecting spectra according to their association with a given severity class (i.e., based on LLR 

values), differences between reference and other classes only increased for SUs within the ≤ 15.0% 

disease severity category when vegetation indices used were sensitive to chlorophyll content at leaf 

and canopy level (i.e., CIre and REP; Figure 8b,c,e,f). Discrimination between reference and relatively 

low disease severity (≤ 5.0% disease severity class) is only observed for vegetation index associated 

with canopy structure (i.e., WDVI; Figure 8g–i). This discrimination was improved after selecting 

spectral information more intensely related to the specific disease severity classes considered. 

Therefore, increased discriminative potential of selected spectra according to LLR values is 

observed, not only for higher disease severity levels but also for relatively low disease incidence (i.e., 

with disease severity between 2.5 and 5.0%). These results illustrate the increased potential for late 

blight severity assessment based on selected spectral information related to disease incidence. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

Figure 8. Distribution of vegetation indices (VIs; CIre (a–c); REP (d–f); WDVI (g–i)) values for 

sampling units within different disease severity (DS) classes. Only selected VIs providing relatively 

good discriminative potential between healthier references, and the DS classes considered (Table A8) 
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for UAV imagery acquire 78 DAP are presented. Green dots indicate pixels within a given DS class 

(from ≤ 1.0% up to between 10.0% and 15.0%), while red dots and red error bars correspond to median 

and standard deviation for these observations. Values in parentheses indicate the log-likelihood ratio 

(LLR) threshold used to selected pixels in a given percentile. Black dashed lines separate healthier 

observations (references – *) from other DS classes. Blue dashed lines indicate the average VI value 

for pixels included in the references. It is worth noting that for the percentiles, two distinct sets of 

pixels represent the reference, one for each DS class above 1.0% DS. 

3.4. Spatial Patterns of Visual Disease Assessment Compared with Outputs of Simplex Volume 

Maximization (SiVM) and Log-Likelihood Ratio Applied to UAV Imagery 

The distribution of disease severity scores for SUs assessed 78 DAP are presented in Figure 9. 

As also indicated in Figure 4, experimental plots cultivated with T1 were in general characterized by 

more intense development of late blight. SUs with relatively high disease severity levels (i.e., above 

10.0%) were generally located in patches with potentially lower leaf chlorophyll content and smaller 

canopy structure, as indicated by lower OSAVI values, which might be related with disease 

incidence, as also indicated by rank correlation between VIs and disease severity (Table A7). 

Association between disease severity and crop general vitality is less evident for lower disease 

severity levels, in particular for SUs with late blight severity below 5.0%. 

 

 

(a) (b) 

 

(c) (d) 

 

(e) (f) 
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(g) (h) 

Figure 9. Distribution of visual scores into specific classes of late blight severity (according to the 

approximate percentage of affected leaf area) in SUs evaluated 78 DAP. Experimental plots 1–8 are 

indicated by figures (a–h). Background images include values of OSAVI (Optimized Soil Adjusted 

Vegetation Index; VI) for pixels retained after vegetation segmentation and a false color composite 

(833, 663, and 609 nm as RGB bands). 

The corresponding LLR values for SUs assessed 78 DAP are presented in Figure 10, in this case 

considering 7.0% of late blight severity as hypothesis H1. SUs with higher disease severity levels (i.e., 

above 10%) were characterized by pixels with higher LLR values spread in different parts of the 

canopy, as also indicated in Figure 7. In contrast, SUs with lower severity levels have pixels with 

higher LLR values concentrated in patches with smaller leaf area index, in the boundary between the 

crop canopy and background. 

Visually comparing Figure 9 and 10, the association between LLR values and disease severity 

can be observed, notably with higher disease incidence in plots 1 (Figure 9a), 3 (Figure 9c), 7 (Figure 

9g), and 8 (Figure 9h), followed by higher LLR values in SUs located in these plots (Figure 10a,c,g,h). 

This trend can be verified in Table 2, which describes the rank correlation between LLR values and 

disease severity classes for the last two data acquisitions (i.e., 64 and 78 DAP). 

For 78 DAP, it is possible to notice that while distributions for low disease severity levels (below 

5.0% severity) result in LLR values loosely correlated with disease severity, relatively high disease 

severity classes yield distributions with corresponding LLR values better correlated with disease 

severity. This is probably due to the similarity observed between characteristic spectra (i.e., spectra 

from pixels with relatively high LLR) for disease severity classes above 5.0% severity, as described in 

Figure 6, which lead to a relatively good correlation between LLR values and disease severity for 

observations within these classes. It is worth noting that considering information corresponding to 

upper percentiles of LLR values did not improve the relationship between LLR and disease severity 

classes. This may be related to the same factor cited before, i.e., similarity between characteristic 

spectral response corresponding to SUs with higher disease severity levels and their relative 

dissimilarity with spectra characteristic of patches having lower disease incidence, which was not 

altered after selecting observations within upper percentiles of LLR. 

 

(a) 

 

(b) 
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(c) (d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 10. Log-likelihood ratio (LLR) for UAV data acquired 78 DAP (i.e., last data acquisition). LLR 

represents the comparison of pixel-wise probability considering distributions for diseased SUs (H1: ≤ 

7.0% severity) and a healthy reference (H0: up to 1.0% late blight severity). OSAVI values are indicated 

in grey scale (VI). Experimental plots 1–8 are represented in figures (a–h). 

Table 2. Kendall-tau correlation coefficients between disease severity classes (as ordinal variable) and 

median of log-likelihood ratio (LLR as continuous variable) at sampling unit level for assessment 

made 64 and 78 DAP. Values are given for each disease severity class used to derive probability 

distributions, which were compared with the distribution for the reference class (only healthy patches 

for 64 DAP and ≤ 1.0% severity for 78 DAP) during estimation of pixel-wise LLR. 

