

Remote Sens. 2019, 11, 223; doi:10.3390/rs11030223 www.mdpi.com/journal/remotesensing

Article

Deep Convolutional Capsule Network for

Hyperspectral Image Spectral and Spectral-Spatial

Classification

Kaiqiang Zhu 1, Yushi Chen 1,*, Pedram Ghamisi 2, Xiuping Jia 3 and Jón Atli Benediktsson 4

1 School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China;

zhukq1995@163.com
2 Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology,

09599 Freiberg, Germany; p.ghamisi@gmail.com
3 School of Engineering and Information Technology, The University of New South Wales, Canberra,

ACT 2600, Australia; x.jia@adfa.edu.au
4 Faculty of Electrical and Computer Engineering, University of Iceland, IS-107 Reykjavik, Iceland;

benedikt@hi.is

* Correspondence: chenyushi@hit.edu.cn;

Received: 20 December 2018; Accepted: 16 January 2019; Published: 22 January 2019

Abstract: Capsule networks can be considered to be the next era of deep learning and have recently

shown their advantages in supervised classification. Instead of using scalar values to represent

features, the capsule networks use vectors to represent features, which enriches the feature

presentation capability. This paper introduces a deep capsule network for hyperspectral image

(HSI) classification to improve the performance of the conventional convolutional neural networks

(CNNs). Furthermore, a modification of the capsule network named Conv-Capsule is proposed.

Instead of using full connections, local connections and shared transform matrices, which are the

core ideas of CNNs, are used in the Conv-Capsule network architecture. In Conv-Capsule, the

number of trainable parameters is reduced compared to the original capsule, which potentially

mitigates the overfitting issue when the number of available training samples is limited. Specifically,

we propose two schemes: (1) A 1D deep capsule network is designed for spectral classification, as a

combination of principal component analysis, CNN, and the Conv-Capsule network, and (2) a 3D

deep capsule network is designed for spectral-spatial classification, as a combination of extended

multi-attribute profiles, CNN, and the Conv-Capsule network. The proposed classifiers are tested

on three widely-used hyperspectral data sets. The obtained results reveal that the proposed models

provide competitive results compared to the state-of-the-art methods, including kernel support

vector machines, CNNs, and recurrent neural network.

Keywords: convolutional neural network (CNN); deep learning; capsule network; hyperspectral

image classification

1. Introduction

The task of classification, when it relates to hyperspectral images (HSIs), generally refers to

assigning a label to each pixel vector in the scene [1]. HSI classification is a crucial step for a plethora

of applications including urban development [2–4], land change monitoring [5–7], scene

interpretation [8,9], resource management [10,11], and so on. Due to the fundamental importance of

this step in various applications, classification of HSI is one of the hottest topics in the remote sensing

community. However, the classification of HSI is still challenging due to several factors such as high

dimensionality, a limited number of training samples, and complex imaging situations [1].

Remote Sens. 2019, 11, 223 2 of 27

During the last few decades, a huge number of methods have been proposed for HSI

classification [12–14]. Due to the availability of abundant spectral information in HSIs, lots of spectral

classifiers have been proposed for HSI classification including k-nearest-neighbors, maximum

likelihood, neural network, logistic regression, and support vector machines (SVMs) [1,15,16].

Hyperspectral sensors provide rich spatial information as well, and the spatial resolution is

becoming finer and finer along with the development of sensor technologies. With the help of spatial

information, classification performance can be greatly improved [17]. Among the spectral-spatial

classification techniques, the generation of a morphological profile is a widely-used approach, which

is usually followed by either an SVM or a random forest classifier to obtain the final classification

result [18-21]. As the extension of SVM, multiple kernel learning is another main stream of spectral-

spatial HSI classification, which has a powerful capability to handle the heterogeneous features

obtained by spectral-spatial hyperspectral images [22].

Due to the complex atmospheric conditions, scattering from neighboring objects, intra-class

variability, and varying sunlight intensity, it is very important to extract invariant and robust features

from HSIs for accurate classification. Deep learning uses hierarchical models to extract invariant and

discriminate features from HSIs in an effective manner and usually leads to accurate classification.

During the past few years, many deep learning methods have been proposed for HSI classification.

Deep learning includes a broader family of models, including the stacked auto-encoder, the deep

belief network, the deep convolutional neural network (CNN), and the deep recurrent neural

network. All of the aforementioned deep models have been used for HSI classification [23,24].

The stacked auto-encoder was the first deep model to be investigated for HSI feature extraction

and classification [25]. In [25], two stacked auto-encoders were used to hierarchically extract spectral

and spatial features. The extracted invariant and discriminant features led to a better classification

performance. Furthermore, recently, the deep belief network was introduced for HSI feature

extraction and classification [26,27].

Because of the unique and useful model architectures of CNNs (e.g., local connections and

shared weights), such networks usually outperform other deep models in terms of classification

accuracy. In [28], a well-designed CNN with five layers was proposed to extract spectral features for

accurate classification. In [29], a CNN-based spectral classifier that elaborately uses pixel-pair

information was proposed, and it was shown to obtain good classification performance under the

condition of a limited number of training samples.

Most of the existing CNN-based HSI classification methods have been generalized to consider

both spectral and spatial information in a single classification framework. The first spectral-spatial

classifier based on CNN was introduced in [30], which was a combination of principal component

analysis (PCA), deep CNN, and logistic regression. Due to the fact that the inputs of deep learning

models are usually 3D data, it is reasonable to design 3D CNNs for HSI spectral-spatial classification

[31,32]. Furthermore, CNN can be combined with other powerful techniques to improve the

classification performance. In [33], CNN was combined with sparse representation to refine the learnt

features. CNNs can be connected with other spatial feature extraction methods, such as

morphological profiles and Gabor filtering, to further improve the classification performance [34,35].

The pixel vector of HSIs can be inherently considered to be sequential. Recurrent neural

networks have the capability of characterizing sequential data. Therefore, in [27], a deep recurrent

neural network that can analyze hyperspectral pixel vectors as sequential data and then determine

information categories via network reasoning was proposed.

Although deep learning models have shown their capabilities for HSI classification, some

disadvantages exist which downgrade the performance of such techniques. In general, deep models

require a huge number of training samples to reliably train a large number of parameters in their

networks. On the other hand, having insufficient training samples is a frequent problem in remotely

sensed image classification. In 2017, Sabour et al. proposed a new idea based on capsules, which

showed its advantages in coping with a limited number of training samples [36]. Furthermore,

traditional CNNs usually use a pooling layer to obtain invariant features from the input data, but the

pooling operation loses the precise positional relationship of features. In hyperspectral remote

Remote Sens. 2019, 11, 223 3 of 27

sensing, abundant spectral information and the positional relationship in a pixel vector are the crucial

factors for accurate spectral classification. Therefore, it is important to maintain the precise positional

relationship in the feature extraction stage. In addition, when it comes to extracting spectral-spatial

features from HSI, it is also important to hold the positional relationship of spectral-spatial features.

Moreover, most of the existing deep methods use a scalar value to represent the intensity of a feature.

In contrast, capsule networks use vectors to represent features. The usage of vectors enriches the

feature representation and is a huge progress and a much more promising method for feature

learning than scalar representation [36,44]. These properties of the capsule network perfectly align

with the goals of this study and the current demands in the hyperspectral community.

Deep learning-based methods, including deep capsule networks, have a powerful feature

extraction capability when the number of training samples is sufficient. Unfortunately, the

availability of only a limited number of training samples is a common bottleneck in HSI classification.

Deep models are often over-trained with a limited number of training samples, which downgrades

the classification accuracy on test samples. In order to mitigate the overfitting problem and lessen the

feature extraction workload of deep models, the idea of a local connection-based capsule network is

proposed in this study. The proposed Conv-Capsule network uses local connections and shared

transform matrices to reduce the number of trainable parameters compared to the original capsule,

which potentially mitigates the overfitting issue when the number of available training samples is

limited.

In the current study, the idea of the capsule network is modified for HSI classification. Two deep

capsule classification frameworks, 1D-Capsule and 3D-Capsule, are proposed as spectral and

spectral-spatial classifiers, respectively. Furthermore, two modified capsule networks, i.e., 1D-Conv-

Capsule and 3D-Conv-Capsule, are proposed to further improve the classification accuracy.

The main contributions of the paper are briefly summarized as follows.

(1) A modification of the capsule network named Conv-Capsule is proposed. The Conv-Capsule

uses local connections and shared transform matrices in the network, which reduces the number of

trainable parameters and mitigates the overfitting issue in classification.

(2) Two frameworks, called 1D-Capsule and 3D-Capsule, based on the capsule network are

proposed for HSI classification.

(3) To further improve the HSI classification performance, two frameworks, called 1D-Conv-

Capsule and 3D-Conv-Capsule, are proposed.

(4) The proposed methods are tested on three well-known hyperspectral data sets under the

condition of having a limited number of training samples.

The rest of the paper is organized as follows. Section 2 presents the background of the deep

learning and capsule network. Sections 3 and 4 are dedicated to the details of the proposed deep

capsule network frameworks, including spectral and spectral-spatial architectures for HSI

classification. The experimental results are reported in Section 5. In Section 6, the conclusions and

discussions are presented.

2. Background

2.1. Convolutional Neural Networks

In general, CNN is a special case of deep neural network, which is loosely inspired by the

biological visual system [37]. Compared with other deep learning methods, there are two unique

factors in the architecture of the CNN, i.e., local connections and shared weights. Since each neuron

only responds to a small region known as the reception field, CNN efficiently explores the structure

correlation. Furthermore, CNN uses the replicated weights and biases across the entire layer, which

significantly reduces the parameters in the network. By using specific architectures like local

connections and shared weights, CNN tends to provide better generalization for a wide variety of

applications.

Remote Sens. 2019, 11, 223 4 of 27

There are three main building blocks in CNNs: A convolution layer, a nonlinear transformation,

and a pooling operation. By stacking several convolution layers with the nonlinear operations and

several pooling layers, a deep CNN can be established [45].

A convolutional layer can be defined as follows:

��
� = �(∑ ��

��� ∗ ���
� + ��

��
���), (1)

�(�) = max (0, �), (2)

where matrix ��
��� is the i-th feature map of the previous (l-1)-th layer, ��

� is the j-th feature map of

the current l-th layer, and M is the number of input feature maps. ���
� and ��

� are randomly

initialized and set to zero. Furthermore, �(∙) is a nonlinear function known as the rectified linear

unit (ReLU), and is the convolution operation [46].

