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Abstract: Capsule networks can be considered to be the next era of deep learning and have recently 

shown their advantages in supervised classification. Instead of using scalar values to represent 

features, the capsule networks use vectors to represent features, which enriches the feature 

presentation capability. This paper introduces a deep capsule network for hyperspectral image 

(HSI) classification to improve the performance of the conventional convolutional neural networks 

(CNNs). Furthermore, a modification of the capsule network named Conv-Capsule is proposed. 

Instead of using full connections, local connections and shared transform matrices, which are the 

core ideas of CNNs, are used in the Conv-Capsule network architecture. In Conv-Capsule, the 

number of trainable parameters is reduced compared to the original capsule, which potentially 

mitigates the overfitting issue when the number of available training samples is limited. Specifically, 

we propose two schemes: (1) A 1D deep capsule network is designed for spectral classification, as a 

combination of principal component analysis, CNN, and the Conv-Capsule network, and (2) a 3D 

deep capsule network is designed for spectral-spatial classification, as a combination of extended 

multi-attribute profiles, CNN, and the Conv-Capsule network. The proposed classifiers are tested 

on three widely-used hyperspectral data sets. The obtained results reveal that the proposed models 

provide competitive results compared to the state-of-the-art methods, including kernel support 

vector machines, CNNs, and recurrent neural network. 

Keywords: convolutional neural network (CNN); deep learning; capsule network; hyperspectral 

image classification 

 

1. Introduction 

The task of classification, when it relates to hyperspectral images (HSIs), generally refers to 

assigning a label to each pixel vector in the scene [1]. HSI classification is a crucial step for a plethora 

of applications including urban development [2–4], land change monitoring [5–7], scene 

interpretation [8,9], resource management [10,11], and so on. Due to the fundamental importance of 

this step in various applications, classification of HSI is one of the hottest topics in the remote sensing 

community. However, the classification of HSI is still challenging due to several factors such as high 

dimensionality, a limited number of training samples, and complex imaging situations [1]. 
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During the last few decades, a huge number of methods have been proposed for HSI 

classification [12–14]. Due to the availability of abundant spectral information in HSIs, lots of spectral 

classifiers have been proposed for HSI classification including k-nearest-neighbors, maximum 

likelihood, neural network, logistic regression, and support vector machines (SVMs) [1,15,16]. 

Hyperspectral sensors provide rich spatial information as well, and the spatial resolution is 

becoming finer and finer along with the development of sensor technologies. With the help of spatial 

information, classification performance can be greatly improved [17]. Among the spectral-spatial 

classification techniques, the generation of a morphological profile is a widely-used approach, which 

is usually followed by either an SVM or a random forest classifier to obtain the final classification 

result [18-21]. As the extension of SVM, multiple kernel learning is another main stream of spectral-

spatial HSI classification, which has a powerful capability to handle the heterogeneous features 

obtained by spectral-spatial hyperspectral images [22]. 

Due to the complex atmospheric conditions, scattering from neighboring objects, intra-class 

variability, and varying sunlight intensity, it is very important to extract invariant and robust features 

from HSIs for accurate classification. Deep learning uses hierarchical models to extract invariant and 

discriminate features from HSIs in an effective manner and usually leads to accurate classification. 

During the past few years, many deep learning methods have been proposed for HSI classification. 

Deep learning includes a broader family of models, including the stacked auto-encoder, the deep 

belief network, the deep convolutional neural network (CNN), and the deep recurrent neural 

network. All of the aforementioned deep models have been used for HSI classification [23,24]. 

The stacked auto-encoder was the first deep model to be investigated for HSI feature extraction 

and classification [25]. In [25], two stacked auto-encoders were used to hierarchically extract spectral 

and spatial features. The extracted invariant and discriminant features led to a better classification 

performance. Furthermore, recently, the deep belief network was introduced for HSI feature 

extraction and classification [26,27]. 

Because of the unique and useful model architectures of CNNs (e.g., local connections and 

shared weights), such networks usually outperform other deep models in terms of classification 

accuracy. In [28], a well-designed CNN with five layers was proposed to extract spectral features for 

accurate classification. In [29], a CNN-based spectral classifier that elaborately uses pixel-pair 

information was proposed, and it was shown to obtain good classification performance under the 

condition of a limited number of training samples. 

Most of the existing CNN-based HSI classification methods have been generalized to consider 

both spectral and spatial information in a single classification framework. The first spectral-spatial 

classifier based on CNN was introduced in [30], which was a combination of principal component 

analysis (PCA), deep CNN, and logistic regression. Due to the fact that the inputs of deep learning 

models are usually 3D data, it is reasonable to design 3D CNNs for HSI spectral-spatial classification 

[31,32]. Furthermore, CNN can be combined with other powerful techniques to improve the 

classification performance. In [33], CNN was combined with sparse representation to refine the learnt 

features. CNNs can be connected with other spatial feature extraction methods, such as 

morphological profiles and Gabor filtering, to further improve the classification performance [34,35]. 

The pixel vector of HSIs can be inherently considered to be sequential. Recurrent neural 

networks have the capability of characterizing sequential data. Therefore, in [27], a deep recurrent 

neural network that can analyze hyperspectral pixel vectors as sequential data and then determine 

information categories via network reasoning was proposed. 

Although deep learning models have shown their capabilities for HSI classification, some 

disadvantages exist which downgrade the performance of such techniques. In general, deep models 

require a huge number of training samples to reliably train a large number of parameters in their 

networks. On the other hand, having insufficient training samples is a frequent problem in remotely 

sensed image classification. In 2017, Sabour et al. proposed a new idea based on capsules, which 

showed its advantages in coping with a limited number of training samples [36]. Furthermore, 

traditional CNNs usually use a pooling layer to obtain invariant features from the input data, but the 

pooling operation loses the precise positional relationship of features. In hyperspectral remote 
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sensing, abundant spectral information and the positional relationship in a pixel vector are the crucial 

factors for accurate spectral classification. Therefore, it is important to maintain the precise positional 

relationship in the feature extraction stage. In addition, when it comes to extracting spectral-spatial 

features from HSI, it is also important to hold the positional relationship of spectral-spatial features. 

Moreover, most of the existing deep methods use a scalar value to represent the intensity of a feature. 

In contrast, capsule networks use vectors to represent features. The usage of vectors enriches the 

feature representation and is a huge progress and a much more promising method for feature 

learning than scalar representation [36,44]. These properties of the capsule network perfectly align 

with the goals of this study and the current demands in the hyperspectral community. 

Deep learning-based methods, including deep capsule networks, have a powerful feature 

extraction capability when the number of training samples is sufficient. Unfortunately, the 

availability of only a limited number of training samples is a common bottleneck in HSI classification. 