Dataset 

Disease severity class considered for LLR calculation 

64 DAP2  78 DAP2 

≤ 1.01  ≤ 2.51 ≤ 5.01 ≤ 7.01 ≤ 10.01 ≤ 15.01 

All pixels 0.249* 
 

0.020 0.321*** 0.592*** 0.519*** 0.522*** 

Upper 20th 

percentile of LLR 
0.286* 

 
-0.029 0.106 0.562*** 0.534*** 0.524*** 

Upper 10th 

percentile of LLR 
0.313* 

 
-0.038 0.074 0.556*** 0.537*** 0.516*** 

1 Significant at 0.05 (*), 0.01(**) or 0.001(***) level; 2 only observations from T1 considered for 64 DAP while data 

corresponding to both treatments were used for 78 DAP. 

A quantitative overview of the LLR values distribution according to the late blight incidence 

levels is provided in Figure 11. It is possible to notice that for low severity levels (i.e., below 5.0%, 

Figure 11a–c) the number of pixels with relatively high LLR is larger for the SUs scored with the 

severity level considered (black lines in Figure 11). At the same time, the number of pixels with 
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relatively high LLR values is smaller for SUs with lower or higher disease severity than the class 

considered (green and red lines in Figure 11). This indicates that characteristic spectral signatures for 

diseased SUs (i.e., corresponding to pixels with high LLR values) were relatively specific to each 

severity level in this case. Conversely, for SUs scored with higher severity levels (i.e., above 5%, 

Figure 11d–f), the number of pixels with relatively high LLR values increases progressively from SUs 

with lower disease severity levels (i.e., green lines) to SUs with higher disease severity levels (i.e., red 

lines) than the class considered. This indicates that characteristic spectral signatures for diseased 

areas are similar for severity classes corresponding to higher infection levels, considering the 

progression observed in the LLR distribution. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 11. Distribution of log-likelihood ratio (LLR) values derived for patches of UAV images 

acquired 64 and 78 DAP. Black lines correspond to LLR extracted from sampling units (SUs) within 

the late blight severity level (disease severity(DS)) considered as hypothesis H1 (≤ 1.0%, ≤ 2.5%, ≤ 

5.0%, ≤ 7.0%, ≤ 10.0% and ≤ 15.0% of disease severity in a–f, respectively), while comparing with 

healthier plants (H0, completely healthy for 64 DAP and ≤ 1.0% severity for 78 DAP). Green lines 

indicate the distribution of LLR values for SUs with lower severity levels than the class considered in 

each case (e.g., all sampling units with disease severity ≤ 1.0% in b). Red lines illustrate the distribution 

of LLR values for SUs with higher severity levels than the class considered in each case (e.g., all 

sampling units with > 2.5% of disease severity in b). 

Results presented in Figure 11 reflect outputs already presented before in Figures 6–10 and Table 

2, which indicate that lower disease severity classes had pixels with higher LLR values concentrated 

in patches with smaller leaf area index (Figure 7, 9, and 10), differing from SUs with higher late blight 

incidence, which were characterized by distribution of pixels with higher LLR values in different 

parts of the canopy. 
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4. Discussion 

Measurements of crop traits, described in section 3.1 (Figure 3 and A3), indicate that the first 

three data acquisitions (from 37 to 64 days after planting – DAP) were performed while crop growth 

progressed towards full canopy development, which occurred between 50 and 64 DAP. During this 

period, the main changes observed in crop traits were related to increase in leaf area index for plants 

cultivated in both treatments. Differences between treatments that were observed in early stages 

(between 37 and 50 DAP) can be attributed mainly to cultivar intrinsic characteristics. At 64 DAP, 

more substantial differences between treatments, concerning leaf chlorophyll content and canopy 

structural traits (e.g., ground cover), were observed, which may be related to initial stages of late 

blight development (Figure 4). In the last data acquisition (78 DAP), differences between treatments 

increased following the increase in disease severity in particular for T1 (i.e., “non-mixed” system), 

which confirms trends observed 64 DAP.  

The variability in crop development observed during the growing season, related to disease 

development or not, could be detected through optical imagery acquired using ground-based or UAV 

imaging setups. For most of the acquisition dates, patterns observed for ground-based data are 

comparable to those derived from UAV (Figure 5 and A6). However, in some cases disagreement 

was observed, in particular in the second and third data collection (50 and 64 DAP). Differences 

between analysis outputs resulting from ground-based and UAV data are mainly related to the 

higher spatial resolution of the ground-based imagery. The increased resolution allowed a better 

description of the variability present within the crop canopy, together with a better retention of this 

variability after background removal due to the potential lower degree of spectral mixing for this 

dataset. 

In addition, spectral variability related to disease incidence could be well described by ground-

based imagery (Figure 5 and A6a,c,e,g). On the other hand, UAV data indicated trends similar to 

those observed in the ground-based images, in particular for relatively high disease severity levels, 

but these trends were attenuated on this data source (Figure 5 and A6b,d,f,h). A potential limitation 

in sensitivity for data acquired at canopy level, and even at leaf level, if spatial resolution is reduced 

has been indicated by other authors [15,78]. However, in the present study it was observed that even 

at low levels of disease severity (between 2.5 and 5% severity), spectral information related to the 

disease incidence could be derived from radiometric measurements made by sensors on-board of a 

UAV platform (Figure 5, 6, 7 and A6), with relatively low spatial resolution (approximately 4–5 cm 

of ground sampling distance) in comparison with ground-based information (with 0.1–0.2 cm of 

spatial resolution). This indicates that spectral data acquired at canopy level with sub-decimeter 

resolution has potential to describe spectral changes related to disease incidence, in particular if 

analysis targeting the most related spectral information with diseased patches is used (Figure 8). 

Similar results have been reported in other studies regarding the use of UAV optical imagery to assess 

disease incidence in other crops [18,14,22]. Generally, in these studies, parametric statistical 

frameworks (e.g., analysis of variance and groups means test) are used to evaluate the discriminative 

potential of spectral information regarding disease incidence. This was performed here to compare 

treatments (Figure 3) but not to evaluate specific changes related to different disease severity levels. 

Implementing such analysis for evaluating the impact of different disease severity classes on the 

canopy reflectance was not possible in this research since the distribution of disease incidence classes 

differed between treatments and experimental blocks, which could lead to a biased evaluation in this 

case. On the other hand, the evaluation reported in Figures 3 and 8 indicates that discrimination 

between treatments and different disease severity levels based on aggregate information at sampling 

unit level (i.e., distribution of vegetation indices for the imaged patches), as frequently performed in 

other studies, is possible for relatively higher disease severity levels, although focusing on the 

identification of specific spectral information related to diseased areas improved the characterization 

of lower levels of disease severity through the spectral information gathered. 