The pooling operation offers invariance by reducing the resolution of the feature maps. The neuron

in the pooling layer combines a small N×N (e.g., N=2) patch of the convolution layer. The most common

pooling operation is max pooling.

All parameters in the deep CNN model are trained using the back-propagation algorithm.

In this study, CNN is adopted as the feature extraction method, and the extracted features are fed

to the deep capsule network for further processing.

2.2. Capsule Network

The capsule network is a modification of the traditional neural network, which uses a group of

neurons to obtain the vector representations of a specific type of entity.

In [36], the input to a capsule �� is a weighted sum of prediction vector ��|� from the previous

layers. ��|� is obtained by multiplying �� of the previous capsule by a transform matrix ���,

�� = ∑ �����|�� , (3)

��|� = ����� (4)

where ��� represents the coupling coefficients determined by a processing called dynamic routing [36].

The capsule uses the length of the output vector to obtain the probability of the entity, and then, a

nonlinear function which we call squash function is used to squash the vector,

�� =
����

�

������
�

��

����
, (5)

where �� is the output of capsule j, which is a vector representation of the input, while the traditional

neural network uses a scalar value to give the final probability of the entity. There are some advantages

when we use a vector representation instead of a scalar value. The vector representation uses the length

of the activity vector to obtain the probability of the entity, and the vector representation gives the

orientation of the entity too. In traditional CNNs, a pooling layer is used to make the network invariant

to small changes in inputs, but the effectiveness is limited [44]. CNNs are not robust to translation,

rotation, and scale, which usually downgrades their classification performance. In the capsule network,

the output of the capsule is a vector representation of a type of entity [36]. When changes occur on the

entity, the length of the corresponding output vector of the capsule may not change greatly. Through

the capsule network, we can obtain a more robust representation of the input.

2.3 Capsule Network for HSI Classification

The capsule network can be combined with the traditional neural network (e.g., CNN) to formulate

a classification system for a specific task (e.g., HSI classification). In the remote sensing community, two

works have already adopted the capsule networks for HSI classification. Paoletti et al. [47] and Deng et

al. [48] adopted the capsule network for HSI classification and achieved good classification

performance. In this context, Paoletti et al. proposed a spectral-spatial capsule network to capture high

abstract-level features for HSI classification while reducing the network design complexity. The

classification result in [47] demonstrates that the proposed method can extract more relevant and

Remote Sens. 2019, 11, 223 5 of 27

complete information about HSI data cubes. Deng et al. presented a modified two-layer capsule

network capable of handling a limited number of training samples for HSI classification.

Previous capsule networks contained a fully-connected capsule layer, which led to lots of trainable

parameters. As we all know, having lots of parameters may cause an overfitting problem with a limited

number of training samples. In this study, an improved capsule network named Conv-Capsule, which

uses local connections and shared transform matrices in the network, is proposed. Conv-Capsule

dramatically reduces the number of trainable parameters and mitigates the overfitting issue in HSI

classification. Furthermore, the previous capsule networks for HSI classification are spectral-spatial

classifiers. In this study, a 1D capsule network is also proposed as a spectral classifier to enrich the

classification techniques of HSI. The details of our proposed methods are explicitly explained in

Sections 3 and 4.

3. One-Dimensional Deep Capsule Network as a Spectral Classifier

3.1. One-Dimensional Convolutional Capsule

Deep learning models use multilayer neural networks to hierarchically extract the features of input

data, which is the key factor for effectiveness in deep learning-based methods. The traditional capsule

network does not contain multiple capsule layers. Therefore, it is necessary to build a multilayer capsule

network.

The simple stacking of capsule layers can develop a deep capsule network. However, the

traditional capsule layer is fully connected and contains a huge number of trainable parameters. The

problem is even worse when the number of training samples is limited. Inspired by the CNN, local

connections and shared transform matrices, which are the core ideas of CNN, are combined with the

dynamic routing algorithm in the capsule layer, and we call it the convolutional capsule (Conv-

Capsule) layer. In the Conv-Capsule layer, each capsule in the current layer only connects with capsules

within its local receptive field in the last capsule layer. The transform matrices in the local connections

are shared across the entire layer.

In HSI classification, spectral classification is an important research direction. To develop a 1D

capsule network for HSI classification, a 1D Conv-Capsule layer needs to be utilized. Here is a

description of the 1D Conv-Capsule layer which we use here to shape the spectral classifier. The input

of a capsule ��
� in a 1D Conv-Capsule layer is a weighted sum of the “prediction vector” ��|�

���
 from

all channels of the capsule within its receptive field in the last capsule layer. Furthermore, ��|�
���

 is

obtained by multiplying ��
���

 from the capsule in the last layer by the corresponding transform matrix

���
�
 which is shared across the last capsule layer. By using a squash function, the output of the capsule

��
� can be obtained from the input ��

�. The equations used here are listed as follows:

��|�
���

= ���
�

��
���

, (6)

��
� = ∑ ∑ ���

����
���

�
��� ��|�

���
, (7)

��
� = �����ℎ���

��, (8)

where I and P are the number of capsule channels in the last capsule layer and kernel size in the current

1D Conv-Capsule layer. ��
� is the input of the j-th channel capsule at position x in the current 1D Conv-

Capsule layer, and ��
� is the corresponding output. ��

���
 is the output of the i-th channel capsule at

position (x+p) in the last capsule layer. ���
�

 is the transform matrix between ��
���

 and ��
� . ���

�

represents the coupling coefficients determined by the dynamic routing algorithm. An illustration of

the 1D Conv-Capsule layer is shown in Figure 1.

Remote Sens. 2019, 11, 223 6 of 27

x
jv

x p
iu

p
ijW

|
x p
j iu

x
js

 i p squash()

p
ijb

i-th channel

1-st channel

I-th channel

Kernel Size P

1-st channel

j-th channel

J-th channel
Position x: 0

1

2

3

Position x+p: 0

1

2

3

4

5

Dynamic Routing Algorithm
in Conv-Capsule Layer

2d

p
ijc

so
ft

m
ax

()

|
p x p

ij j ic u

|
p x x p

ij j j ib v u
update

1d

Initialize to zero

Figure 1. One-dimensional Conv-Capsule layer.

3.2. Dynamic Routing Algorithm in 1D Conv-Capsule layer

Between two consecutive capsule layers, we use the dynamic routing algorithm to iteratively

update coupling coefficients. The details about the procedure of the dynamic routing algorithm in 1D

Conv-Capsule layer are described as follows:

From the description of the 1D Conv-Capsule in the last subsection, we know that each capsule in

the current 1D Conv-Capsule layer receives “prediction vectors” from the capsules within its receptive

field in the last capsule layer. The weight of each “prediction vector” is represented by coupling

coefficients. The coupling coefficients between capsule ��
���

 in the last capsule layer and all channels

capsules at the same position in the 1D Conv-Capsule layer sum to 1 and can be obtained by a softmax

function,

���
�

=
��� (���

�
)

∑ �
��
�

�
, (9)

where ���
�

 is initialized to 0 before the training begins and is determined by the dynamic routing

algorithm.

In the dynamic routing algorithm, the coefficient ���
�

 is iteratively refined by measuring the

agreement between the “prediction vector” ��|�
���

 and ��
� . If the agreement is reached to a great

extent, capsule ��
���

 makes a good prediction for capsule ��
� . Then, the coefficient ���

�
 will be

significantly increased. In our network, the agreement is quantified as the inner product between two

vectors ��|�
���

 and ��
�. This agreement is added to ���

�
:

���
�

= ��|�
���

∙ ��
�, (10)

���
�

← ���
�

+ ���
�

, (11)

The pseudo codes of the dynamic routing algorithm in the 1D Conv-Capsule layer are shown in

Table 1.

Table 1. Dynamic Routing Algorithm in 1D Conv-Capsule layer.

Algorithm 1. Dynamic Routing Algorithm in 1D Conv-Capsule layer

1. begin

2. for x in spectral dimension in current capsule layer

3. for j-th channel capsule in current capsule layer

4. for p across kernel size

5. for i-th channel capsule in last capsule layer

6. initialize coupling coefficients ���
�

7. for r iterations

8. ���
�

= �������(���
�

) across dimension j

9. for j-th channel capsule in current capsule layer

10. ��
� = ∑ ∑ ���

�
���

�
��

������
���

���
���

Remote Sens. 2019, 11, 223 7 of 27

11. ��
� = ������(��

�)

12. ���
�

← ���
�

+ ���
� ���

�
��

���

13. return ��
�

14. end

3.3. One-Dimensional Capsule Framework for HSI Classification

The main framework of the 1D-Conv-Capsule network, which is based on the integration of

principal component analysis (PCA), convolutional neural network, and the capsule network, is

shown in Figure 2. We build this framework based on HSI spectral features and only use spectral

vectors of the training data to train the model.

Routing
PCA Conv. Conv. Conv.

Hyperspectral
Image

m Principal
Components

O
n

e P
ix

el

Input
Layer

Conv1.
Layer

Conv2.
Layer

Capsule
Layer

ClassCaps
Layer

1

2

3

4
5

6

7

8

9
10

11

12

13
14

15

16

||L2||

Classification
map

n_class

Routing

Conv-Capsule
Layer

3d

I J

1d 2d

Figure 2. The framework of the 1D-Conv-Capsule network for hyperspectral image (hsi)

classification.

As illustrated in Figure 2, PCA is first used to reduce the dimensionality of the input data [38],

which leads to fewer trainable parameters in the network. Then, � principal components of each

pixel are chosen as the inputs to the network. Through the capsule network, the predicted label of

each pixel can be obtained.

The proposed 1D-Conv-Capsule network contains six layers. The first layer is an input layer

which has � principal components for each pixel. The second and third layers are convolutional

layers, which are the same as traditional convolutional layers in a CNN. The fourth layer is the first

capsule layer with I channels of convolutional �� dimension capsules, which means that each

capsule contains �� convolutional units. The fifth layer is a 1D Conv-Capsule layer which outputs J

channels of �� dimension capsules. The last layer is a fully connected capsule layer that has n_class

(n_class is the number of classes) �� dimensional capsules. Each capsule in the last layer represents

one class, and it is called the ClassCaps layer for short. The length of the vector output of each capsule

represents the probability of the input spectral vector belonging to each class. ‖��‖ in Figure 2 is the

Euclidean norm of a vector (i.e., the length of the vector). Some details about the network are given

below.