Deep models are often over-trained with a limited number of training samples, which downgrades 

the classification accuracy on test samples. In order to mitigate the overfitting problem and lessen the 

feature extraction workload of deep models, the idea of a local connection-based capsule network is 

proposed in this study. The proposed Conv-Capsule network uses local connections and shared 

transform matrices to reduce the number of trainable parameters compared to the original capsule, 

which potentially mitigates the overfitting issue when the number of available training samples is 

limited. 

In the current study, the idea of the capsule network is modified for HSI classification. Two deep 

capsule classification frameworks, 1D-Capsule and 3D-Capsule, are proposed as spectral and 

spectral-spatial classifiers, respectively. Furthermore, two modified capsule networks, i.e., 1D-Conv-

Capsule and 3D-Conv-Capsule, are proposed to further improve the classification accuracy. 

The main contributions of the paper are briefly summarized as follows. 

(1) A modification of the capsule network named Conv-Capsule is proposed. The Conv-Capsule 

uses local connections and shared transform matrices in the network, which reduces the number of 

trainable parameters and mitigates the overfitting issue in classification.  

(2) Two frameworks, called 1D-Capsule and 3D-Capsule, based on the capsule network are 

proposed for HSI classification. 

(3) To further improve the HSI classification performance, two frameworks, called 1D-Conv-

Capsule and 3D-Conv-Capsule, are proposed. 

(4) The proposed methods are tested on three well-known hyperspectral data sets under the 

condition of having a limited number of training samples. 

The rest of the paper is organized as follows. Section 2 presents the background of the deep 

learning and capsule network. Sections 3 and 4 are dedicated to the details of the proposed deep 

capsule network frameworks, including spectral and spectral-spatial architectures for HSI 

classification. The experimental results are reported in Section 5. In Section 6, the conclusions and 

discussions are presented. 

2. Background 

2.1. Convolutional Neural Networks 

In general, CNN is a special case of deep neural network, which is loosely inspired by the 

biological visual system [37]. Compared with other deep learning methods, there are two unique 

factors in the architecture of the CNN, i.e., local connections and shared weights. Since each neuron 

only responds to a small region known as the reception field, CNN efficiently explores the structure 

correlation. Furthermore, CNN uses the replicated weights and biases across the entire layer, which 

significantly reduces the parameters in the network. By using specific architectures like local 

connections and shared weights, CNN tends to provide better generalization for a wide variety of 

applications. 
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There are three main building blocks in CNNs: A convolution layer, a nonlinear transformation, 

and a pooling operation. By stacking several convolution layers with the nonlinear operations and 

several pooling layers, a deep CNN can be established [45]. 

A convolutional layer can be defined as follows: 

��
� = �(∑ ��

��� ∗ ���
� + ��

��
��� ), (1) 

�(�) = max (0, �), (2) 

where matrix ��
��� is the i-th feature map of the previous (l-1)-th layer, ��

� is the j-th feature map of 

the current l-th layer, and M is the number of input feature maps. ���
�  and ��

�  are randomly 

initialized and set to zero. Furthermore, �(∙) is a nonlinear function known as the rectified linear 

unit (ReLU), and   is the convolution operation [46]. 

The pooling operation offers invariance by reducing the resolution of the feature maps. The neuron 

in the pooling layer combines a small N×N (e.g., N=2) patch of the convolution layer. The most common 

pooling operation is max pooling. 

All parameters in the deep CNN model are trained using the back-propagation algorithm. 

In this study, CNN is adopted as the feature extraction method, and the extracted features are fed 

to the deep capsule network for further processing. 

2.2. Capsule Network 

The capsule network is a modification of the traditional neural network, which uses a group of 

neurons to obtain the vector representations of a specific type of entity. 

In [36], the input to a capsule �� is a weighted sum of prediction vector ��|� from the previous 

layers. ��|� is obtained by multiplying �� of the previous capsule by a transform matrix ���, 

�� = ∑ �����|�� , (3) 

��|� =  ����� (4) 

where ��� represents the coupling coefficients determined by a processing called dynamic routing [36]. 

The capsule uses the length of the output vector to obtain the probability of the entity, and then, a 

nonlinear function which we call squash function is used to squash the vector, 

�� =
����

�

������
�

��

����
, (5) 

where �� is the output of capsule j, which is a vector representation of the input, while the traditional 

neural network uses a scalar value to give the final probability of the entity. There are some advantages 

when we use a vector representation instead of a scalar value. The vector representation uses the length 

of the activity vector to obtain the probability of the entity, and the vector representation gives the 

orientation of the entity too. In traditional CNNs, a pooling layer is used to make the network invariant 

to small changes in inputs, but the effectiveness is limited [44]. CNNs are not robust to translation, 

rotation, and scale, which usually downgrades their classification performance. In the capsule network, 

the output of the capsule is a vector representation of a type of entity [36]. When changes occur on the 

entity, the length of the corresponding output vector of the capsule may not change greatly. Through 

the capsule network, we can obtain a more robust representation of the input. 

2.3 Capsule Network for HSI Classification 

The capsule network can be combined with the traditional neural network (e.g., CNN) to formulate 

a classification system for a specific task (e.g., HSI classification). In the remote sensing community, two 

works have already adopted the capsule networks for HSI classification. Paoletti et al. [47] and Deng et 

al. [48] adopted the capsule network for HSI classification and achieved good classification 

performance. In this context, Paoletti et al. proposed a spectral-spatial capsule network to capture high 

abstract-level features for HSI classification while reducing the network design complexity. The 

classification result in [47] demonstrates that the proposed method can extract more relevant and 
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complete information about HSI data cubes. Deng et al. presented a modified two-layer capsule 

network capable of handling a limited number of training samples for HSI classification.  

Previous capsule networks contained a fully-connected capsule layer, which led to lots of trainable 

parameters. As we all know, having lots of parameters may cause an overfitting problem with a limited 

number of training samples. In this study, an improved capsule network named Conv-Capsule, which 

uses local connections and shared transform matrices in the network, is proposed. Conv-Capsule 

dramatically reduces the number of trainable parameters and mitigates the overfitting issue in HSI 

classification. Furthermore, the previous capsule networks for HSI classification are spectral-spatial 

classifiers. In this study, a 1D capsule network is also proposed as a spectral classifier to enrich the 

classification techniques of HSI. The details of our proposed methods are explicitly explained in 

Sections 3 and 4. 

3. One-Dimensional Deep Capsule Network as a Spectral Classifier 

3.1. One-Dimensional Convolutional Capsule 

Deep learning models use multilayer neural networks to hierarchically extract the features of input 

data, which is the key factor for effectiveness in deep learning-based methods. The traditional capsule 

network does not contain multiple capsule layers. Therefore, it is necessary to build a multilayer capsule 

network. 