An interesting method for late blight monitoring in potato based on optical imagery with very 

high resolution has been presented by Sugiura et al. [38]. The solution introduced by these authors 

provided accurate disease severity prediction based on RGB color transformation and pixel-wise 
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classification through threshold optimization procedure. However, these authors relied on color 

features rather than on reflectance measurements, which may reduce the flexibility of the approach 

proposed regarding its application under diverse data acquisition conditions (i.e., with changes in 

illumination and field of view, etc.), and when disease incidence occurs simultaneously with other 

abiotic or biotic stress factors. In this sense, optimization for different datasets acquired would be 

required. Therefore, using reflectance information rather than color-based features could allow 

mitigation of some of these limitations, in particular if coupled with methods proposed to 

compensate for illumination changes and to perform BRDF effects correction, as those described by 

Honkavaara et al. [47]. Also, using multi- or hyperspectral datasets may allow improvement of 

discrimination potential concerning the classification of healthy and diseased areas due to increased 

availability of features potentially related to the effects of disease incidence on the crop canopy traits. 

More recently, Duarte-Carvajalino et al. [39] performed machine learning-based retrieval of late 

blight severity in potato, using a very high resolution camera, similarly to Sugiura et al. [38] but using 

a modified set-up (acquiring images in blue, green, and NIR wavelengths instead of conventional 

RGB). They performed radiometric calibration for the acquired imagery, despite the limitations of the 

sensor system used, and included in their analysis datasets corresponding to different dates over the 

growing season. Performance comparable to that obtained by Sugiura et al. [38] was reported, in 

particular for models derived using Convolutional Neural Networks, indicating potential for similar 

applications in this context. 

In the present research, in contrast to results previously reported in the literature, an attempt is 

made to effectively relate disease development over time with spectral changes in a dataset composed 

of sub-decimeter resolution UAV optical imagery. From the spectral differences observed between 

treatments and disease severity classes (Figure 5, 6, 7 and A6), it is possible to conclude that disease 

incidence, even at relatively low levels, has direct effects on the canopy spectral response measured 

by sensors similar to that used in the study. On the other hand, intrinsic characteristics of different 

potato cultivars may potentially affect the spectral response observed and lead to spurious 

correlation between spectral data and disease severity observations, in particular for low late blight 

severity levels. This can be an important aspect to consider during the development of future 

modelling approaches, especially if based on data acquired in agronomic experiments with multiple 

cultivars. 

Spectral changes that could be associated with late blight development, mainly based on 

measurements realized on the last data acquisition (78 DAP), were characterized by reduced 

reflectance on all spectral bands measured using the UAV sensor (Figure 6). This indicates that 

changes detected were strongly related to alterations in the canopy and leaf structure [19]. In general, 

as the relationship between the spectral information and the disease severity levels became stronger 

(i.e., as LLR values increased), the reflectance decreased in all spectral bands for disease classes above 

2.5% severity. Expected spectral changes related to pigment content at leaf and canopy levels could 

mainly be identified in the red-edge region, which is also associated with canopy and leaf structural 

traits. Deviations in the red region, more directly related to changes in chlorophyll content (i.e., 

increase in reflectance for diseased vegetation due to lower chlorophyll content), were less evident 

even for higher levels of disease severity (i.e., above 2.5% severity). These facts indicate that the main 

areas that could be related to disease development were those with reduced canopy (i.e., LAI) and 

leaf (i.e., number of layers specifying air/wall interfaces within the leaf mesophyll) structure. Changes 

related to pigment content at leaf and canopy levels were less pronounced than changes related to 

canopy and leaf structural alterations. Figures 7–11 confirm these observations and indicate that 

extremely early alterations related to pigment content degradation in the infected tissues may be 

more difficult to detect using UAV imagery with the same characteristics as those used in this study. 

Conversely, alterations in the red and green regions could be observed on ground-based spectral 

measurements 64 and 78 DAP while, as already described, only small changes could be detected 

using the UAV imagery for very low disease severity levels on these dates (Figure 5 and 6). It is worth 

noting that for very early infection stage (≤ 1.0% disease severity) alterations in the visible part of the 

spectrum were observed in the UAV data (Figure 6a), but LLR values for the changes observed were 
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very small, indicating that these alterations would probably be difficult to detect in more general 

applications. Also, changes observed for disease severity between 1.0 and 2.5% (Figure 6b) followed 

the opposite trend of that expected, with overall increased reflectance in the Vis-NIR region for 

spectra related to the disease incidence (i.e., higher LLR values). This is probably due to the 

association between traits of specific susceptible cultivars(s) to disease incidence, which is indicated 

by higher values of LLR concentrated in specific spots within the crop canopy (Figure 7b), explaining 

the inverse trend observed. 

An important final aspect to consider is the relationship between the type of spectral information 

derived from the UAV imagery acquired and the outputs of the analysis relating spectral information 

with disease incidence and severity. The UAV data used as input for analysis, with results described 

in section 3, combines all data collected in a given location in the field during the UAV flight. This 

combined information was derived taking the pixel-wise average for the complete dataset acquire, 

i.e., considering all scenes obtained over each imaged area. This “average spectral data product”, as 

thoroughly discussed by Aasen and Bolten [3], is characterized by reduced influence of angular 

properties on the reflectance representing a given crop surface. While this is a desirable feature for 

spectral datasets used to detect very subtle changes in the canopy reflectance, as those related to early 

disease detection, some sensitivity may be lost regarding the characterization of lower parts of the 

crop canopy. This can potentially be a reason for the relatively low association between spectral 

information and disease incidence (i.e., low LLR values) for some image patches with relatively high 

disease severity (Figure 7). 

Studies focusing on the relationship between reflectance angular properties and crop trait 

estimation, as those performed by Roosjen et al. [5] using UAV imagery and Kong et al. [79] using 

point-based multi-angular spectral measurements, indicate that considering multiple view-angles 

may increase the potential for crop trait characterization, and that estimation of properties at lower 

parts of the crop canopy are better performed based on slightly off-nadir reflectance measurements. 