In the first two convolutional layers, which have no difference with traditional convolution

layers, we use a leaky rectified linear unit (LeakyReLU) to obtain a nonlinear mapping [39],

�(�) = �
�, � ≥ 0

��, � < 0
, (12)

where � is a small positive scalar value.

The fourth layer is a transition layer and is also the first capsule layer. This layer translates

convolutional units to capsules. Although convolution is still a fundamental operation in this layer, it

has many differences with the traditional convolutional layer. In a traditional convolutional layer, the

output of each channel’s convolution is one feature map. In the convolutional capsule layer, each

channel outputs p (i.e., the number of neural units each capsule contains) feature maps. Then, p

convolutional units in the same location of the p feature map represent one capsule. The activation of

these convolutional units gives an output of each capsule using Equation. (6).

Remote Sens. 2019, 11, 223 8 of 27

In the second, third, and fourth layers, the convolution operation is followed with batch

normalization (BN) and LeakyReLU activation function [40]. There is no pooling operation in the

proposed network.

The fifth layer is a 1D Conv-Capsule layer. Local connections and shared transform matrices are

used in this layer. We use the dynamic routing algorithm described in the last section to iteratively

update coupling coefficients. Then, we can get the output of the capsule in this layer.

The last layer, which we call ClassCaps layer, is a fully connected capsule layer. The dynamic

routing algorithm is also used in this layer.

Each capsule in the ClassCaps layer represents one class. The probability of a pixel belonging to

one class is denoted by the length of the vector output of each capsule. In our network, we use the

margin loss as the loss function,

�� = ∑ [�� max�0, �� − �����
��_�����

��� + �(1 − ��) max�0, ���� − ���
�

], (13)

where �� = 1 if the pixel belongs to class j. The parameter �� means that if the length of the vector

output ���� is bigger than �� , we can make sure the pixel belongs to class j. The parameter ��

means that when ���� is smaller than ��, we can firmly believe the pixel does not belong to class j.

The loss for the class that the pixel does not belong to may stop the initial learning from shrinking the

length of vector output for all capsules in the ClassCaps layer. So � is used to down-weight it.

4. Three-Dimensional Deep Capsule Network as a Spectral-Spatial Classifier

4.1. Three-Dimensional Convolutional Capsule

The 1D capsule network only extracts spectral features for HSI classification. To obtain an excellent

classification performance, spatial information should be taken into consideration. Therefore, we

further develop the 3D capsule network for HSI classification. A 3D Conv-Capsule layer is used in the

3D capsule network and is described below.

For each capsule in the 3D Conv-Capsule layer, all capsules in its receptive field make a prediction

through the transform matrix. Then, the weighted sum of all “prediction vectors” serves as the input of

the capsule. Finally, the input vector is squashed by a nonlinear function (i.e., squash function) to

generate the output of the capsule. The detailed equations are listed below:

��|�
(���)(���)

= ���
��

��
(���)(���)

, (14)

��
��

= ∑ ∑ ∑ ���
��

��|�
(���)(���)���

���
���
���

�
��� , (15)

��
��

= �����ℎ���
��

�, (16)

where I is the number of capsule channels in the last capsule layer. � and � represent the kernel size.

Furthermore, ��
(���)(���)

 is the output of the capsule which is the i-th channel’s capsule in the last

capsule layer at position (x+p, y+q). In addition, ���
��

 is the shared transform matrix between the i-th

channel capsule in the last capsule layer and the j-th channel capsule in the current Conv-Capsule layer.

���
��

 represents the corresponding coupling coefficients determined by the dynamic routing algorithm.

Figure 3 shows an illustration of the 3D Conv-Capsule layer.

Remote Sens. 2019, 11, 223 9 of 27

xy
jv

()() x p y q
iu

pq
ijW ()()

|
 x p y q

j iu
xy
js

 i p q
squash()

pq
ijb

i-th channel

1-st channel

I-th channel

1-st channel

j-th channel

J-th channel Position y:

Position y+q:

Dynamic Routing Algorithm
in 3D Conv-Capsule Layer

pq
ijc

so
ft

m
ax

()

()()
|
 pq x p y q

ij j ic u

()()
|
 pq xy x p y p

ij j j ib v u
update

feedback

Initialize to zero

0

1

2

3

4

5

0

1

2

3

0 1 2 3 4 5Position x+p:

0 1 2 3Position x:

1d
2d

Kernel Size: P Q

Figure 3. Three-dimensional Conv-Capsule layer.

The dynamic routing algorithm in the 3D Conv-Capsule layer is similar to the one in the 1D Conv-

Capsule layer. The pseudo codes are shown in Table 2.

Table 2. Dynamic Routing Algorithm in 3D Conv-Capsule layer.

Algorithm 2. Dynamic Routing Algorithm in 3D Conv-Capsule layer

1. begin

2. for x in width dimension in current capsule layer

3. for y in height dimension in current capsule layer

4. for j-th channel capsule in current capsule layer

5. for p across kernel width

6. for q across kernel height

7. for i-th channel capsule in last capsule layer

8. initialize coupling coefficients ���
��

9. for r iterations

10. ���
��

= �������(���
��

)across dimension j

11. for j-th channel capsule in current capsule layer

12. ��
��

= ∑ ∑ ∑ ���
��

���
��

��
(���)(���)���

���
���
���

�
���

13. ��
��

= ������(��
��

)

14. ���
��

← ���
��

+ ���
��

���
��

��
(���)(���)

15. return ��
��

16. end

4.2. Three-Dimensional Capsule Framework for HSI Classification

The main framework of the 3D-Conv-Capsule network is shown in Figure 4. Different from the

1D-Conv-Capsule network which extracts spectral features only, the spatial information of HSIs is also

taken into consideration.

a

Conv.Conv.

1

2

3

4
5

6

7

8

9
10

11

12

13
14

15

16

RoutingConv.
EMAP

Hyperspectral
Image

Extracted
Features

Input
Layer

Conv1.
Layer

Conv2.
Layer

Capsule
Layer

ClassCaps.
Layer

||L2||

Classification
map

n_class

Routing

Conv-Capsule
Layer

I J

1d 2d 3d

Remote Sens. 2019, 11, 223 10 of 27

Figure 4. The framework of the 3D-Conv-Capsule network for HSI classification.

From the framework shown in Figure 4, it can be seen that, first, EMAP (Extended Multi-

Attributes Profile) is used as a preprocessing technique, which significantly reduces the dimensionality

of the inputs and the number of training parameters. Then, � × � neighbors of each pixel, as the input

3D images, are imported to the 3D-Conv-Capsule network. Through the network, each pixel gets n_class

(i.e., the number of classes) �� dimension capsules. Each capsule represents a class of entity. The length

of the output vector of each capsule shows the probability that the corresponding entity exists. In other

words, it represents the probability of the pixel belonging to each class. Therefore, the classification

results can be obtained by calculating the length of the vectors.

Attribute profiles (APs), the basis of EMAP, are a generalization of the widely used morphological

profiles (MPs) [20]. EMAP uses multiple morphological attributes to replace the fixed structure

elements, which enables the EMAP to model the spatial information more accurately.

In order to extract spatial information more comprehensively, different kinds of attribute can be

used. In this paper, four attributes are considered: 1) a, the area of the regions; 2) d, the length of the

diagonal of the box bounding the region; 3) i, the first moment of Hu [41]; 4) s, the standard deviation.

EMAPs are generated by concatenating EAPs (Extend Attribute Profiles) computed by different

attributes where EAPs are obtained by applying APs to principal components extracted by PCA.

Similar to the 1D-Conv-Capsule network, the 3D-Conv-Capsule network also has six layers, i.e.,

the input layer, two convolutional layers, and three consecutive capsule layers. The two convolutional

layers serve as a local feature detector. Then, a transition layer (i.e., capsule layer), which is similar to

the 1D-Conv-Capsule network, is adopted. In the last two capsule layers, we use a dynamic routing

algorithm to calculate the capsule output in the Conv-Capsule layer and the ClassCaps layer. Compared

to the 1D-Conv-Capsule network, the input data changes from 1D spectral information to 3D spectral-

spatial information and from the 1D convolution operation to the 2D convolution operation. The 3D-

Conv-Capsule network uses the ReLU as the activation function. Batch normalization is also used to

alleviate the overfitting problem and boost the classification accuracy.

5. Experimental Results

5.1. Data Description

In our study, three widely-used hyperspectral data sets with different environmental settings

were used to validate the effectiveness of the proposed methods. They were captured over Salinas

Valley in California (Salinas), Kennedy Space Center (KSC) in Florida, and an urban site over the

University of Houston campus and the neighboring area (Houston).

The first data set was captured by the 224-band AVIRIS sensor over Salinas Valley, California.

After removing the low signal to noise ratio (SNR) bands, the available data set was composed of 204

bands with 512×217 pixels. The ground reference map covers 16 classes of interest. The hyperspectral

image is of high spatial resolution (3.7-meter pixels). Figure 5 demonstrates the false-color composite

image and the corresponding ground reference map. The number of samples in each class is listed in

Table 3.

Remote Sens. 2019, 11, 223 11 of 27

(a) (b)

Figure 5. The Salinas data set. (a) False-color composite and (b) ground reference map.

Table 3. Land cover classes and numbers of samples in the Salinas data set.

Class Samples

No. Color Name Numbers

1 Brocoli_green_weeds_1 1977

2 Brocoli_green_weeds_2 3726

3 Fallow 1976

4 Fallow_rough_plow 1394

5 Fallow_smooth 2678

6 Stubble 3959

7 Celery 3579

8 Grapes_untrained 11213

9 Soil_vinyard_develop 6197

10 Corn_senesced_green_weeds 3249

11 Lettuce_romaine_4wk 1058

12 Lettuce_romaine_5wk 1908

13 Lettuce_romaine_6wk 909

14 Lettuce_romaine_7wk 1061

15 Vinyard_untrained 7164

16 Vinyard_vertical_trellis 1737

Total 53785

The second data set, KSC, was collected by the airborne AVIRIS instrument over the Kennedy

Space Center, Florida. The KSC data set has an altitude of approximately 20 km, with a spatial

resolution of 18 m. After removing water absorption and low SNR bands, 176 bands with 512×614

pixel vectors were used for the analysis. For classification purpose, 13 classes were selected. The

classes of the KSC data set and the corresponding false-color composite map are demonstrated in

Figure 6. The number of samples for each class is given in Table 4.

(a) (b)

Remote Sens. 2019, 11, 223 12 of 27

Figure 6. The Kennedy Space Center (KSC) data set. (a) False-color composite and (b) ground

reference map.