The simple stacking of capsule layers can develop a deep capsule network. However, the 

traditional capsule layer is fully connected and contains a huge number of trainable parameters. The 

problem is even worse when the number of training samples is limited. Inspired by the CNN, local 

connections and shared transform matrices, which are the core ideas of CNN, are combined with the 

dynamic routing algorithm in the capsule layer, and we call it the convolutional capsule (Conv-

Capsule) layer. In the Conv-Capsule layer, each capsule in the current layer only connects with capsules 

within its local receptive field in the last capsule layer. The transform matrices in the local connections 

are shared across the entire layer. 

In HSI classification, spectral classification is an important research direction. To develop a 1D 

capsule network for HSI classification, a 1D Conv-Capsule layer needs to be utilized. Here is a 

description of the 1D Conv-Capsule layer which we use here to shape the spectral classifier. The input 

of a capsule ��
� in a 1D Conv-Capsule layer is a weighted sum of the “prediction vector” ��|�

���
 from 

all channels of the capsule within its receptive field in the last capsule layer. Furthermore, ��|�
���

 is 

obtained by multiplying ��
���

 from the capsule in the last layer by the corresponding transform matrix 

���
�
 which is shared across the last capsule layer. By using a squash function, the output of the capsule 

��
� can be obtained from the input ��

�. The equations used here are listed as follows: 

��|�
���

= ���
�

��
���

, (6) 

��
� = ∑ ∑ ���

����
���

�
��� ��|�

���
, (7) 

��
� = �����ℎ���

��, (8) 

where I and P are the number of capsule channels in the last capsule layer and kernel size in the current 

1D Conv-Capsule layer. ��
� is the input of the j-th channel capsule at position x in the current 1D Conv-

Capsule layer, and ��
� is the corresponding output. ��

���
 is the output of the i-th channel capsule at 

position (x+p) in the last capsule layer. ���
�

 is the transform matrix between ��
���

 and ��
� . ���

�
 

represents the coupling coefficients determined by the dynamic routing algorithm. An illustration of 

the 1D Conv-Capsule layer is shown in Figure 1. 
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Figure 1. One-dimensional Conv-Capsule layer. 

3.2. Dynamic Routing Algorithm in 1D Conv-Capsule layer  

Between two consecutive capsule layers, we use the dynamic routing algorithm to iteratively 

update coupling coefficients. The details about the procedure of the dynamic routing algorithm in 1D 

Conv-Capsule layer are described as follows: 

From the description of the 1D Conv-Capsule in the last subsection, we know that each capsule in 

the current 1D Conv-Capsule layer receives “prediction vectors” from the capsules within its receptive 

field in the last capsule layer. The weight of each “prediction vector” is represented by coupling 

coefficients. The coupling coefficients between capsule ��
���

 in the last capsule layer and all channels 

capsules at the same position in the 1D Conv-Capsule layer sum to 1 and can be obtained by a softmax 

function, 

���
�

=
��� (���

�
)

∑ �
��
�

�
, (9) 

where ���
�

 is initialized to 0 before the training begins and is determined by the dynamic routing 

algorithm. 

In the dynamic routing algorithm, the coefficient ���
�

 is iteratively refined by measuring the 

agreement between the “prediction vector” ��|�
���

 and ��
� . If the agreement is reached to a great 

extent, capsule ��
���

 makes a good prediction for capsule ��
� . Then, the coefficient ���

�
 will be 

significantly increased. In our network, the agreement is quantified as the inner product between two 

vectors ��|�
���

 and ��
�. This agreement is added to ���

�
: 

���
�

= ��|�
���

∙ ��
�, (10) 

���
�

←  ���
�

+ ���
�

, (11) 

The pseudo codes of the dynamic routing algorithm in the 1D Conv-Capsule layer are shown in 

Table 1. 

Table 1. Dynamic Routing Algorithm in 1D Conv-Capsule layer. 

Algorithm 1. Dynamic Routing Algorithm in 1D Conv-Capsule layer 

1.  begin 

2.      for x in spectral dimension in current capsule layer 

3.         for j-th channel capsule in current capsule layer 

4.            for p across kernel size 

5.               for i-th channel capsule in last capsule layer 

6.                   initialize coupling coefficients ���
�

 

7.         for r iterations 

8.            ���
�

= �������(���
�

) across dimension j 

9.            for j-th channel capsule in current capsule layer 

10.              ��
� = ∑ ∑ ���

�
���

�
��

������
���

���
���  
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11.              ��
� = ������(��

�) 

12.              ���
�

← ���
�

+ ���
� ���

�
��

���
 

13.        return ��
� 

14. end 

3.3. One-Dimensional Capsule Framework for HSI Classification 

The main framework of the 1D-Conv-Capsule network, which is based on the integration of 

principal component analysis (PCA), convolutional neural network, and the capsule network, is 

shown in Figure 2. We build this framework based on HSI spectral features and only use spectral 

vectors of the training data to train the model.  
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Figure 2. The framework of the 1D-Conv-Capsule network for hyperspectral image (hsi) 

classification. 

As illustrated in Figure 2, PCA is first used to reduce the dimensionality of the input data [38], 

which leads to fewer trainable parameters in the network. Then, � principal components of each 

pixel are chosen as the inputs to the network. Through the capsule network, the predicted label of 

each pixel can be obtained. 

The proposed 1D-Conv-Capsule network contains six layers. The first layer is an input layer 

which has � principal components for each pixel. The second and third layers are convolutional 

layers, which are the same as traditional convolutional layers in a CNN. The fourth layer is the first 

capsule layer with I channels of convolutional ��  dimension capsules, which means that each 

capsule contains �� convolutional units. The fifth layer is a 1D Conv-Capsule layer which outputs J 

channels of �� dimension capsules. The last layer is a fully connected capsule layer that has n_class 

(n_class is the number of classes) �� dimensional capsules. Each capsule in the last layer represents 

one class, and it is called the ClassCaps layer for short. The length of the vector output of each capsule 

represents the probability of the input spectral vector belonging to each class. ‖��‖ in Figure 2 is the 

Euclidean norm of a vector (i.e., the length of the vector). Some details about the network are given 

below. 

In the first two convolutional layers, which have no difference with traditional convolution 

layers, we use a leaky rectified linear unit (LeakyReLU) to obtain a nonlinear mapping [39], 

�(�) = �
�, � ≥ 0

��, � < 0
, (12) 

where � is a small positive scalar value. 