The latter is attributed to the fact that off-nadir measurements may have greater probability to 

correspond to reflected light having interacted with lower parts of the canopy, especially for 

wavelengths in the visible part of the spectrum. This fact may be particularly relevant for early late 

blight assessment, since the disease onset generally occurs in lower parts of the canopy, and therefore 

nadir oriented measurements, may miss the local changes in pigment content occurring in these 

areas. 

5. Conclusions 

In this study, the potential of radiometric readings in the optical domain to describe visual 

ratings regarding the development of potato late blight was evaluated from a perspective of the 

sensitivity of the spectral information to describe early changes occurring in the infected canopy 

areas. It was verified that optical data acquired at canopy level with sub-decimeter resolution has 

potential to provide useful information for detecting late blight incidence and assessing its severity 

in early stages of disease development (i.e., between 2.5 and 5.0 % disease severity). Despite these 

positive outputs, the main changes detected were related to crop canopy structural traits, and to a 

lesser extent, to pigment content. 

The evaluation performed here focused on post-visual disease symptoms and its relationship 

with changes in spectral response at canopy level. It was observed that although aggregated 

information at sampling unit level (i.e., distribution of vegetation indices values) allowed, to a certain 

extent, to differentiate contrasting treatments and disease severity levels, early detection of late blight 

might be difficult based on frameworks involving similar approaches. Conversely, better descriptive 

potential was observed when specific spectral information regarding a given treatment or disease 

severity level was identified through SiVM and LLR calculation. Based on these last methods, it was 

possible to identify patterns of spectral changes and their spatial arrangement in the imaged patches. 

These patterns were related to disease symptoms and their spatial distribution observed in ground-

based, very-high resolution imagery. In this regard, the main detectable changes observed by UAV 

imagery concerned canopy and leaf structural traits, and to a minor degree, pigment content also at 
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leaf and canopy levels. These facts indicate that late blight detection and severity assessment based 

on UAV imagery in the optical domain with sub-decimeter resolution may rely in particular on the 

identification of affected areas characterized by reduction in leaf and canopy structure. Relationship 

with leaf and canopy pigment content was less perceptible than changes related to structural traits. 

These observations are of interest if one intends to develop a specific framework for late blight 

detection and severity assessment based on optical imagery acquired at canopy level. In this case, 

including off-nadir spectral data and reflectance measurements in wavelengths in other spectral 

regions (i.e., green region), besides red and near-infrared, may increase sensitivity of the approach 

used, in particular concerning detection of changes in pigment content, considering the saturation 

effect normally observed in reflectance measurements in the red region under relatively high 

chlorophyll content levels. 
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Appendix A 

Table A1. Band-to-band registration accuracy (RMSE in pixels) within and between spectral band 

subsets for ground-based images. Results are summarized for each acquisition date indicating 

average (Avrg.) and range of RMSE values observed for the images acquired in a given date (n = 8 

sampling units). 

Regist. 

Method1 

Subset2 1 Subset2 1 – 2 Subset2 2 Subset2 2 – 3 Subset2 3 

Avrg. Range Avrg. Range Avrg. Range Avrg. Range Avrg. Range 

 37 DAP 

Raw 4.50 0.67 – 12.73 1.51 0.83 – 2.62 2.12 0.77 – 5.93 2.44 0.72 – 5.41 3.39 0.57 – 16.99 

I 1.16 0.58 – 2.98 0.91 0.78 – 1.05 0.94 0.60 – 3.31 0.85 0.77 – 0.95 0.93 0.55 – 1.77 

II 0.87 0.51 – 2.10 0.76 0.55 – 1.39 0.87 0.55 – 3.38 0.63 0.56 – 0.75 0.72 0.51 – 1.81 

 50 DAP 

Raw 7.23 0.61 – 27.08 2.19 0.95 – 4.62 2.90 0.92 – 18.30 2.17 1.00 – 3.47 5.14 0.89 – 18.03 

I 1.67 0.55 – 4.01 0.96 0.85 –1.27 1.14 0.78 – 2.44 1.02 0.88 – 1.30 1.24 0.65 – 2.51 

II 0.97 0.53 – 2.27 0.73 0.58 – 1.08 1.01 0.71 – 2.97 0.74 0.60 – 1.06 0.73 0.56 – 1.24 

 64 DAP 

Raw 4.94 0.52 – 18.32 1.99 0.72 – 3.29 2.29 0.70 – 7.53 1.91 1.14 – 3.28 3.33 0.61 – 10.57 

I 1.46 0.57 – 2.66 1.00 0.83 – 1.26 1.15 0.68 – 1.96 0.95 0.82 – 1.26 1.00 0.64 – 1.99 

II 1.10 0.54 – 2.18 1.37 0.67 – 2.17 1.34 0.66 – 3.40 0.68 0.59 – 0.84 0.76 0.58 – 1.28 

 78 DAP 

Raw 8.24 0.72 – 30.01 1.05 0.58 – 1.74 2.21 0.66 – 5.31 2.18 0.87 – 3.12 5.59 0.60 – 24.51 

I 2.07 0.58 – 4.56 0.98 0.67 – 1.22 1.30 0.68 – 3.52 1.07 0.90 – 1.28 1.52 0.65 – 2.97 

II 1.21 0.59 – 2.21 0.89 0.66 – 1.41 1.13 0.69 – 2.10 0.80 0.61 – 1.08 0.82 0.57 – 1.63 

1 – Registration (Regist.) methods: without registration (Raw); affine (I); displacement field (II). 2 – Subset 1 comprises 12 

bands, between 503 and 660 nm; subset 2 is six bands, between 672 and 750; and subset 3 is ten bands, from 763 to 893 nm. 

Table A2. Vegetation indices used in this study. 