Table 4. Land cover classes and numbers of samples in the KSC data set.

Class Samples

No. Color Name Numbers

1 Scrub 761

2 Willow swamp 243

3 CP hammock 256

4 Slash pine 252

5 Oak/Broadleaf 161

6 Hardwood 229

7 Swamp 105

8 Graminoid marsh 431

9 Spartina marsh 520

10 Cattail marsh 404

11 Salt marsh 419

12 Mud flats 503

13 Water 927

Total 5211

The third data set is an urban site over the University of Houston campus and neighboring area

which was collected by an ITRES-CASI 1500 sensor. The data set is of 2.5-m spatial resolution and

consists of 349×1905 pixel vectors. The hyperspectral image is composed of 144 spectral bands

ranging from 380 to 1050 nm. Fifteen different land-cover classes are provided in the ground reference

map, as shown in Figure 7. The samples are listed in Table 5.

(a)

(b)

Figure 7. The Houston data set. (a) False-color composite and (b) ground reference map.

Table 5. Land cover classes and numbers of samples in the Houston data set.

Class Samples

No. Color Name Numbers

1 Grass Healthy 1251

2 Grass Stresed 1254

3 Grass Synthetic 697

4 Tree 1244

5 Soil 1242

6 Water 325

7 Residential 1268

8 Commercial 1244

9 Road 1252

10 Highway 1227

Remote Sens. 2019, 11, 223 13 of 27

11 Railway 1235

12 Parking Lot 1 1233

13 Parking Lot 2 469

14 Tennis Court 428

15 Running Track 660

Total 15029

For all three data sets, we split the labeled samples into three subsets, i.e., training, validation,

and test samples. In our experiment, we randomly chose 200 labeled samples as the training set to

train the weights and biases of each neuron and transformation matrix between two consecutive

capsule layers. The proper architectures of our network were designed based on performance

evaluation on 100 validation samples, which were also randomly chosen from labeled samples. The

choice of hyper-parameters, like kernel size in the convolution operation and the dimensions of the

vector output of each capsule, were also guided by the validation set. After the training was done, all

remaining labeled samples served as the test set to evaluate the capability of the network and to

obtain the final classification results. Three evaluation criteria were investigated: overall accuracy

(OA), average accuracy (AA), and Kappa coefficients (K).

5.2. The Classification Results of the 1D Capsule Network

The 1D capsule network, which is built only based on spectral features, contains two parts. One

is a fully connected capsule network that uses normalized spectral vectors as input. The other is the

Conv-Capsule network which inputs spectral features extracted by PCA. We call the two methods

1D-Capsule and 1D-Conv-Capsule for short. In the 1D-Conv-Capsule, we first used PCA to reduce

the spectral dimensions of the data. Then, we randomly chose 200 and 100 labeled samples as the

training and validation data for each data set. The training samples were imported to the 1D capsule

network. The number of principal components was chosen based on the classification result for the

validation samples. Some other hyper-parameters (e.g., the learning rate, the convolutional kernel

size, the � in LeakyReLU, etc.) were also determined by the validation set. In our method, the size

of the mini-batch was 100 and the number of training epochs was set to 150 for our network. We used

a decreasing learning rate which was initialized to 0.01 at the beginning of the training process. The

number of the principal components was set to 20, 20, and 30, respectively, for the Salinas, KSC, and

Houston data sets. We used � = 0.1 in the LeakyReLU function. The parameters ��, ��, and � in

the loss function were set to 0.9, 0.1, and 0.5, respectively.

The main architectures of the 1D-Conv-Capsule network for each data set are shown in Table 6.

Due to the fact that the same number of principal components was chosen as the input, the network

for the Salinas and KSC data sets had the same architecture. In Table 6, (5×1×8)×8 in the fourth layer

(i.e., transition layer) means that eight channels of convolution with the kernel size of 5×1 were used,

and each channel output eight feature maps. Thus, the fourth layer output a capsule with eight

channels. The fifth layer was a Conv-Capsule layer with eight (i.e., the number of capsule channels

output by the fourth layer) channels of capsule input and 16 channels of capsule output. The kernel

size was 5×1. We used (5×1×8)×16 to represent this operation. The last layer was a fully connected

capsule layer. All capsules from the fifth layer were connected with n_class capsules in this layer. The

length of the vector output of each capsule in this layer represents the probability of the network’s

input belonging to each class. Between consecutive capsule layers in the 1D-Conv-Capsule, three

routing iterations were used to determine the coupling coefficients ���
�

.

Table 6. The architectures of the 1D-Conv-Capsule network for the different data sets.

Nets No. Convolution BN Stride Padding Activation Function

Salinas(KSC)

1 First ten principal components, input shape is 20×1×1

2 5×1×32 YES 1 Yes LeakyReLU

3 5×1×64 YES 1 Yes LeakyReLU

4 (5×1×8) ×8 YES 2 Yes LeakyReLU, Squash

5 (5×1×8) ×16 No 2 No Squash

Remote Sens. 2019, 11, 223 14 of 27

6 Three routing iterations and n_class capsules with a 16-dimensional output vector

Houston

1 First thirty principal components, input shape is 30×1×1

2 7×1×32 YES 1 No LeakyReLU

3 7×1×64 YES 1 No LeakyReLU

4 (7×1×8) ×8 YES 1 No LeakyReLU, Squash

5 (3×1×8) ×16 No 2 No Squash

6 Three routing iterations and n_class capsules with a 16-dimensional output vector

In this set of experiments, our methods were compared with other classical classification

methods that are only based on spectral information. These methods included random forest (RF)

[42], multiple layer perceptron (MLP) [43], linear support vector machine (L-SVM), support vector

machine with the radial basis kernel function (RBF-SVM) [17], recurrent neural network (RNN) [24],

and the convolutional neural network (1D-CNN) [28]. Furthermore, 1D-PCA-CNN, which has nearly

the same architecture as 1D-Conv-Capsule (apart from the capsule layer), was also designed to give

a fair comparison. The classification results are shown in Tables 7-9.

Table 7. Classification with spectral features on the Salinas data set with different training samples.

Trainin

Samples
Method RF MLP L-SVM RBF-SVM RNN 1D-CNN

1D-PCA-

CNN

1D-

Capsule

1D-Conv-

Capsule

100

OA(%) 77.81±1.86 80.89±2.25 80.33±2.14 81.01±2.10 71.48±3.50 80.04±1.66 84.07±2.63 77.63±1.52 84.75±1.94

AA(%) 78.12±3.06 81.56±4.68 79.83±3.58 80.79±4.69 68.84±4.62 80.99±4.08 84.87±4.70 76.41±3.34 86.00±2.01

K×100 75.11±2.14 78.68±2.51 78.02±2.44 78.77±2.34 68.26±3.86 77.69±1.87 82.26±2.89 74.92±1.80 83.01±2.15

200

OA(%) 82.63±1.63 84.13±0.50 86.37±1.05 86.07±1.52 79.67±2.42 84.93±0.73 86.52±2.34 83.73±0.23 88.12±1.07

AA(%) 85.73±2.09 88.71±0.60 89.37±1.92 88.07±2.27 83.22±1.25 89.97±0.58 89.46±3.09 89.02±0.29 91.08±1.70

K×100 80.63±1.77 82.21±0.57 84.77±1.18 84.46±1.71 77.38±2.71 83.20±0.82 84.97±2.57 81.78±0.27 86.76±1.21

300

OA(%) 84.24±0.79 87.76±0.83 88.47±0.91 88.22±1.05 81.35±0.90 85.66±1.33 88.46±1.27 84.09±1.36 89.36±0.41

AA(%) 88.00±1.41 91.72±1.00 91.96±1.16 91.40±1.60 83.88±2.82 88.41±1.98 91.93±1.54 88.28±1.85 92.92±0.32

K×100 82.42±0.87 86.37±0.93 87.12±1.02 86.86±1.19 79.20±1.07 84.00±1.48 87.14±1.39 82.22±1.52 88.15±0.44

Table 8. Classification with spectral features on the KSC data set with different training samples.

Training

Samples
Method RF MLP L-SVM

RBF-

SVM
RNN 1D-CNN

1D-PCA-

CNN

1D-

Capsule

1D-Conv-

Capsule

100

OA(%) 73.56±2.63 81.43±1.85 81.38±1.61 80.72±1.85 70.70±2.67 77.19±2.63 81.72±2.02 80.09±1.66 84.83±1.69

AA(%) 62.52±4.14 72.33±3.58 72.22±3.33 71.17±2.36 58.79±4.74 67.92±3.09 72.41±3.39 70.65±3.16 77.52±3.07

K×100 70.49±2.95 79.30±2.06 79.25±1.79 78.51±2.05 67.30±3.07 74.57±2.94 79.63±2.26 77.79±1.86 83.09±1.87

200

OA(%) 80.08±1.12 85.15±0.81 86.35±1.50 86.64±1.21 82.03±1.33 84.80±0.97 86.02±2.16 84.39±0.33 88.22±1.06

AA(%) 71.52±1.93 78.78±0.98 78.06±2.76 79.57±1.76 74.68±1.21 79.32±1.48 78.91±2.97 78.66±0.36 82.11±2.52

K×100 77.79±1.26 83.45±0.90 84.78±1.68 85.11±1.35 79.97±1.48 83.08±1.08 84.44±2.39 82.59±0.37 86.87±1.18

300

OA(%) 82.31±0.98 88.02±0.67 88.56±0.84 88.87±0.93 82.35±1.81 84.34±1.12 88.03±0.88 85.81±1.40 89.84±1.41

AA(%) 75.32±0.99 82.15±1.55 82.45±2.23 83.55±1.39 73.33±3.10 78.37±1.84 81.45±2.09 79.11±1.29 84.43±2.29

K×100 80.26±1.09 86.66±0.75 87.27±0.95 87.60±1.04 80.33±2.02 82.56±1.25 86.66±0.99 84.18±1.55 88.68±1.57

Table 9. Classification with spectral features on the Houston data set with different training

samples.