The fourth layer is a transition layer and is also the first capsule layer. This layer translates 

convolutional units to capsules. Although convolution is still a fundamental operation in this layer, it 

has many differences with the traditional convolutional layer. In a traditional convolutional layer, the 

output of each channel’s convolution is one feature map. In the convolutional capsule layer, each 

channel outputs p (i.e., the number of neural units each capsule contains) feature maps. Then, p 

convolutional units in the same location of the p feature map represent one capsule. The activation of 

these convolutional units gives an output of each capsule using Equation. (6).  
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In the second, third, and fourth layers, the convolution operation is followed with batch 

normalization (BN) and LeakyReLU activation function [40]. There is no pooling operation in the 

proposed network. 

The fifth layer is a 1D Conv-Capsule layer. Local connections and shared transform matrices are 

used in this layer. We use the dynamic routing algorithm described in the last section to iteratively 

update coupling coefficients. Then, we can get the output of the capsule in this layer. 

The last layer, which we call ClassCaps layer, is a fully connected capsule layer. The dynamic 

routing algorithm is also used in this layer. 

Each capsule in the ClassCaps layer represents one class. The probability of a pixel belonging to 

one class is denoted by the length of the vector output of each capsule. In our network, we use the 

margin loss as the loss function, 

�� = ∑ [�� max�0, �� − �����
��_�����

��� + �(1 − ��) max�0, ���� − ���
�

], (13) 

where �� = 1 if the pixel belongs to class j. The parameter �� means that if the length of the vector 

output ���� is bigger than �� , we can make sure the pixel belongs to class j. The parameter �� 

means that when ���� is smaller than ��, we can firmly believe the pixel does not belong to class j. 

The loss for the class that the pixel does not belong to may stop the initial learning from shrinking the 

length of vector output for all capsules in the ClassCaps layer. So � is used to down-weight it. 

4. Three-Dimensional Deep Capsule Network as a Spectral-Spatial Classifier 

4.1. Three-Dimensional Convolutional Capsule 

The 1D capsule network only extracts spectral features for HSI classification. To obtain an excellent 

classification performance, spatial information should be taken into consideration. Therefore, we 

further develop the 3D capsule network for HSI classification. A 3D Conv-Capsule layer is used in the 

3D capsule network and is described below. 

For each capsule in the 3D Conv-Capsule layer, all capsules in its receptive field make a prediction 

through the transform matrix. Then, the weighted sum of all “prediction vectors” serves as the input of 

the capsule. Finally, the input vector is squashed by a nonlinear function (i.e., squash function) to 

generate the output of the capsule. The detailed equations are listed below: 

��|�
(���)(���)

= ���
��

��
(���)(���)

, (14) 

��
��

= ∑ ∑ ∑ ���
��

��|�
(���)(���)���

���
���
���

�
��� , (15) 

��
��

= �����ℎ���
��

�, (16) 

where I is the number of capsule channels in the last capsule layer. � and � represent the kernel size. 

Furthermore, ��
(���)(���)

 is the output of the capsule which is the i-th channel’s capsule in the last 

capsule layer at position (x+p, y+q). In addition, ���
��

 is the shared transform matrix between the i-th 

channel capsule in the last capsule layer and the j-th channel capsule in the current Conv-Capsule layer. 

���
��

 represents the corresponding coupling coefficients determined by the dynamic routing algorithm. 

Figure 3 shows an illustration of the 3D Conv-Capsule layer. 
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The dynamic routing algorithm in the 3D Conv-Capsule layer is similar to the one in the 1D Conv-

Capsule layer. The pseudo codes are shown in Table 2. 

Table 2. Dynamic Routing Algorithm in 3D Conv-Capsule layer. 

Algorithm 2. Dynamic Routing Algorithm in 3D Conv-Capsule layer 

1.  begin 

2.      for x in width dimension in current capsule layer 

3.         for y in height dimension in current capsule layer 

4.            for j-th channel capsule in current capsule layer 

5.               for p across kernel width 

6.                  for q across kernel height 

7.                     for i-th channel capsule in last capsule layer         

8.                         initialize coupling coefficients ���
��

 

9.            for r iterations 

10.             ���
��

= �������(���
��

)across dimension j 

11.             for j-th channel capsule in current capsule layer 

12.                ��
��

= ∑ ∑ ∑ ���
��

���
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15.           return ��
�� 

16. end 

4.2. Three-Dimensional Capsule Framework for HSI Classification 

The main framework of the 3D-Conv-Capsule network is shown in Figure 4. Different from the 

1D-Conv-Capsule network which extracts spectral features only, the spatial information of HSIs is also 

taken into consideration. 
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Figure 4. The framework of the 3D-Conv-Capsule network for HSI classification. 

From the framework shown in Figure 4, it can be seen that, first, EMAP (Extended Multi-

Attributes Profile) is used as a preprocessing technique, which significantly reduces the dimensionality 

of the inputs and the number of training parameters. Then, � × � neighbors of each pixel, as the input 

3D images, are imported to the 3D-Conv-Capsule network. Through the network, each pixel gets n_class 

(i.e., the number of classes) �� dimension capsules. Each capsule represents a class of entity. The length 

of the output vector of each capsule shows the probability that the corresponding entity exists. In other 

words, it represents the probability of the pixel belonging to each class. Therefore, the classification 

results can be obtained by calculating the length of the vectors. 

Attribute profiles (APs), the basis of EMAP, are a generalization of the widely used morphological 

profiles (MPs) [20]. EMAP uses multiple morphological attributes to replace the fixed structure 

elements, which enables the EMAP to model the spatial information more accurately. 

In order to extract spatial information more comprehensively, different kinds of attribute can be 

used. In this paper, four attributes are considered: 1) a, the area of the regions; 2) d, the length of the 

diagonal of the box bounding the region; 3) i, the first moment of Hu [41]; 4) s, the standard deviation. 

EMAPs are generated by concatenating EAPs (Extend Attribute Profiles) computed by different 

attributes where EAPs are obtained by applying APs to principal components extracted by PCA. 

Similar to the 1D-Conv-Capsule network, the 3D-Conv-Capsule network also has six layers, i.e., 

the input layer, two convolutional layers, and three consecutive capsule layers. The two convolutional 

layers serve as a local feature detector. Then, a transition layer (i.e., capsule layer), which is similar to 

the 1D-Conv-Capsule network, is adopted. In the last two capsule layers, we use a dynamic routing 

algorithm to calculate the capsule output in the Conv-Capsule layer and the ClassCaps layer. Compared 

to the 1D-Conv-Capsule network, the input data changes from 1D spectral information to 3D spectral-

spatial information and from the 1D convolution operation to the 2D convolution operation. The 3D-

Conv-Capsule network uses the ReLU as the activation function. Batch normalization is also used to 

alleviate the overfitting problem and boost the classification accuracy. 