Vegetation Index (VI) 
Formulation2 

Acq. 

level3 

Sensitivity 

(scale)4 
Ref.5 

Name Acron.1 
Anthocyanin 

Reflectance 

Index 
ARI �

1

R550
-

1

R700
� R770 G ant (L) [80,81] 

Carotenoids 

Index green Carg �
1

R515
-

1

R565
� R770 G car (L) [80,82] 

Car red edge Carre �
1

R515
−

1

R700
� R770 G car (L) [80,82] 

Chlorophyll 

Index green CIg 
R780

R550
-1 G chl (L) [80,82] 

CI red edge CIre 
R780

R710
-1 A, G chl (L) [80,82] 

Chlorophyll 

Vegetation 

Index 
CVI 

R870 R550⁄

R670 R550⁄
 G chl (L) [83] 

Difference 

Vegetation 

index 
DVI R800-R680 A, G chl (L) [84] 

Double 

Difference Index DD (R749-R720)-(R701-R672) A, G chl (L) [85] 

Greenness Index GI 
R554

R677
 G 

chl, LAI, chl x 

LAI (L, C) 
[86] 



Remote Sens. 2019, 11, 224 30 of 46 

 

Green 

Normalized 

Difference 

Vegetation 

Index 

GNDVI1 to 

3 

R875 - R560

R875+ R560
 ; 

R800 - R550

R800+ R550
 ; 

R750 - R550

R750+ R550
 G 

chl, LAI, chl x 

LAI (L, C) 
[87] 

Greenness 

Vegetation 

Index 
GVI 

R682 - R553

R682+ R553
 G 

chl, LAI, chl x 

LAI (L, C) 
[88] 

Lichtenthaler 

Index LIC 
R800 - R680

R800+ R680
 A, G 

chl, LAI, chl x 

LAI (L, C) 
[89] 

Modified 

Chlorophyll 

Absorption in 

Reflectance 

Index 

MCARI [(R700- R670)-0.2 (R700- R550)] �
R700

 R670
� G chl (L) [90] 

MCARI red 

edge MCARIre [(R750- R705)-0.2 (R750- R550)] �
R750

 R705
� G chl (L) [91] 

– MCARI2 

1.5[2.5(R800- R670)-1.3 (R800- R550)]

�(2R800+1)2-�6R800-5�R670�-0.5 

 
G LAI (C) [92] 

– MCARI/ 

OSAVI 

[(R700- R670)-0.2 (R700- R550)] �
R700

 R670
�

(1+0.16) 
(R800- R670)

(R800+R670+0.16)
 

 G chl (L) [90] 

MCARI/OSAVI 

red edge 
MCARI/ 

OSAVIre 

[(R750- R705)-0.2 (R750- R550)] �
R750

 R705
�

(1+0.16) 
(R750- R705)

(R750+R705+0.16)
 

 G chl (L) [91] 

– Maccioni 
R780- R710

R780- R680
 A, G chl (L) [93] 

Modified Simple 

Ratio MSR1 and 2 �
R800

R670

-1� �
R800

R670

�
0.5

+1 ;�  �
R750

R705

-1� �
R750

R705

�
0.5

+1�  A, G chl (L) [91,94] 

MERIS 

Terrestrial 

Chlorophyll 

Index 

MTCI 
R754- R709

R709- R681
 A, G 

chl, LAI, chl x 

LAI (L, C) 
[95] 

Modified 

Triangular 

Vegetation 

Index 

MTVI 1.2[1.2(R800-R550)-2.5(R670-R550)] G 
chl, LAI, chl x 

LAI (L, C) 
[92] 

Normalized 

Difference Red 

Edge Index 
NDRE 

R790 - R720

R790 + R720
 A, G chl (L) [96] 

Normalized 

Difference 

Vegetation 

Index 

NDVI 
R800 - R670

R800+ R670
 A, G 

chl, LAI, chl x 

LAI (L, C) 
[97] 

NDVI red edge NDVIre 
R750 - R705

R750+ R705
 A, G 

chl, LAI, chl x 

LAI (L, C) 
[98] 

– NDVI * SR 
R800

2 - R670

R800+ R670
2

 A, G LAI (C) [99] 
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Optimized Soil 

Adjusted 

Vegetation 

Index 

OSAVI (1+0.16)
(R800-R670)

(R800+R670+0.16)
 A, G 

chl, LAI, chl x 

LAI (L, C) 
[100] 

OSAVI red edge OSAVIre (1+0.16)
(R750-R705)

(R750+R705+0.16)
 A, G 

chl, LAI, chl x 

LAI (L, C) 
[91] 

Photochemical 

Reflectance 

Index 
PRI 

R570- R531

R570+ R531
 G 

xan, car, 

car/chl, LAI (L, 

C) 

[101] 

Pigment Specific 

Normalized 

Difference 
PSND 

R800- R635

R800+ R635
 A, G 

chl, LAI, chl x 

LAI (L, C) 
[102] 

Plant Senescence 

Reflectance 

Index 
PSRI 

(R680-R500)

R750
 G 

chl, car, car/chl 

(L) 
[103] 

Pigment Specific 

Simple Ratio PSSR1 and 2 
R800

R650
 ; 

R800

R635
 A, G chl (L) [102] 

– PSSR3 
R800

R500
 G car (L) [102] 

Ratio Analysis 

of Reflectance 

Spectra 

RARS1 and 

2 

R675

R700
 ; 

R675

(R650×R700)
 A, G chl (L) [104] 

– RARS3 
R760

R500
 G car (L) [104] 

Renormalized 

Difference 

Vegetation 

Index 

RDVI 
R800 - R670

(R800 + R670)2
 A, G 

chl, LAI, chl x 

LAI (L, C) 
[105] 

Red Edge 

Position REP 700 + 40
[(R670+ R780) 2⁄ ]-R700

R740- R700
 A, G 

chl, LAI, chl x 

LAI (L, C) 
[106] 

Red Green Index RGI 
R690

R550
 G car (L) [86] 

Structure 

Insensitive 

Pigment Index 
SIPI 

R800- R450

R���+ R650
 G chl (L) [107] 

Simple Ratio SR1 
R752

R690
 A, G chl (L) [98,108] 

– SR2 to 6 
R800

R675
 ; 

R750

R700
 ; 

R750

R550
 ; 

R700

R670
 ; 

R690

R655
 G chl (L) 

[84,98,1

08–110] 