Training

Samples

Method RF MLP L-SVM

RBF-

SVM
RNN 1D-CNN

1D-PCA-

CNN

1D-

Capsule

1D-Conv-

Capsule

100

 OA(%) 64.68±2.27 72.42±1.39 69.89±1.99 72.95±1.64 62.41±3.10 70.66±3.43 72.51±2.94 70.11±3.14 76.04±1.90

 AA(%) 63.59±3.34 70.82±2.88 70.11±2.28 72.03±2.23 61.58±2.96 68.20±3.99 71.43±3.81 69.64±4.34 75.46±2.93

 K×100 61.76±2.47 70.15±1.52 67.42±2.16 70.73±1.77 59.37±3.36 68.22±3.73 70.24±3.18 67.66±3.41 74.08±2.06

200

 OA(%) 72.64±1.27 80.69±1.53 75.47±0.96 78.91±0.95 74.24±1.61 79.47±0.59 80.85±1.55 77.54±2.47 84.06±1.34

 AA(%) 71.48±1.54 79.68±1.88 75.22±1.11 78.06±0.91 73.22±1.45 77.94±1.59 80.62±1.59 77.39±1.99 83.46±1.43

 K×100 70.39±1.37 79.11±1.65 73.45±1.04 77.17±1.03 72.15±1.73 77.80±0.64 79.29±1.69 75.70±2.67 82.75±1.46

300

 OA(%) 77.32±1.17 83.25±1.36 79.00±1.51 83.30±1.17 77.61±2.36 79.26±1.13 86.39±0.37 80.25±1.19 87.11±1.38

 AA(%) 75.99±1.03 82.32±1.49 77.97±1.33 82.16±1.25 75.79±1.71 78.18±1.57 85.47±0.93 79.37±1.19 86.32±1.50

 K×100 75.45±1.26 81.87±1.47 77.26±1.63 81.93±1.26 75.80±2.53 77.55±1.23 85.27±0.40 78.63±1.29 86.06±1.50

The experiment setups of the classical classification methods are described as follows. RF was

used for classification. A grid search method and four-fold cross-validation were used to define RF’s

two key hyper-parameters (i.e., the number of features to consider when looking for the best split (F)

and the number of trees (T)). In the experiment, the search ranges of F and T were (5, 10, 15, 20) and

(100, 200, 300, 400), respectively. The MLP used in this experiment was a fully connected neural

network with one hidden layer. The used MLP contained 64 hidden units. L-SVM is a linear SVM

with no kernel function. RBF-SVM uses the radial basis function as the kernel. In L-SVM and RBF-

SVM, a grid search method and four-fold cross-validation were also used to define the most

appropriate hyper-parameters (i.e., � for L-SVM and (�, �) for RBF-SVM). In this experiment, the

search range was exponentially growing sequences of � and � (� = 10��, 10��, … , 10� , � =

10��, 10��, … , 10�). A single layer RNN with a gated recurrent unit and the tanh activation function

Remote Sens. 2019, 11, 223 15 of 27

were adopted. The architecture of 1D-CNN was designed as in [28] and contained an input layer, a

convolutional layer, a max-pooling layer, a fully connected layer, and an output layer. The

convolutional kernel size and number of kernels were 17 and 20 for all three data sets. The pooling

size was 5, 5, and 4 for the Salinas, KSC, and Houston data sets, respectively. Tables 7-9 show the

classification results obtained when we used the aforementioned experimental settings. All

experiments were run ten times with different random training samples. The classification accuracy

is given in the form of mean±standard deviation. The 1D-Conv-Capsule network showed a better

performance in terms of accuracy on all three data sets.

For all three data sets, RBF-SVM, which is famous for handling a limited number of training

samples, provides competitive classification results. We use the experiments with 200 training

samples as an example to discuss the results. For the Salinas data set, 1D-Conv-Capsule exhibited the

best OA, AA, and K, with improvements of 2.05%, 3.01%, and 0.023 over RBF-SVM, respectively. Our

approach outperformed 1D-PCA-CNN by 1.6%, 1.62%, and 0.0179 in terms of OA, AA, and K,

respectively. For the KSC data set, as can be seen, the OA of 1D-Conv-Capsule was 88.22%, which is

an increase of 1.58% and 2.2% compared with RBF-SVM and 1D-PCA-CNN, respectively. For the

Houston data set, 1D-Conv-Capsule improved the OA, AA, and K of 1D-PCA-CNN by 3.21%, 2.84%,

and 0.0346, respectively. The results show that the 1D-Conv-Capsule method demonstrated the best

performance in terms of OA, AA, and K for all three data sets. In addition, all experiments with 100

and 300 training samples were also implemented to demonstrate the effectiveness of the proposed

methods. From the results reported in Tables 7-9, it can be seen that 1D-Conv-Capsule outperformed

the other classical classification methods, especially when the number of training samples was

extremely limited (i.e., 100 training samples).

Furthermore, the 1D-Conv-Capsule with a different number of principal components as input

was conducted. Figure 8 shows the classification results of the 1D-Conv-Capsule on three data sets

by using 200 training samples. Due to the fact that we injected only spectral information into the 1D-

Conv-Capsule, relatively more principal components were used to make sure that sufficient spectral

information was preserved, and, at the same time, this maintained low computational complexity.

From Figure 8, it can be seen that if the number of selected components is too small or too big, the

classification results tend to be poor under both circumstances. On one hand, the spectral information

is not sufficiently preserved and the network cannot efficiently extract the spectral feature when the

number of principal components is low. On the other hand, the networks are over-trained when the

number of principal components is high. The situation becomes worse if the number of training

samples is limited. The best classification performance was achieved when the number of the

principal components was set to 20, 20, and 30 for the Salinas, KSC, and Houston data sets,

respectively.

Figure 8. Classification results of the 1D-Conv-Capsule on three data sets with respect to different

numbers of principal components.

5.3. The Analysis of Learnt Features of the 1D Capsule

From the aforementioned description about the capsule, it can be understood that the output of

the capsule is a vector representation of the type of entity. In order to demonstrate the real advantage

87
.7

2

8
7.

0
4

8
2.

2
9

88
.1

2

8
8.

2
2

82
.3

5

86
.3

2

85
.9

5

8
4.

0
686

.9
8

8
5.

4
3

82
.0

785
.1

7

84
.0

8

78
.9

8

70

75

80

85

90

Salinas KSC Houston

O
A

(%
)

Number of Principal Components: 10 20 30 40 50

Remote Sens. 2019, 11, 223 16 of 27

of the capsule network on remote sensing data, we performed another experiment based on the 1D-

Capsule network followed by a reconstruction network (1D-Capsule-Recon). The architecture of the

reconstruction network is shown in Figure 9. According to the label of the input pixel, the

representative vector of the corresponding capsule in the ClassCaps layer was imported to the

reconstruction network (e.g., if the input pixel belonged to the �-th class, the vector output of the �-

th capsule in the ClassCaps layer was used as input to the reconstruction network). The

reconstruction network contained three fully connected (FC) layers. The first two FC layers had 128

and 256 hidden units with the ReLU activation function. The last FC layer with Sigmoid activation

function output the reconstructed spectra (i.e., a combination of normalized spectral reflectance of

different bands) corresponding to the input of the 1D-Capsule-Recon. The reconstruction loss, i.e.,

the Euclidean distance between the input and the reconstructed spectra, was added to the margin

loss that described in Section III:

������ = �� + ���, (18)

where �� is the margin loss and �� is the reconstruction loss. � is the weight coefficient that is

used to avoid �� dominating �� during the training procedure. In the experiment, � was set to

0.1. ������ was used as the loss function for the 1D-Capsule-Recon.

.

.

.

.

.

.

FC. FC. FC.

h1 h2

ClassCaps. Layer
in 1D-Capsule

Corresponding
Capsule

FC.
ReLU

FC.
ReLU

FC.
Sigmoid

q

1

2

3

4
5

6

7

8

9
10

11

12

13
14

15

16

Figure 9. The architecture of the reconstruction network.

To visualize the vector representation of the capsule, we made use of the reconstruction network.

After the training procedure of the 1D-Capsule-Recon was done, we randomly chose some samples

from different classes and computed the representation vector of their corresponding capsules in the

ClassCaps layer. We made perturbations in different dimensions of the vector and fed them to the

reconstruction network. Figure 10 shows the reconstructed results of three class samples from the

Salinas data set. Two dimensions of the representation vector were tuned. In Figure 10, the original

is the input spectra to the 1D-Capsule-Recon. The notation of [�(�) + Δ] in Figure 10 means that we

tuned the �-th dimension of the representation vector � with perturbation Δ. The perturbed � was

used to reconstruct the spectra. From the results shown in Figure 10, the representation vector (i.e.,

�) can well reconstruct the spectra, which means that the representation vector contains the

information in the spectra with low dimensionality.

Remote Sens. 2019, 11, 223 17 of 27

(a)

(b)

(c)

Figure 10. Normalized spectral reflectance reconstructed by the perturbed representation vector of

three samples from the Salinas data set. The two pictures in each row are the results reconstructed by

tuning different dimensions of the representation vector of the same sample. (a) sample from

broccoli_green_weeds_1 class; (b) sample from grapes_untrained class; (c) sample from

vinyard_untrained class.

Furthermore, as shown in Figure 10, �(�) + Δ can influence the reconstruction of some special

bands, which means that �(�) has a close relationship with the special bands. � is a vector that

contains several �(�), and � is a robust and condensed representation of spectra.

5.4. The Classification Results of the 3D Capsule Network

Remote Sens. 2019, 11, 223 18 of 27

In the 3D capsule network, the network extracts both spectral and spatial features effectively,

which could lead to a better performance in terms of classification accuracy than the one obtained by

the 1D capsule network. As mentioned above, we proposed two 3D frameworks, i.e., the 3D-Capsule

and the 3D-Conv-Capsule. Similar to a 1D framework, the 3D-Capsule is an original fully connected

capsule network, while the 3D-Conv-Capsule is the convolutional capsule network. Additionally, the

3D-Capsule directly uses the original hyperspectral data as input, while the 3D-Conv-Capsule

utilizes EMAP to extract features of hyperspectral data. In the 3D-Conv-Capsule, three principal

components were used and parameters in EMAP were set as in [21]. Through the EMAP analysis, the

number of spectral dimensions became 108 for all three data sets. In this set of experiments, the

numbers of training and validation samples were the same as for the 1D Capsule network. The mini-

batch size was also 100. The training epoch was set to 100 with a learning rate of 0.001. The parameter

in loss function was the same as for the 1D capsule network. The details on the architecture of the

3D-Conv-Capsule network are shown in Table 10. The definitions of the parameters in Table 10 can

be found in the description for the 1D-Conv-Capsule network. Batch normalization was also used to

improve the performance of the network.

Table 10. The architectures of the 3D-Conv-Capsule network.