5. Experimental Results 

5.1. Data Description 

In our study, three widely-used hyperspectral data sets with different environmental settings 

were used to validate the effectiveness of the proposed methods. They were captured over Salinas 

Valley in California (Salinas), Kennedy Space Center (KSC) in Florida, and an urban site over the 

University of Houston campus and the neighboring area (Houston). 

The first data set was captured by the 224-band AVIRIS sensor over Salinas Valley, California. 

After removing the low signal to noise ratio (SNR) bands, the available data set was composed of 204 

bands with 512×217 pixels. The ground reference map covers 16 classes of interest. The hyperspectral 

image is of high spatial resolution (3.7-meter pixels). Figure 5 demonstrates the false-color composite 

image and the corresponding ground reference map. The number of samples in each class is listed in 

Table 3. 
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(a) (b)
 

Figure 5. The Salinas data set. (a) False-color composite and (b) ground reference map. 

Table 3. Land cover classes and numbers of samples in the Salinas data set. 

Class Samples 

No. Color Name Numbers 

1  Brocoli_green_weeds_1 1977 

2  Brocoli_green_weeds_2 3726 

3  Fallow 1976 

4  Fallow_rough_plow 1394 

5  Fallow_smooth 2678 

6  Stubble 3959 

7  Celery 3579 

8  Grapes_untrained 11213 

9  Soil_vinyard_develop 6197 

10  Corn_senesced_green_weeds 3249 

11  Lettuce_romaine_4wk 1058 

12  Lettuce_romaine_5wk 1908 

13  Lettuce_romaine_6wk 909 

14  Lettuce_romaine_7wk 1061 

15  Vinyard_untrained 7164 

16  Vinyard_vertical_trellis 1737 

Total 53785 

The second data set, KSC, was collected by the airborne AVIRIS instrument over the Kennedy 

Space Center, Florida. The KSC data set has an altitude of approximately 20 km, with a spatial 

resolution of 18 m. After removing water absorption and low SNR bands, 176 bands with 512×614 

pixel vectors were used for the analysis. For classification purpose, 13 classes were selected. The 

classes of the KSC data set and the corresponding false-color composite map are demonstrated in 

Figure 6. The number of samples for each class is given in Table 4. 

(a) (b)  
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Figure 6. The Kennedy Space Center (KSC) data set. (a) False-color composite and (b) ground 

reference map. 

Table 4. Land cover classes and numbers of samples in the KSC data set. 

Class Samples 

No. Color Name Numbers 

1  Scrub 761 

2  Willow swamp 243 

3  CP hammock 256 

4  Slash pine 252 

5  Oak/Broadleaf 161 

6  Hardwood 229 

7  Swamp 105 

8  Graminoid marsh 431 

9  Spartina marsh 520 

10  Cattail marsh 404 

11  Salt marsh 419 

12  Mud flats 503 

13  Water 927 

Total 5211 

The third data set is an urban site over the University of Houston campus and neighboring area 

which was collected by an ITRES-CASI 1500 sensor. The data set is of 2.5-m spatial resolution and 

consists of 349×1905 pixel vectors. The hyperspectral image is composed of 144 spectral bands 

ranging from 380 to 1050 nm. Fifteen different land-cover classes are provided in the ground reference 

map, as shown in Figure 7. The samples are listed in Table 5. 

(a)

(b)   

Figure 7. The Houston data set. (a) False-color composite and (b) ground reference map. 

Table 5. Land cover classes and numbers of samples in the Houston data set. 

Class Samples 

No. Color Name Numbers 

1  Grass Healthy 1251 

2  Grass Stresed 1254 

3  Grass Synthetic 697 

4  Tree 1244 

5  Soil  1242 

6  Water 325 

7  Residential 1268 

8  Commercial 1244 

9  Road 1252 

10  Highway 1227 
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11  Railway 1235 

12  Parking Lot 1 1233 

13  Parking Lot 2 469 

14  Tennis Court 428 

15  Running Track 660 

Total 15029 

For all three data sets, we split the labeled samples into three subsets, i.e., training, validation, 

and test samples. In our experiment, we randomly chose 200 labeled samples as the training set to 

train the weights and biases of each neuron and transformation matrix between two consecutive 

capsule layers. The proper architectures of our network were designed based on performance 

evaluation on 100 validation samples, which were also randomly chosen from labeled samples. The 

choice of hyper-parameters, like kernel size in the convolution operation and the dimensions of the 

vector output of each capsule, were also guided by the validation set. After the training was done, all 

remaining labeled samples served as the test set to evaluate the capability of the network and to 

obtain the final classification results. Three evaluation criteria were investigated: overall accuracy 

(OA), average accuracy (AA), and Kappa coefficients (K). 

5.2. The Classification Results of the 1D Capsule Network 

The 1D capsule network, which is built only based on spectral features, contains two parts. One 

is a fully connected capsule network that uses normalized spectral vectors as input. The other is the 

Conv-Capsule network which inputs spectral features extracted by PCA. We call the two methods 

1D-Capsule and 1D-Conv-Capsule for short. In the 1D-Conv-Capsule, we first used PCA to reduce 

the spectral dimensions of the data. Then, we randomly chose 200 and 100 labeled samples as the 

training and validation data for each data set. The training samples were imported to the 1D capsule 

network. The number of principal components was chosen based on the classification result for the 

validation samples. Some other hyper-parameters (e.g., the learning rate, the convolutional kernel 

size, the � in LeakyReLU, etc.) were also determined by the validation set. In our method, the size 

of the mini-batch was 100 and the number of training epochs was set to 150 for our network. We used 

a decreasing learning rate which was initialized to 0.01 at the beginning of the training process. The 

number of the principal components was set to 20, 20, and 30, respectively, for the Salinas, KSC, and 

Houston data sets. We used � = 0.1 in the LeakyReLU function. The parameters ��, ��, and � in 

the loss function were set to 0.9, 0.1, and 0.5, respectively. 

The main architectures of the 1D-Conv-Capsule network for each data set are shown in Table 6.  

Due to the fact that the same number of principal components was chosen as the input, the network 

for the Salinas and KSC data sets had the same architecture. In Table 6, (5×1×8)×8 in the fourth layer 

(i.e., transition layer) means that eight channels of convolution with the kernel size of 5×1 were used, 

and each channel output eight feature maps. Thus, the fourth layer output a capsule with eight 

channels. The fifth layer was a Conv-Capsule layer with eight (i.e., the number of capsule channels 

output by the fourth layer) channels of capsule input and 16 channels of capsule output. The kernel 

size was 5×1. We used (5×1×8)×16 to represent this operation. The last layer was a fully connected 

capsule layer. All capsules from the fifth layer were connected with n_class capsules in this layer. The 

length of the vector output of each capsule in this layer represents the probability of the network’s 

input belonging to each class. Between consecutive capsule layers in the 1D-Conv-Capsule, three 

routing iterations were used to determine the coupling coefficients ���
�

.  