Transformed 

Chlorophyll 

Absorption 

Ratio Index 

TCARI 3 �(R700- R670)-0.2 (R700- R550) �
R700

 R670
�� G chl (L) [111] 

TCARI red edge TCARIre 3 �(R750- R705)-0.2 (R705- R550) �
R750

 R705
�� G chl (L) [91] 

– TCARI/ 

OSAVI 

3 �(R700- R670)-0.2 (R700- R550) �
R700

 R670
��

(1+0.16) 
(R800- R670)

(R800+R670+0.16)
 

 G chl (L) [111] 
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TCARI/OSAVI 

red edge 
TCARI/ 

OSAVIre 

3 �(R750- R705)-0.2 (R750- R550) �
R750

 R705
��

(1+0.16) 
(R750- R705)

(R750+R705+0.16)
 

 G chl (L) [91] 

Triangular 

Chlorophyll 

Index 
TCI 1.2(R700 R550⁄ )-1.5(R670 R550⁄ )×�R700 R670⁄  G chl (L) [112] 

– TCI/OSAVI 

1.2(R700 R550⁄ )-1.5(R670 R550⁄ )×�R700 R670⁄

(1+0.16) 
(R800- R670)

(R800+R670+0.16)

 G chl (L) [112] 

Triangular 

Vegetation 

Index 
TVI 0.5[120(R750-R550)-200(R670-R550)] G 

chl, LAI, chl x 

LAI (L, C) 
[113] 

Weighted 

Difference 

Vegetation 

Index 

WDVI 

����  −  (� ×  ����); 

C= 
RSoil870

RSoil670
 

A, G LAI (C) [114] 

1 Acron. = Acronyms for VIs names; 2 Rw = reflectance in the spectral band centered in w, RSoilw = reflectance of bare soil in 

the spectral band centered in w. 3 Acquisition (Acq.) level of the data used for calculation: airborne (A) or ground-based (G); 

4 chl = leaf chlorophylls content, LAI = leaf area index, chl x LAI = canopy chlorophylls content, xan = xantophylls, car = 

carotenoids, car/chl = ratio between carotenoids and chlorophylls, L = leaf scale, C = canopy scale; 5 References in the 

literature (Ref.) for the VIs formulations. 

Table A3. Overview of vegetation segmentation procedure for ground-based images. 

DAP 

Pixels labelled as 

vegetation in the 

training data (%) 
Retained vegetation indices 

(Table A2) used for binary 

classification after regularization 

Ground cover estimates after image clustering 

Calibration 

dataset 

Test 

dataset 

Percentile (%) of 

probability 

estimate (for 

cluster-wise class 

assignment) 

Root mean squared error 

(% of ground cover) 

Calibration 

dataset 

Test 

dataset 

37 29.1 20.7 
CVI, PSSR1, PSSR2, PSSR3, 

RARS3, REP, SR1, SR3, TVI 37.5 2.07 2.56 

50 73.0 64.8 

CVI, PSSR1, PSSR2, PSSR3, 

RARS2, RARS3, REP, SR1, SR3, 

TVI 
59.0 2.41 2.09 

64 67.1 92.0 
CVI, PSSR1, RARS2, RDVI, REP, 

SR1, TVI 60.0 3.51 2.48 

78 82.1 81.8 
CVI, MTCI, PSSR1, PSSR2, PSSR3, 

RARS2, RARS3, REP, SR1, TVI 
85.0 1.56 2.95 
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Figure A1. RMSE for ground cover retrieval at SU level by applying vegetation index (VI) threshold 

to the UAV images. Values after VI labels in the graph indicate the median RMSE for the respective 

index, considering the validation dataset (i.e., four sampling units per acquisition date). 

Table A4. Vegetation indices (VIs; Table A2) thresholds obtained after optimization for background 

removal in UAV images. Different values were derived for each acquisition date in order to adapt 

background removal to crop development and measurement conditions. Results are ordered 

following the segmentation performance presented in Figure A1. 

VI 37 DAP 50 DAP 64 DAP 78 DAP 

NDVI*SR 0.064 0.287 0.204 0.192 

OSAVI 0.493 0.679 0.647 0.623 

DD 0.057 0.107 0.085 0.067 

DVI 0.202 0.342 0.259 0.269 

WDVI 0.182 0.340 0.252 0.253 

NDVI 0.620 0.779 0.828 0.783 

PSSR1 4.269 8.088 10.630 8.245 

MSR1 2.582 3.490 3.952 3.520 

PSND 0.616 0.764 0.802 0.738 

PSSR2 4.214 7.491 9.114 6.637 

SR1 3.384 5.893 7.863 6.186 

LIC 0.563 0.722 0.783 0.730 

OSAVIre 0.247 0.393 0.364 0.288 

MTCI 2.234 2.640 2.348 1.414 

REP 712.885 719.069 720.956 718.168 

Maccioni 0.717 0.740 0.712 0.601 

RARS1 0.826 0.794 0.784 0.782 

CIre 0.925 1.673 1.694 1.052 

NDRE 0.316 0.455 0.458 0.345 

MSR2 1.621 1.967 1.989 1.701 

NDVIre 0.296 0.435 0.443 0.331 

RDVI 1.410 1.803 2.598 2.111 

RARS2 10.172 16.311 29.685 20.889 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure A2. Archetypes derived for ground-based (b) and UAV (e) images acquired 78 DAP (color 

coded from green to red according to average reflectance in the NIR). In the same graphs (a,e) spectra 

for two pixels selected from a UAV image patch corresponding to T2 (mixed system) are also 

described (green and red dashed lines with dots). The weighting for reconstruction of these spectra 

based on the archetypes are described in the radar plots for the ground-based (c) and UAV (f) data. 

The areas (green and red squares) corresponding to the selected UAV pixels (d) in the ground-based 

image (a) had their spectra and weights extracted and averaged to represent comparable information 

to that obtained for UAV data. Colors on (a) and (d) indicate values of OSAVI (Vegetation Index, 

Table A2; VI) for the segmented vegetation. 