Nets No. Convolution BN Stride Padding
Activation

Function

Salinas

KSC

Houston

1 Features extracted by EMAP, input shape is 27×27×108

2 3×3×32 YES 1 No ReLU

3 3×3×64 YES 1 No ReLU

4 (4×4×8)×4 YES 2 No ReLU, Squash

5 (3×3×4)×8 No 2 No Squash

6 Three routing iterations and n_class capsules with a 16-dimensional output vector

The SVM-based and CNN-based methods were included in the experiments to give a

comprehensive comparison. The classification results are shown in Tables 11–13. For the three data

sets, we used 27×27 neighbors of each pixel as input 3D images in these methods.

Table 11. Classification with spectral-spatial features on the Salinas data set with different training

samples.

Training

Samples
Method

EMP-

SVM

EMP-

CNN

EMAP-

RF

EMAP-

SVM
3D-CNN

SSRN

[49]

3D-EMAP-

CNN

3D-

Capsule

3D-Conv-

Capsule

100

OA(%) 86.13±2.21 84.28±0.97 87.33±2.44 90.15±2.42 82.34±2.47 84.40±2.11 86.58±4.60 88.00±2.53 93.96±2.18

AA(%) 86.40±4.96 77.50±4.11 85.11±4.97 91.22±4.07 79.05±2.78 80.90±4.92 82.24±4.80 83.37±4.23 88.03±4.31

K×100 84.49±2.53 82.29±1.11 85.88±2.73 89.02±2.72 80.11±2.85 82.52±2.41 84.95±5.07 86.54±2.83 93.25±2.43

200

OA(%) 90.07±1.45 92.71±0.66 94.27±1.14 94.72±2.04 90.68±1.28 91.16±1.64 94.28±2.14 94.86±1.63 97.92±0.30

AA(%) 91.42±2.30 93.22±0.62 93.45±2.41 95.35±3.21 88.18±1.25 93.59±2.35 92.86±3.32 93.49±3.15 96.21±1.87

K×100 88.93±1.63 91.83±0.74 93.62±1.26 94.12±2.29 89.56±1.45 90.16±1.82 93.59±2.41 94.24±1.83 97.68±0.34

300

OA(%) 91.92±0.40 94.91±1.04 95.66±1.02 96.35±0.54 93.98±1.34 92.81±1.21 98.41±0.77 97.64±1.00 99.17±0.58

AA(%) 94.22±0.44 94.60±1.77 95.77±1.87 97.22±0.61 92.79±2.57 95.20±1.18 98.44±1.01 97.27±1.33 98.95±0.73

K×100 91.00±0.45 94.30±1.18 95.18±1.14 95.94±0.60 93.25±1.52 91.98±1.35 98.23±0.86 97.36±1.12 99.07±0.65

Table 12. Classification with spectral-spatial features on the KSC data set with different training

samples.

Training

Samples
Method

EMP-

SVM

EMP-

CNN

EMAP-

RF

EMAP-

SVM
3D-CNN

SSRN

[49]

3D-EMAP-

CNN

3D-

Capsule

3D-Conv-

Capsule

100

OA(%) 87.83±2.04 86.95±1.68 85.44±2.15 87.88±3.14 84.15±2.58 90.79±2.83 90.07±3.05 88.42±1.23 93.23±2.50

AA(%) 81.80±3.19 80.63±2.09 78.34±4.16 81.93±3.95 76.98±4.00 84.09±6.20 84.97±5.02 82.28±3.42 89.10±3.94

K×100 86.43±2.27 85.46±1.87 83.71±2.42 86.49±3.51 82.35±2.88 89.73±3.17 88.95±3.41 87.12±1.37 92.47±2.78

200

OA(%) 93.63±1.77 96.56±1.24 91.81±1.30 93.66±0.95 95.98±0.85 96.77±0.83 95.30±0.96 97.08±0.41 98.75±0.87

AA(%) 90.28±2.68 94.65±2.48 87.52±1.75 90.89±1.77 94.07±1.39 94.70±0.86 92.36±1.25 95.77±0.58 98.01±1.36

K×100 92.90±1.98 96.18±1.38 90.86±1.44 92.94±1.07 95.53±0.95 96.41±0.93 94.77±1.06 96.75±0.45 98.62±0.97

300

OA(%) 95.34±1.09 98.29±0.83 94.43±0.79 95.28±0.99 97.69±0.69 98.21±0.69 98.57±0.91 98.21±1.07 99.19±0.63

AA(%) 93.12±1.59 97.45±1.48 91.81±1.05 92.91±2.43 96.66±1.17 96.30±1.50 97.58±1.53 97.27±1.49 98.35±1.51

K×100 94.81±1.22 98.10±0.93 93.79±0.88 94.75±1.10 97.44±0.77 98.01±0.77 98.41±1.01 98.01±1.19 99.10±0.70

Table 13. Classification with spectral-spatial features on the Houston data set with different training

samples.

Training

Samples
Method

EMP-

SVM

EMP-

CNN

EMAP-

RF

EMAP-

SVM
3D-CNN

SSRN

[49]

3D-EMAP-

CNN

3D-

Capsule

3D-Conv-

Capsule

Remote Sens. 2019, 11, 223 19 of 27

100

OA(%) 79.39±2.63 71.35±2.59 76.57±4.43 78.82±1.74 70.29±4.07 74.58±3.64 73.51±2.80 77.96±3.49 82.61±2.83

AA(%) 77.13±4.67 67.57±3.46 75.32±4.53 76.75±2.61 67.77±4.83 75.19±3.91 70.60±3.45 76.04±3.77 80.82±3.86

K×100 77.69±2.86 68.97±2.81 74.64±4.80 77.07±1.89 67.82±4.41 72.51±3.94 71.31±3.05 76.16±3.78 81.18±3.08

200

OA(%) 86.63±1.26 85.46±2.05 85.68±1.86 87.20±1.51 85.19±1.95 85.12±1.49 87.54±1.92 88.69±1.92 90.41±1.28

AA(%) 86.29±2.19 85.40±1.95 85.30±1.80 86.63±1.87 83.11±2.74 85.47±1.39 85.43±1.96 86.83±2.75 89.46±1.72

K×100 85.54±1.36 84.29±2.21 84.51±2.01 86.17±1.63 83.98±2.11 83.90±1.62 86.52±2.07 87.77±2.08 89.63±1.38

300

OA(%) 90.44±1.34 89.76±1.97 90.17±0.93 90.52±0.75 90.02±1.02 90.64±1.97 91.78±1.48 92.55±1.32 94.16±1.62

AA(%) 90.10±1.77 89.74±2.78 90.12±1.09 89.75±1.27 89.19±1.68 91.00±1.90 92.19±1.41 91.87±1.86 93.73±2.32

K×100 89.66±1.45 88.93±2.13 89.37±1.01 89.74±0.81 89.21±1.10 89.88±2.13 91.11±1.60 91.94±1.43 93.69±1.76

Due to the high performance in terms of classification accuracy of SVM, some SVM-based HSIs

classifiers were adopted for comparison. The extended morphological profile with SVM (EMP-SVM)

is a widely used spectral-spatial classifier [19]. In the EMP-SVM method, the morphological opening

and closing operations were used to extract spatial information on the first three components of HSIs,

which were computed by PCA. In the experiments, the shape structuring element (SE) was set as a

disk, and the radius of disk increased from two to eight with an interval of two. Therefore, 27 spatial

features were generated. The learned features were fed to an RBF-SVM to obtain the final

classification results. EMAP is a generalization of the EMP and can extract more informative spatial

information. EMAP was also combined with the random forest classifier (EMAP-RF) [20]. In order to

have a fair comparison, the parameters in EMAP were kept the same as for the 3D-Conv-Capsule. In

RBF-SVM, the optimal parameters � and � were also obtained by grid-search and four-fold cross-

validation methods. Furthermore, CNN was also used for comparison. We conducted 3D-CNN,

EMP-CNN and 3D-EMAP-CNN. Their CNN architectures were the same as in [31]. To give a

comprehensive comparison, a spectral–spatial residual network recently proposed in [49] was

adopted for comparison.

Tables 11–13 give the classification results of the proposed methods and contrast methods on

the three data sets. We also used the classification results with 200 training samples as an example.

For the Salinas data set, the 3D-Conv-Capsule exhibited the highest OA, AA, and K, with the

improvements of 3.64%, 3.35%, and 0.0409 over 3D-EMAP-CNN, respectively. On the other hand,

our 3D-Capsule approach also performed better than 3D-EMAP-CNN in terms of OA, AA, and K.

For the KSC data set, 3D-Conv-Capsule improved the OA, AA, and K of EMP-CNN by 2.19%, 3.36%,

and 0.0244, respectively. Our 3D-Capsule method also showed higher classification accuracy than

EMP-CNN with improvements of 0.52%, 1.12%, and 0.0057 in terms of OA, AA, and K. For the

Houston data set, we obtained similar results. Experiments with 100 and 300 training samples were

investigated as well. The detailed classification results are shown in Tables 11-13. Compared with

other state-of-the-art methods, the 3D-Conv-Capsule demonstrated the best performance under

different training samples.

In the experiment using the 3D-Conv-Capsule, we also explored how a different number of

principal components that are used in EMAP analysis may affect the classification results. Due to the

spatial information being considered and the EMAP analysis significantly increasing the data volume,

we used relatively fewer principal components here compared with the 1D-Conv-Capsule. Figure 11

shows the classification result for the 3D-Conv-Capsule. The 3D-Conv-Capsule with different

Figure 11. Classification results of the 3D-Conv-Capsule on three data sets with respect to

different principal components.

97
.9

2

98
.7

5

9
0.

4
1

9
8.

0
6

99
.1

2

9
0.

7
4

98
.9

98
.5

5

91
.0

7

98
.3

8

9
9.

2
2

90
.6

8

70

80

90

100

Salinas KSC Houston

O
A

(%
)

Number of Principal Components: 3 5 10 20

Remote Sens. 2019, 11, 223 20 of 27

numbers of principal components outperformed the other contrast experiments. Unlike 1D-Conv-

Capsule, the preservation of more principal components leads to a vast data volume which brings a

higher requirement for hardware and longer training time in 3D-Conv-Capsule. Though the

classification accuracy may be higher with relatively more components, we only used three principal

components in consideration of computational cost in the 3D-Conv-Capsule.