Table 6. The architectures of the 1D-Conv-Capsule network for the different data sets. 

Nets No. Convolution BN Stride Padding Activation Function 

Salinas(KSC) 

1 First ten principal components, input shape is 20×1×1 

2 5×1×32 YES 1 Yes LeakyReLU 

3 5×1×64 YES 1 Yes LeakyReLU 

4 (5×1×8) ×8 YES 2 Yes LeakyReLU, Squash 

5 (5×1×8) ×16 No 2 No Squash 
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6 Three routing iterations and n_class capsules with a 16-dimensional output vector 

Houston 

1 First thirty principal components, input shape is 30×1×1 

2 7×1×32 YES 1 No LeakyReLU 

3 7×1×64 YES 1 No LeakyReLU 

4 (7×1×8) ×8 YES 1 No LeakyReLU, Squash 

5 (3×1×8) ×16 No 2 No Squash 

6 Three routing iterations and n_class capsules with a 16-dimensional output vector 

In this set of experiments, our methods were compared with other classical classification 

methods that are only based on spectral information. These methods included random forest (RF) 

[42], multiple layer perceptron (MLP) [43], linear support vector machine (L-SVM), support vector 

machine with the radial basis kernel function (RBF-SVM) [17], recurrent neural network (RNN) [24], 

and the convolutional neural network (1D-CNN) [28]. Furthermore, 1D-PCA-CNN, which has nearly 

the same architecture as 1D-Conv-Capsule (apart from the capsule layer), was also designed to give 

a fair comparison. The classification results are shown in Tables 7-9. 

Table 7. Classification with spectral features on the Salinas data set with different training samples. 

Trainin 

Samples 
Method RF MLP L-SVM RBF-SVM RNN 1D-CNN 

1D-PCA-

CNN 

1D-

Capsule 

1D-Conv-

Capsule 

100 

OA(%) 77.81±1.86 80.89±2.25 80.33±2.14 81.01±2.10 71.48±3.50 80.04±1.66 84.07±2.63 77.63±1.52 84.75±1.94 

AA(%) 78.12±3.06 81.56±4.68 79.83±3.58 80.79±4.69 68.84±4.62 80.99±4.08 84.87±4.70 76.41±3.34 86.00±2.01 

K×100 75.11±2.14 78.68±2.51 78.02±2.44 78.77±2.34 68.26±3.86 77.69±1.87 82.26±2.89 74.92±1.80 83.01±2.15 

200 

OA(%) 82.63±1.63 84.13±0.50 86.37±1.05 86.07±1.52 79.67±2.42 84.93±0.73 86.52±2.34 83.73±0.23 88.12±1.07 

AA(%) 85.73±2.09 88.71±0.60 89.37±1.92 88.07±2.27 83.22±1.25 89.97±0.58 89.46±3.09 89.02±0.29 91.08±1.70 

K×100 80.63±1.77 82.21±0.57 84.77±1.18 84.46±1.71 77.38±2.71 83.20±0.82 84.97±2.57 81.78±0.27 86.76±1.21 

300 

OA(%) 84.24±0.79 87.76±0.83 88.47±0.91 88.22±1.05 81.35±0.90 85.66±1.33 88.46±1.27 84.09±1.36 89.36±0.41 

AA(%) 88.00±1.41 91.72±1.00 91.96±1.16 91.40±1.60 83.88±2.82 88.41±1.98 91.93±1.54 88.28±1.85 92.92±0.32 

K×100 82.42±0.87 86.37±0.93 87.12±1.02 86.86±1.19 79.20±1.07 84.00±1.48 87.14±1.39 82.22±1.52 88.15±0.44 

Table 8. Classification with spectral features on the KSC data set with different training samples. 

Training 

Samples 
Method RF MLP L-SVM 

RBF-

SVM 
RNN 1D-CNN 

1D-PCA-

CNN 

1D-

Capsule 

1D-Conv-

Capsule 

100 

OA(%) 73.56±2.63 81.43±1.85 81.38±1.61 80.72±1.85 70.70±2.67 77.19±2.63 81.72±2.02 80.09±1.66 84.83±1.69 

AA(%) 62.52±4.14 72.33±3.58 72.22±3.33 71.17±2.36 58.79±4.74 67.92±3.09 72.41±3.39 70.65±3.16 77.52±3.07 

K×100 70.49±2.95 79.30±2.06 79.25±1.79 78.51±2.05 67.30±3.07 74.57±2.94 79.63±2.26 77.79±1.86 83.09±1.87 

200 

OA(%) 80.08±1.12 85.15±0.81 86.35±1.50 86.64±1.21 82.03±1.33 84.80±0.97 86.02±2.16 84.39±0.33 88.22±1.06 

AA(%) 71.52±1.93 78.78±0.98 78.06±2.76 79.57±1.76 74.68±1.21 79.32±1.48 78.91±2.97 78.66±0.36 82.11±2.52 

K×100 77.79±1.26 83.45±0.90 84.78±1.68 85.11±1.35 79.97±1.48 83.08±1.08 84.44±2.39 82.59±0.37 86.87±1.18 

300 

OA(%) 82.31±0.98 88.02±0.67 88.56±0.84 88.87±0.93 82.35±1.81 84.34±1.12 88.03±0.88 85.81±1.40 89.84±1.41 

AA(%) 75.32±0.99 82.15±1.55 82.45±2.23 83.55±1.39 73.33±3.10 78.37±1.84 81.45±2.09 79.11±1.29 84.43±2.29 

K×100 80.26±1.09 86.66±0.75 87.27±0.95 87.60±1.04 80.33±2.02 82.56±1.25 86.66±0.99 84.18±1.55 88.68±1.57 

Table 9. Classification with spectral features on the Houston data set with different training 

samples. 