Table A5. Distribution of scores given at sampling unit level during disease assessment. Number of 

sampling units (SUs) assigned to a given class are indicated for each acquisition date, together with 

the number of imaged SUs using the spectral sensor in handheld mode (in parentheses). Numbers in 

red indicate SUs not used for evaluating the effects of different disease severity classes on the crop 

spectral response (see section 2.8). 

T
re

a
t.

1  Disease severity class (%) 

0 ≤ 1 ≤ 2.5 ≤ 5 ≤ 7 ≤ 10 ≤ 15 ≤ 25 ≤ 50 ≤ 75 ≤ 90 ≤ 97.5 > 97.5 

 37 DAP 

I 20 (4) – – – – – – – – – – – – 

II 20 (4) – – – – – – – – – – – – 

 50 DAP 

I 20 (4) – – – – – – – – – – – – 

II 20 (4) – – – – – – – – – – – – 

 64 DAP 

I 28 (3) 16 (1) – – – – – – – – – – – 
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II 35 (4) 9 – – – – – – – – – – – 

 70 DAP 

I 9 32 3 – – – – – – – – – – 

II 32 12 – – – – – – – – – – – 

 73 DAP 

I – – 14 11 9 6 – – – – – – – 

II 5 14 16 5 – – – – – – – – – 

 78 DAP 

I – – – 2 16 (1) 11 (1) 14 (2) – 1 – – – – 

II 2 8 (1) 24 (1) 8 (2) 2 – – – – – – – – 

 83 DAP 

I – – – – – – 2 2 9 11 19 1 – 

II – – 1 1 1 4 9 13 12 3 – – – 

 86 DAP 

I – – – – – – – – – – 8 29 – 

II – – – – – – – 1 39 – – – – 

1 Treat. I – plots with one single cultivar (“non-mixed”); Treat. II – plots with a mix of cultivars (“mixed”). 

Table A6. C-statistic for pixel-wise binary classification according to T1 (“non-mixed” system) or T2 

(“mixed” system) in each acquisition date using vegetation indices (VIs; Table A2) as independent 

variables. Only results concerning UAV-derived spectra and sampling units selected for validation of 

the logistic regressions are reported. Results are ordered (parentheses) according to values of C-

statistic for the last acquisition (78 DAP). 

VI 
37 DAP 50 DAP 64 DAP 78 DAP 

Group I – VIs optimized to estimate leaf chlorophyll content 

MSR2 0.642 (7) 0.516 (12) 0.601 (4) 0.761 (1) 

SR1 0.716 (3) 0.528 (9) 0.605 (1) 0.756 (2) 

CIre 0.62 (9) 0.523 (10) 0.604 (3) 0.752 (3) 

NDRE 0.62 (10) 0.523 (11) 0.604 (2) 0.752 (4) 

PSSR1 0.712 (5) 0.555 (7) 0.598 (5) 0.739 (6) 

MSR1 0.712 (4) 0.555 (6) 0.598 (6) 0.739 (5) 

MAC 0.565 (12) 0.564 (5) 0.588 (7) 0.728 (7) 

PSSR2 0.752 (2) 0.549 (8) 0.559 (8) 0.713 (8) 

DD 0.596 (11) 0.567 (4) 0.507 (11) 0.617 (9) 

DVI 0.641 (8) 0.571 (3) 0.497 (12) 0.608 (10) 

RARS2 0.803 (1) 0.584 (2) 0.553 (9) 0.604 (11) 

RARS1 0.67 (6) 0.608 (1) 0.52 (10) 0.527 (12) 

 Group II – VIs optimized to estimate canopy traits 

REP 0.693 (5) 0.513 (11) 0.632 (1) 0.767 (1) 

NDVIre 0.642 (6) 0.516 (10) 0.601 (3) 0.761 (2) 

LIC 0.71 (4) 0.525 (9) 0.61 (2) 0.755 (3) 

OSAVIre 0.533 (10) 0.533 (8) 0.565 (6) 0.749 (4) 

MTCI 0.529 (11) 0.558 (5) 0.584 (5) 0.739 (5) 

NDVI 0.712 (3) 0.555 (6) 0.598 (4) 0.739 (6) 
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PSND 0.752 (2) 0.549 (7) 0.559 (7) 0.713 (7) 

OSAVI 0.545 (9) 0.573 (4) 0.515 (9) 0.654 (8) 

NDVI*SR 0.576 (8) 0.574 (1) 0.495 (11) 0.619 (9) 

WDVI 0.62 (7) 0.573 (3) 0.508 (10) 0.614 (10) 

RDVI 0.789 (1) 0.573 (2) 0.517 (8) 0.538 (11) 

 

(a) 

   

(b) 

   

(c) 

   

(d) 

   

(e) 
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Figure A3. Linear regression (fitted by ordinary least squares) between crop traits and vegetation 

indices (VIs = CIre, REP, WDVI, and OSAVI; a–d) and between WDVI and other VIs (e). 

Prediction and confidence intervals (95%) are presented in blue dashed lines. Colors from 

green to red indicate time of acquisition (from 37 to 78 DAS). Dots and triangles correspond 

to the non-mixed and mixed cropping system, respectively. Only the last three acquisitions 

are taken into account for evaluating the relationship between traits and VIS (a–d), all the 

data are considered for the comparison between WDVI and other VIs (e). 

 

(a) 

 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 
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Figure A4. Ground-based (a,c,e,g) and UAV (b,d,f,h) imagery for SUs over the growing season. SUs 

cultivated with T1 (“non-mixed”) are represented in red frames and images corresponding to T2 

(“mixed”) in black frames. False color composites (828, 660, and 607 nm as RGB for ground-based and 

nearest bands for UAV images) are displayed on the background and foreground shows OSAVI (VI) 

after vegetation segmentation. Scale bars (left upper corners) indicate 25 cm. For 64 DAP, frames in 

dashed lines indicate SUs not measured during other acquisitions. 

 

 

(a) 

 

(b) 

Figure A5. Linear regression (fitted by ordinary least squares) between ground-based and UAV data 

(OSAVI, a; LLR, b) corresponding to the median values for eight SUs followed during the growing 

season. Prediction and confidence intervals (95%) are presented in blue dashed lines. Red dashed line 

indicate the 1:1 diagonal line. Dots correspond to the non-mixed treatment and triangles to the mixed 

cropping system. Colors from green to red indicate time of acquisition (from 37 to 78 DAS). 