5.5. Parameter Analysis

In the 3D-Conv-Capsule, convolutional layers were used as feature extractors, and they

converted the original input into a capsule’s input. Thus, the number of convolutional layers and the

convolutional kernel size used in 3D-Conv-Capsule influences the classification performance of the

model. Furthermore, due to the fact that the input of a 3D-Conv-Capsule is the a×a neighbors around

the pixel, the size of neighborhoods is also an important factor. These factors are analyzed below.

When we explored the influence of a parameter on the classification result, the other parameters

were fixed. The neighborhood size and convolution kernel size were set to 27 and 3 when we

analyzed the number of convolutional layers. For the analysis of the convolution kernel size, 27×27

neighborhoods and two convolutional layers were used in the 3D-Conv-Capsule. Similarly, the

number of convolutional layers and the convolution kernel size were set to 2 and 3 for analysis of the

size of the neighborhood. All the experiments for this analysis were conducted with 200 training

samples. Tables 14–16 shows the detailed classification results. As reported in Table 14, the use of

two convolutional layers gave better classification results. Furthermore, one convolutional layer

could not extract features efficiently while three layers made the model prone to overfitting. Table 15

shows the classification results with different convolution kernel sizes. The 3D-Conv-Capsule

performed better when the kernel size was 3. For the neighborhood size, the 3D-Conv-Capsule

obtained good classification accuracies on the Salinas and KSC data sets when the neighborhood size

was relatively large, but the result for the Houston data set was the other way around.

Table 14. Classification results of the 3D-Conv-Capsule with different numbers of convolutional

layers on three data sets.

Data Set Convolutional Layers 1 2 3

Salinas

OA(%) 97.60±1.12 97.92±0.30 97.69±0.77

AA(%) 95.69±2.77 96.21±1.87 95.84±2.45

K×100 97.32±1.25 97.68±0.34 97.41±0.87

KSC

OA(%) 97.80±1.20 98.75±0.87 98.20±1.24

AA(%) 96.53±2.10 98.01±1.36 97.08±2.09

K×100 97.55±1.33 98.62±0.97 97.99±1.37

Houston

OA(%) 88.86±1.58 90.41±1.28 89.04±1.17

AA(%) 88.03±2.80 89.46±1.72 86.94±1.84

K×100 87.96±1.72 89.63±1.38 88.15±1.27

Table 15. Classification results of the 3D-Conv-Capsule with different convolutional kernel sizes on

three data sets.

Data Set Kernel Size 3 5 7

Salinas

OA(%) 97.92±0.30 97.08±1.21 97.39±0.84

AA(%) 96.21±1.87 95.59±3.77 96.90±2.05

K×100 97.68±0.34 96.73±1.35 97.08±0.95

KSC

OA(%) 98.75±0.87 97.39±1.10 98.25±1.19

AA(%) 98.01±1.36 95.68±1.65 97.26±1.85

K×100 98.62±0.97 97.10±1.22 98.05±1.32

Houston

OA(%) 90.41±1.28 88.40±1.28 89.06±1.77

AA(%) 89.46±1.72 87.71±2.72 87.84±1.89

K×100 89.63±1.38 87.46±1.38 88.18±1.91

Remote Sens. 2019, 11, 223 21 of 27

Table 16. Classification result of the 3D-Conv-Capsule with different neighborhood sizes on three

data sets.

Data Set Neighborhoods 11 17 21 27

Salinas

OA(%) 95.73±0.87 96.65±2.11 97.07±0.81 97.92±0.30

AA(%) 95.52±2.98 95.34±4.28 96.15±1.06 96.21±1.87

K×100 95.24±0.97 96.25±2.36 96.73±0.90 97.68±0.34

KSC

OA(%) 97.36±0.81 97.68±1.18 97.46±1.15 98.75±0.87

AA(%) 95.69±1.30 96.34±1.75 94.92±3.42 98.01±1.36

K×100 97.07±0.90 97.42±1.30 97.18±1.27 98.62±0.97

Houston

OA(%) 91.56±0.87 91.35±0.78 91.08±1.30 90.41±1.28

AA(%) 91.81±1.43 89.92±0.70 90.10±1.89 89.46±1.72

K×100 90.88±0.94 90.65±0.84 90.36±1.41 89.63±1.38

5.6. Visualization of Learnt Features from the Capsule Network

Unlike traditional neural networks which use a sequence of scalar value to represent the

probability of the input belonging to different classes, capsule networks output n_class (i.e., the

number of classes) capsules that represent different classes of entity. The length of the vector output

of each capsule (i.e., the Euclidean norm of the vector) represents the probability that a corresponding

entity exists. In HSI classification tasks, the length of different capsules’ output vectors can be

interpreted as the probability that the input belongs to different classes.

We randomly choose several samples from the test data set and imported them into the trained

3D-Conv-Capsule network. The length of the vector output of each capsule in the ClassCaps layer is

computed and visualized in Figure 12. From the results shown in Figure 12, it is possible to observe

that the capsule corresponding to the true class output the longest vector. Due to the similarity

between the Graminoid marsh and Spartina marsh, the experimental results of three samples from

the Graminoid marsh class show that the length of the vector corresponding to the similar class was

longer than those of the other classes.

(a)

(b)

(c)

Remote Sens. 2019, 11, 223 22 of 27

Figure 12. The visualization of learnt features (i.e., length of vector output of each capsule in

ClassCaps layer) from 3D-Conv-Capsule network on the KSC data set. The four pictures in each row

are the results of three randomly selected samples of the same class and an example of input images

(i.e., false color image). (a) Scrub class; (b) Willow swamp class; and (c) Graminoid marsh class.

5.7. Time Consumption

All experiments in this paper were conducted on a Dell laptop equipped with an Intel Core i5-

7300H processor with 2.5 GHz, 8 GB of DDR4 RAM, and an NVIDIA GeForce GTX 1050Ti graphical

processing unit (GPU). The software environment used Windows 10 as an operating system, CUDA

9.0 and cuDNN 7.1, Keras framework using TensorFlow as a backend, and Python 3.6 as the

programing language. The training and test times of different models are reported in Tables 17–18.

The traditional RF and SVM classifiers demonstrated superior computational efficiency. As for deep

learning models, the model was able to be trained within a few minutes due to the limited number

of training samples and the GPU’s strong computing acceleration power. The 3D-Conv-Capsule

required nearly the same training time as 3D-CNN and less time than SSRN. In the experiments, it

was found that capsule network-based method converged “faster” than the CNN-based method (e.g.,

100 epochs for 3D-Conv-Capsule and 500 epochs for 3D-EMAP-CNN). In future work, the use of

more specific computing acceleration for the capsule network could further boost the computational

efficiency of the capsule-based method.

Table 17. Training and test times of different spectral classifiers for the three HSI data sets with 200

training samples.

Methods

Data sets
RF MLP L-SVM RBF-SVM RNN 1D-CNN 1D-PCA-CNN 1D-Capsule 1D-Conv-Capsule

Salinas
Train (s) 23.5 6.8 0.43 4.8 190.3 19.5 17.1 230.3 92.2

Test (s) 1.5 0.2 1.5 1.65 4.1 0.29 0.25 120.5 56.3

KSC
Train (s) 21.0 6.5 0.37 4.4 160.2 19.1 17.5 160.2 88.5

Test (s) 0.2 0.04 0.11 0.13 2.1 0.02 0.02 8.2 5.2

Houston
Train (s) 26.0 6.5 0.49 4.0 135.1 17.5 17.7 145.3 110.2

Test (s) 0.5 0.07 0.36 0.45 3.5 0.07 0.07 22.3 16.8

Table 18. Training and test times of different spectral-spatial classifiers for the three HSI data sets

with 200 training samples.

Methods

Data sets

EMP-

SVM

EMP-

CNN

EMAP-

RF

EMAP-

SVM

3D-

CNN
SSRN

3D-EMAP-

CNN

3D-

Capsule

3D-Conv-

Capsule

Salinas
Train (s) 1.1 32.5 18.7 2.95 130.2 240.3 72.2 270.2 140.2

Test (s) 0.38 3.7 1.5 0.8 19.2 43.6 28.4 220.4 128.4

KSC
Train (s) 1.0 28 19.1 2.75 122.3 215.5 72.1 240.1 140.1

Test (s) 0.04 0.4 0.15 0.08 1.5 3.8 1.0 17.6 12.3

Houston
Train (s) 1.2 45.0 22.2 3.2 133 190.2 75.2 255.7 135.2

Test (s) 0.13 1.2 0.5 0.31 3.0 9.0 4.9 65.2 36.1

5.8. Classification Maps

Lastly, we evaluated the classification accuracies from a visual perspective. The trained models,

including 1D-CNN, 1D-Conv-Capsule, EMAP-SVM, 3D-CNN and 3D-Conv-Capsule, were selected

to classify the whole images. All parameters in these models were optimized. Figures 13–15 show the

classification maps obtained by different models using the three data sets. From Figures 13-15, we

can figure out how the different classification methods affect the classification results. Although the

1D-Conv-Capsule demonstrated a higher accuracy than 1D-CNN, the 1D-CNN and 1D-Conv-

Capsule models, which only utilize spectral features, depicted more errors compared with spectral-

spatial-based methods for the three data sets. Spectral-based models always result in noisy scatter

points in the classification map (see Figures 13–15, (b),(c)). Spectral-spatial methods overcome this

shortcoming. Obviously, 3D-CNN and 3D-Conv-Capsule, which directly use the neighbor

information as the model input, resulted in smoother classification maps. By comparing the true

ground reference with the classification maps, the 3D-Conv-Capsule obtained more precise

Remote Sens. 2019, 11, 223 23 of 27

classification results, which demonstrates that the capsule network is an effective method for HSI

classification.

(a) (b) (c) (d) (e) (f)

Figure 13. Salinas. (a) False color image. (b) to (f) Classification maps of different classifiers: (b) 1D-

CNN; (c) 1D-Conv-Capsule; (d) EMAP-SVM; (e) 3D-CNN; and (f) 3D-Conv-Capsule.

(a) (b) (c) (d) (e) (f)

Figure 14. KSC. (a) False color image. (b) to (f) Classification maps obtained by different classifiers:

(b) 1D-CNN; (c) 1D-Conv-Capsule; (d) EMAP-SVM; (e) 3D-CNN; and (f) 3D-Conv-Capsule.

Remote Sens. 2019, 11, 223 24 of 27

(a)

(b)

(c)

(d)

(e)

(f)

Figure 15. Houston. (a) False color image. (b) to (f) classification maps obtained by different classifiers:

(b) 1D-CNN; (c) 1D-Conv-Capsule; (d) EMAP-SVM; (e) 3D-CNN; and (f) 3D-Conv-Capsule.