Training 

Samples 

 
Method RF MLP L-SVM 

RBF-

SVM 
RNN 1D-CNN 

1D-PCA-

CNN 

1D-

Capsule 

1D-Conv-

Capsule 

100 

 OA(%) 64.68±2.27 72.42±1.39 69.89±1.99 72.95±1.64 62.41±3.10 70.66±3.43 72.51±2.94 70.11±3.14 76.04±1.90 

 AA(%) 63.59±3.34 70.82±2.88 70.11±2.28 72.03±2.23 61.58±2.96 68.20±3.99 71.43±3.81 69.64±4.34 75.46±2.93 

 K×100 61.76±2.47 70.15±1.52 67.42±2.16 70.73±1.77 59.37±3.36 68.22±3.73 70.24±3.18 67.66±3.41 74.08±2.06 

200 

 OA(%) 72.64±1.27 80.69±1.53 75.47±0.96 78.91±0.95 74.24±1.61 79.47±0.59 80.85±1.55 77.54±2.47 84.06±1.34 

 AA(%) 71.48±1.54 79.68±1.88 75.22±1.11 78.06±0.91 73.22±1.45 77.94±1.59 80.62±1.59 77.39±1.99 83.46±1.43 

 K×100 70.39±1.37 79.11±1.65 73.45±1.04 77.17±1.03 72.15±1.73 77.80±0.64 79.29±1.69 75.70±2.67 82.75±1.46 

300 

 OA(%) 77.32±1.17 83.25±1.36 79.00±1.51 83.30±1.17 77.61±2.36 79.26±1.13 86.39±0.37 80.25±1.19 87.11±1.38 

 AA(%) 75.99±1.03 82.32±1.49 77.97±1.33 82.16±1.25 75.79±1.71 78.18±1.57 85.47±0.93 79.37±1.19 86.32±1.50 

 K×100 75.45±1.26 81.87±1.47 77.26±1.63 81.93±1.26 75.80±2.53 77.55±1.23 85.27±0.40 78.63±1.29 86.06±1.50 

The experiment setups of the classical classification methods are described as follows. RF was 

used for classification. A grid search method and four-fold cross-validation were used to define RF’s 

two key hyper-parameters (i.e., the number of features to consider when looking for the best split (F) 

and the number of trees (T)). In the experiment, the search ranges of F and T were (5, 10, 15, 20) and 

(100, 200, 300, 400), respectively. The MLP used in this experiment was a fully connected neural 

network with one hidden layer. The used MLP contained 64 hidden units. L-SVM is a linear SVM 

with no kernel function. RBF-SVM uses the radial basis function as the kernel. In L-SVM and RBF-

SVM, a grid search method and four-fold cross-validation were also used to define the most 

appropriate hyper-parameters (i.e., � for L-SVM and (�, �) for RBF-SVM). In this experiment, the 

search range was exponentially growing sequences of �  and �  ( � = 10��, 10��, … , 10� , � =

10��, 10��, … , 10�). A single layer RNN with a gated recurrent unit and the tanh activation function 
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were adopted. The architecture of 1D-CNN was designed as in [28] and contained an input layer, a 

convolutional layer, a max-pooling layer, a fully connected layer, and an output layer. The 

convolutional kernel size and number of kernels were 17 and 20 for all three data sets. The pooling 

size was 5, 5, and 4 for the Salinas, KSC, and Houston data sets, respectively. Tables 7-9 show the 

classification results obtained when we used the aforementioned experimental settings. All 

experiments were run ten times with different random training samples. The classification accuracy 

is given in the form of mean±standard deviation. The 1D-Conv-Capsule network showed a better 

performance in terms of accuracy on all three data sets. 

For all three data sets, RBF-SVM, which is famous for handling a limited number of training 

samples, provides competitive classification results. We use the experiments with 200 training 

samples as an example to discuss the results. For the Salinas data set, 1D-Conv-Capsule exhibited the 

best OA, AA, and K, with improvements of 2.05%, 3.01%, and 0.023 over RBF-SVM, respectively. Our 

approach outperformed 1D-PCA-CNN by 1.6%, 1.62%, and 0.0179 in terms of OA, AA, and K, 

respectively. For the KSC data set, as can be seen, the OA of 1D-Conv-Capsule was 88.22%, which is 

an increase of 1.58% and 2.2% compared with RBF-SVM and 1D-PCA-CNN, respectively. For the 

Houston data set, 1D-Conv-Capsule improved the OA, AA, and K of 1D-PCA-CNN by 3.21%, 2.84%, 

and 0.0346, respectively. The results show that the 1D-Conv-Capsule method demonstrated the best 

performance in terms of OA, AA, and K for all three data sets. In addition, all experiments with 100 

and 300 training samples were also implemented to demonstrate the effectiveness of the proposed 

methods. From the results reported in Tables 7-9, it can be seen that 1D-Conv-Capsule outperformed 

the other classical classification methods, especially when the number of training samples was 

extremely limited (i.e., 100 training samples). 

Furthermore, the 1D-Conv-Capsule with a different number of principal components as input 

was conducted. Figure 8 shows the classification results of the 1D-Conv-Capsule on three data sets 

by using 200 training samples. Due to the fact that we injected only spectral information into the 1D-

Conv-Capsule, relatively more principal components were used to make sure that sufficient spectral 

information was preserved, and, at the same time, this maintained low computational complexity. 

From Figure 8, it can be seen that if the number of selected components is too small or too big, the 

classification results tend to be poor under both circumstances. On one hand, the spectral information 

is not sufficiently preserved and the network cannot efficiently extract the spectral feature when the 

number of principal components is low. On the other hand, the networks are over-trained when the 

number of principal components is high. The situation becomes worse if the number of training 

samples is limited. The best classification performance was achieved when the number of the 

principal components was set to 20, 20, and 30 for the Salinas, KSC, and Houston data sets, 

respectively.  

 

Figure 8. Classification results of the 1D-Conv-Capsule on three data sets with respect to different 

numbers of principal components. 

5.3. The Analysis of Learnt Features of the 1D Capsule 

From the aforementioned description about the capsule, it can be understood that the output of 

the capsule is a vector representation of the type of entity. In order to demonstrate the real advantage 
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of the capsule network on remote sensing data, we performed another experiment based on the 1D-

Capsule network followed by a reconstruction network (1D-Capsule-Recon). The architecture of the 

reconstruction network is shown in Figure 9. According to the label of the input pixel, the 

representative vector of the corresponding capsule in the ClassCaps layer was imported to the 

reconstruction network (e.g., if the input pixel belonged to the �-th class, the vector output of the �-

th capsule in the ClassCaps layer was used as input to the reconstruction network). The 

reconstruction network contained three fully connected (FC) layers. The first two FC layers had 128 

and 256 hidden units with the ReLU activation function. The last FC layer with Sigmoid activation 

function output the reconstructed spectra (i.e., a combination of normalized spectral reflectance of 

different bands) corresponding to the input of the 1D-Capsule-Recon. The reconstruction loss, i.e., 

the Euclidean distance between the input and the reconstructed spectra, was added to the margin 

loss that described in Section III: 

������ = �� + ���, (18) 

where �� is the margin loss and ��  is the reconstruction loss. � is the weight coefficient that is 

used to avoid ��  dominating �� during the training procedure. In the experiment, � was set to 

0.1. ������ was used as the loss function for the 1D-Capsule-Recon.  
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Figure 9. The architecture of the reconstruction network. 

To visualize the vector representation of the capsule, we made use of the reconstruction network. 