Table a7. Kendall-tau correlation coefficients between disease severity classes (as ordinal variable) 

and median of vegetation indices (VIs; as continuous variable) for UAV data at sampling unit level 

for assessment made 64 and 78 DAP. 

Dataset 
CIre1 REP1 WDVI1 

64 DAP2 

All pixels -0.172 -0.151 -0.132 

Upper 20th percentile 

of VI values 
-0.147 -0.144 -0.071 

Upper 10th percentile 

of VI values 
-0.147 -0.141 -0.098 

 78 DAP2 

All pixels -0.534*** -0.549*** -0.479*** 

Upper 20th percentile 

of VI values 
-0.509*** -0.518*** -0.461*** 

Upper 10th percentile 

of VI values 
-0.486*** -0.499*** -0.464*** 

1 Significant at 0.05 (*), 0.01(**) or 0.001(***) level; 2 only observations from T1 considered for 64 DAP while data 

corresponding to both treatments were used for 78 DAP. 
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Table A8. C-statistic for pixel-wise binary classification according to two specific disease severity (DS) 

classes (DS between 2.5 and 5.0% and between 10.0 and 15.0%) in contrast to a healthier reference (DS 

up to 1.0%), for the last acquisition date (78 DAP). Only results concerning UAV-acquired spectra and 

sampling units (SUs) selected for validation of the classification approach are reported. Results are 

ordered (parentheses) according to values of C-statistic for all pixels within the SUs considered. 

Results concerning the selection of pixels within the upper 20th and 10th percentiles of log-likelihood 

ratio (LLR) values indicating association with a given DS class are also presented. 

Vegetation 

Index 

All data 20th percentile of LLR 10th percentile of LLR 

DS ≤ 5.0 % DS ≤ 15.0 % DS ≤ 5.0 % DS ≤ 15.0 % DS ≤ 5.0 % DS ≤ 15.0 % 

Group I – leaf chlorophyll content related 

MSR2 0.583 (5) 0.839 (1) 0.550 (7) 0.936 (1) 0.568 (4) 0.944 (3) 

NDRE 0.546 (10) 0.828 (2) 0.450 (12) 0.928 (3) 0.431 (12) 0.948 (1) 

CIre 0.552 (9) 0.828 (3) 0.466 (11) 0.933 (2) 0.433 (11) 0.945 (2) 

MAC 0.598 (3) 0.802 (4) 0.540 (9) 0.912 (4) 0.441 (10) 0.943 (4) 

SR1 0.574 (6) 0.802 (5) 0.583 (5) 0.844 (5) 0.529 (7) 0.786 (5) 

PSSR1 0.574 (7) 0.771 (6) 0.568 (6) 0.803 (8) 0.521 (8) 0.746 (6) 

MSR1 0.572 (8) 0.769 (7) 0.584 (4) 0.820 (6) 0.513 (9) 0.744 (7) 

DD 0.609 (2) 0.756 (8) 0.693 (2) 0.703 (10) 0.616 (2) 0.722 (9) 

DVI 0.622 (1) 0.726 (9) 0.715 (1) 0.806 (7) 0.641 (1) 0.562 (12) 

PSSR2 0.494 (11) 0.72 (10) 0.548 (8) 0.763 (9) 0.534 (6) 0.733 (8) 

RARS2 0.592 (4) 0.509 (11) 0.654 (3) 0.572 (11) 0.583 (3) 0.669 (10) 

RARS1 0.482 (12) 0.484 (12) 0.537 (10) 0.556 (12) 0.546 (5) 0.603 (11) 

 Group II – canopy traits related 

OSAVIre 0.495 (10) 0.849 (1) 0.567 (8) 0.971 (1) 0.503 (11) 0.962 (1) 

REP 0.518 (9) 0.837 (2) 0.532 (11) 0.901 (4) 0.518 (8) 0.883 (4) 

NDVIre 0.582 (6) 0.837 (3) 0.556 (9) 0.939 (2) 0.548 (7) 0.952 (2) 

MTCI 0.637 (1) 0.812 (4) 0.606 (5) 0.929 (3) 0.576 (5) 0.942 (3) 

LIC 0.580 (7) 0.804 (5) 0.598 (6) 0.855 (5) 0.572 (6) 0.804 (5) 

NDVI 0.572 (8) 0.768 (6) 0.574 (7) 0.806 (6) 0.508 (10) 0.742 (6) 

OSAVI 0.615 (4) 0.752 (7) 0.692 (4) 0.752 (8) 0.656 (2) 0.631 (8) 

WDVI 0.627 (2) 0.747 (8) 0.746 (1) 0.722 (9) 0.708 (1) 0.589 (9) 

NDVI*SR 0.614 (5) 0.732 (9) 0.700 (3) 0.721 (10) 0.649 (3) 0.580 (10) 

PSND 0.484 (11) 0.721 (10) 0.547 (10) 0.768 (7) 0.515 (9) 0.730 (7) 

RDVI 0.615 (3) 0.669 (11) 0.719 (2) 0.609 (11) 0.632 (4) 0.517 (11) 
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(a) 

 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

Figure A6. Log-likelihood ratio (LLR) for ground-based (a,c,e,g) and UAV imagery (b,d,f,h). LLR, in 

this case, indicates the comparison of pixel-wise probability estimated for T1 (H1; “non-mixed” 

system) in contrast to T2 (H0; “mixed” system). SUs cultivated with T1 are represented with red 

frames and scale bars in the left upper corner of each image correspond to 25 cm. For 64 DAP, frames 

represented in dashed lines indicate SUs not measured during other acquisitions and which cannot 

be compared over time. 
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(a) 

 

(b) 

 

(c) 

Figure A7. Imaged patch relatively highly affected by late blight 78 DAP (i.e., first sampling unit 

represented in Figure A6g). Image (a,b) corresponds to false color composite for ground image after 

background removal (620, 542, and 503 nm as RGB bands) and image (c) indicates log-likelihood ratio 

for pixels in the highlighted area in (a, red square), also depicted in (b). 
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