6. Conclusions

In this paper, an improved capsule network called the convolutional capsule (Conv-Capsule)

was proposed. On the basis of Conv-Capsule, new deep models called 1D-Conv-Capsule and 3D-

Conv-Capsule were investigated for HSI classification. Furthermore, 1D-Conv-Capsule and the 3D-

Conv-Capsule were combined with PCA and EMAP, respectively, to further improve the

classification performance.

The proposed models, 1D-Conv-Capsule and 3D-Conv-Capsule, can effectively extract spectral

and spectral-spatial features from HSI data. They were tested on three widely-used hyperspectral

data sets under the condition of having a limited number of training samples. The experimental

results showed the superiority over the classical SVM-based and CNN-based methods in terms of

classification accuracy.

The proposed methods explored the convolutional capsule network for HSI classification,

representing a new methodology for better modeling and processing of HSI. Compared with a fully

connected capsule layer, the convolutional capsule layer dramatically reduces the trainable

parameters, which is critical in order to avoid over-training. In our future work, based on the

Remote Sens. 2019, 11, 223 25 of 27

convolutional capsule, deep capsule architecture like SSRN in CNN will be conducted to fully

investigate the potential of capsule networks.

Author Contributions: Conceptualization, Yushi Chen; methodology, Kaiqiang Zhu and Yushi Chen; writing—

original draft preparation, Kaiqiang Zhu, Yushi Chen, Pedram Ghamisi, Xiuping Jia, and Jón Atli Benediktsson.

Funding: This research was funded by Natural Science Foundation of China under the Grant 61771171.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

There are many abbreviations in the paper. For paper’s readability, an abbreviation list that

explicitly explains each abbreviation’s meaning is given here (see Table A1).

Table A1. Abbreviation list.

Abbreviation Nomenclature Abbreviation Nomenclature

AP Attribute profile BN Batch normalization

CNN Convolutional neural network Conv-Capsule Convolutional capsule

EMAP Extend multi-attributes profile EMP Extend morphological profile

HSI Hyperspectral image L-SVM Linear SVM

MLP Multi-layer perceptron MP Morphological profile

PCA Principal component analysis RBF radial basis kernel function

RBF-SVM SVM with RBF kernel ReLU Rectified linear unit

RF Random forest RNN Recurrent neural network

SVM Support vector machine 1D-CNN One dimension CNN

1D-PCA-CNN
1D-CNN with PCA as

preprocessing
1D-Capsule

One dimension fully connected

capsule network

1D-Conv-Capsule

One dimension convolutional

capsule network with PCA as

preprocessing

3D-CNN Three dimension CNN

EMP-SVM
RBF-SVM with EMP as

preprocessing
EMAP-RF RF with EMAP as preprocessing

EMAP-SVM
RBF-SVM with EMAP as

preprocessing
EMP-CNN

3D-CNN with EMP as

preprocessing

3D-EMAP-CNN
3D-CNN with EMAP as

preprocessing
SSRN

Spectral-spatial residual network

proposed in [49]

3D-Capsule
Three dimension fully connected

capsule network
3D-Conv-Capsule

Three dimension convolutional

capsule network with EMAP as

preprocessing

References

1. Ghamisi, P.; Plaza, J.; Chen, Y.; Li, J.; Plaza, A.J. Advanced spectral classifiers for hyperspectral images: A

review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–32.

2. Ghamisi, P.; Mura, M.D.; Benediktsson, J.A. A survey on spectral–spatial classification techniques based on

attribute profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2335–2353.

3. Li, J.; Khodadadzadeh, M.; Plaza, A.; Jia, X.; Bioucas-Dias, J.M. A discontinuity preserving relaxation

scheme for spectral–spatial hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.

2016, 9, 625–639.

4. Gu, Y.; Liu, T.; Jia, X.; Benediktsson, J.A.; Chanussot, J. Nonlinear multiple kernel learning with multiple-

structure-element extended morphological profiles for hyperspectral image classification. IEEE Trans.

Geosci. Remote Sens. 2016, 54, 3235–3247.

5. Meola, J.; Eismann, M.T.; Moses, R.L.; Ash, J.N. Application of model-based change detection to airborne

VNIR/SWIR hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3693–3706.

6. Demir, B.; Bovolo, F.; Bruzzone, L. Updating land-cover maps by classification of image time series: A novel

change-detection-driven transfer learning approach. IEEE Trans. Geosci. Remote Sens. 2013, 51, 300–312.

7. Wu, C.; Du, B.; Zhang, L. Slow feature analysis for change detection in multispectral imagery. IEEE Trans.

Geosci. Remote Sens. 2014, 52, 2858–2874.

8. Hu, F.; Xia, G.; Hu, J.; Zhang, L. Transferring deep convolutional neural networks for the scene

classification of high-resolution remote sensing imagery. Remote Sens. 2015, 7, 14680–14707.

Remote Sens. 2019, 11, 223 26 of 27

9. Li, X.; Mou, L.; Lu, X. Scene parsing from an MAP perspective. IEEE Trans. Cybern. 2015, 45, 1876–1886.

10. Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Airborne hyperspectral remote sensing to assess spatial

distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in

Minnesota. Remote Sens. Environ. 2013, 130, 254–265.

11. Moran, M.S.; Inoue, Y.; Barnes, E.M. Opportunities and limitations for image-based remote sensing in

precision crop management. Remote Sens. Environ. 1997, 61, 319–346.

12. Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A survey of active learning algorithms for

supervised remote sensing image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 5, 606–

617.

13. Camps-Valls, G.; Bandos Marsheva, T.V.; Zhou, D. Semi-supervised graph-based hyperspectral image

classification. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3044–3054.

14. Jimenez-Rodriguez, L.O.; Arzuaga-Cruz, E.; Velez-Reyes, M. Unsupervised linear feature-extraction

methods and their effects in the classification of high-dimensional data. IEEE Trans. Geosci. Remote Sens.

2007, 45, 469–483.

15. Gualtieri, J.A.; Cromp, R.F. Support vector machines for hyperspectral remote sensing classification. In

Proceedings of the SPIE 27th AIPR Workshop, Washington, DC, USA, 14–16 October1998; pp. 221–232.

16. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector

machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790.

17. Benediktsson, J.A.; Ghamisi, P. Spectral-Spatial Classification of Hyperspectral Remote Sensing Images; Artech

House Publishers: Boston, MA, USA, 2015.

18. Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas

based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491.

19. Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and spatial classification of

hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–

3814.

20. Mura, M.D.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological attribute profiles for the analysis of

very high resolution images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762.

21. Mura, M.D.; Villa, A.; Benediktsson, J.A.; Chanussot, J.; Bruzzone, L. Classification of hyperspectral images

by using extended morphological attribute profiles and independent component analysis. IEEE Geosci.

Remote Sens. Lett. 2011, 8, 542–546.

22. Gu, Y.; Chanussot, J.; Jia, X.; Benediktsson, J.A. Multiple kernel learning for hyperspectral image

classification: A review. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6547–6565.

23. Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the

art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40.

24. Mou, L.; Ghamisi, P.; Zhu, X.X. Deep Recurrent Neural Networks for Hyperspectral Image Classification.

IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655.

25. Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE

J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107.

26. Chen, Y.; Zhao, X.; Jia, X. Spectral–spatial classification of hyperspectral data based on deep belief network.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1–12.

27. Zhong, P.; Gong, Z.; Li, S.; Schönlieb, C.B. Learning to diversify deep belief networks for hyperspectral

image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3516–3530.

28. Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image

classification. J. Sens. 2015, 2015, 258619.

29. Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral image classification using deep pixel-pair features. IEEE

Trans. Geosci. Remote Sens. 2016, 55, 844–853.

30. Yue, J.; Zhao, W.; Mao, S.; Liu, H. Spectral–spatial classification of hyperspectral images using deep

convolutional neural networks. Remote Sens. Lett. 2015, 6, 468–477.

31. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral

images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251.

32. Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional

neural network. Remote Sens. 2017, 9, 67.

33. Liang, H.; Li, Q. Hyperspectral imagery classification using sparse representations of convolutional neural

network features. Remote Sens. 2016, 8, 99.

Remote Sens. 2019, 11, 223 27 of 27

34. Aptoula, E.; Ozdemir, M.C.; Yanikoglu, B. Deep learning with attribute profiles for hyperspectral image

classification. IEEE Trans. Geosci. Remote Sens. 2016, 13, 1970–1974.

35. Chen, Y.; Zhu, L.; Ghamisi, P.; Jia, X.; Li, G.; Tang, L. Hyperspectral images classification with gabor

filtering and convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2355–2359.

36. Sabour, S., Frosst, N., Hinton, G. Dynamic routing between capsules. arXiv 2014, arXiv1710.09829.

Available online: https://arxiv.org/abs/1710.09829 (accessed on 26 October 2017).

37. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.

Proc. IEEE 1998, 86, 2278–2324.

38. Licciardi, G.; Marpu, P.R.; Chanussot, J.; Benediktsson, J.A. Linear versus nonlinear PCA for the

classification of hyperspectral data based on the extended morphological profiles. IEEE Geosci. Remote Sens.

Lett. 2011, 9, 447–451.

39. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In

Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013.

40. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal

covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July

2015; pp. 448–456.

41. Hu, M. Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 1962, 8, 179–187.

42. Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for

classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501.

43. Chen, P.; Tran, T.C. Hyperspectral imagery classification using a backpropagation neural network. In

Proceedings of the IEEE World Congress on Computational Intelligence Neural Networks, Orlando, FL,

USA, 28 June–2 July 1994; Volume 5, pp. 2942–2947.

44. Hinton, G.; Krizhevsky, A.; Wang, S.D. Transforming auto-encoders. In Proceedings of the International

Conference on Artificial Neural Networks, Espoo, Finland, 14–17 June 2011; pp. 44–51.

45. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks.

In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6

December 2012; pp. 1106–1114.

46. Nair, V.; Hinton, G. Rectified linear units improve restricted boltzmann machines. In Proceedings of the

27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010.

47. Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.; Li, J.; Pla, F. Capsule Networks for

Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, doi:10.1109/TGRS.2018.2871782.

48. Deng, F.; Pu, S.; Chen, X.; Shi, Y.; Yuan, T.; Pu, S. Hyperspectral image classification with capsule network

using limited training samples. Sensors 2018, 18, 3153.

49. Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral-spatial residual network for hyperspectral image

classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 847–858.

 © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