After the training procedure of the 1D-Capsule-Recon was done, we randomly chose some samples 

from different classes and computed the representation vector of their corresponding capsules in the 

ClassCaps layer. We made perturbations in different dimensions of the vector and fed them to the 

reconstruction network. Figure 10 shows the reconstructed results of three class samples from the 

Salinas data set. Two dimensions of the representation vector were tuned. In Figure 10, the original 

is the input spectra to the 1D-Capsule-Recon. The notation of [�(�) + Δ] in Figure 10 means that we 

tuned the �-th dimension of the representation vector � with perturbation Δ. The perturbed � was 

used to reconstruct the spectra. From the results shown in Figure 10, the representation vector (i.e., 

� ) can well reconstruct the spectra, which means that the representation vector contains the 

information in the spectra with low dimensionality. 
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(a)

(b)

(c)  

Figure 10. Normalized spectral reflectance reconstructed by the perturbed representation vector of 

three samples from the Salinas data set. The two pictures in each row are the results reconstructed by 

tuning different dimensions of the representation vector of the same sample. (a) sample from 

broccoli_green_weeds_1 class; (b) sample from grapes_untrained class; (c) sample from 

vinyard_untrained class. 

Furthermore, as shown in Figure 10, �(�) + Δ can influence the reconstruction of some special 

bands, which means that �(�) has a close relationship with the special bands. � is a vector that 

contains several �(�), and � is a robust and condensed representation of spectra. 

5.4. The Classification Results of the 3D Capsule Network 
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In the 3D capsule network, the network extracts both spectral and spatial features effectively, 

which could lead to a better performance in terms of classification accuracy than the one obtained by 

the 1D capsule network. As mentioned above, we proposed two 3D frameworks, i.e., the 3D-Capsule 

and the 3D-Conv-Capsule. Similar to a 1D framework, the 3D-Capsule is an original fully connected 

capsule network, while the 3D-Conv-Capsule is the convolutional capsule network. Additionally, the 

3D-Capsule directly uses the original hyperspectral data as input, while the 3D-Conv-Capsule 

utilizes EMAP to extract features of hyperspectral data. In the 3D-Conv-Capsule, three principal 

components were used and parameters in EMAP were set as in [21]. Through the EMAP analysis, the 

number of spectral dimensions became 108 for all three data sets. In this set of experiments, the 

numbers of training and validation samples were the same as for the 1D Capsule network. The mini-

batch size was also 100. The training epoch was set to 100 with a learning rate of 0.001. The parameter 

in loss function was the same as for the 1D capsule network. The details on the architecture of the 

3D-Conv-Capsule network are shown in Table 10. The definitions of the parameters in Table 10 can 

be found in the description for the 1D-Conv-Capsule network. Batch normalization was also used to 

improve the performance of the network. 

Table 10. The architectures of the 3D-Conv-Capsule network. 

Nets No. Convolution BN Stride Padding 
Activation 

Function 

Salinas 

KSC 

Houston 

1 Features extracted by EMAP, input shape is 27×27×108 

2 3×3×32 YES 1 No ReLU 

3 3×3×64 YES 1 No ReLU 

4 (4×4×8)×4 YES 2 No ReLU, Squash 

5 (3×3×4)×8 No 2 No Squash 

6 Three routing iterations and n_class capsules with a 16-dimensional output vector 

The SVM-based and CNN-based methods were included in the experiments to give a 

comprehensive comparison. The classification results are shown in Tables 11–13. For the three data 

sets, we used 27×27 neighbors of each pixel as input 3D images in these methods.  

Table 11. Classification with spectral-spatial features on the Salinas data set with different training 

samples. 

Training 

Samples 
Method 

EMP-

SVM 

EMP-

CNN 

EMAP-

RF 

EMAP-

SVM 
3D-CNN 

SSRN 

[49] 

3D-EMAP-

CNN 

3D-

Capsule 

3D-Conv-

Capsule 

100 

OA(%) 86.13±2.21 84.28±0.97 87.33±2.44 90.15±2.42 82.34±2.47 84.40±2.11 86.58±4.60 88.00±2.53 93.96±2.18 

AA(%) 86.40±4.96 77.50±4.11 85.11±4.97 91.22±4.07 79.05±2.78 80.90±4.92 82.24±4.80 83.37±4.23 88.03±4.31 

K×100 84.49±2.53 82.29±1.11 85.88±2.73 89.02±2.72 80.11±2.85 82.52±2.41 84.95±5.07 86.54±2.83 93.25±2.43 

200 

OA(%) 90.07±1.45 92.71±0.66 94.27±1.14 94.72±2.04 90.68±1.28 91.16±1.64 94.28±2.14 94.86±1.63 97.92±0.30 

AA(%) 91.42±2.30 93.22±0.62 93.45±2.41 95.35±3.21 88.18±1.25 93.59±2.35 92.86±3.32 93.49±3.15 96.21±1.87 

K×100 88.93±1.63 91.83±0.74 93.62±1.26 94.12±2.29 89.56±1.45 90.16±1.82 93.59±2.41 94.24±1.83 97.68±0.34 

300 

OA(%) 91.92±0.40 94.91±1.04 95.66±1.02 96.35±0.54 93.98±1.34 92.81±1.21 98.41±0.77 97.64±1.00 99.17±0.58 

AA(%) 94.22±0.44 94.60±1.77 95.77±1.87 97.22±0.61 92.79±2.57 95.20±1.18 98.44±1.01 97.27±1.33 98.95±0.73 

K×100 91.00±0.45 94.30±1.18 95.18±1.14 95.94±0.60 93.25±1.52 91.98±1.35 98.23±0.86 97.36±1.12 99.07±0.65 

Table 12. Classification with spectral-spatial features on the KSC data set with different training 

samples. 

Training 

Samples 
Method 

EMP-

SVM 

EMP-

CNN 

EMAP-

RF 

EMAP-

SVM 
3D-CNN 

SSRN 

[49] 

3D-EMAP-

CNN 

3D-

Capsule 

3D-Conv-

Capsule 

100 

OA(%) 87.83±2.04 86.95±1.68 85.44±2.15 87.88±3.14 84.15±2.58 90.79±2.83 90.07±3.05 88.42±1.23 93.23±2.50 

AA(%) 81.80±3.19 80.63±2.09 78.34±4.16 81.93±3.95 76.98±4.00 84.09±6.20 84.97±5.02 82.28±3.42 89.10±3.94 

K×100 86.43±2.27 85.46±1.87 83.71±2.42 86.49±3.51 82.35±2.88 89.73±3.17 88.95±3.41 87.12±1.37 92.47±2.78 

200 

OA(%) 93.63±1.77 96.56±1.24 91.81±1.30 93.66±0.95 95.98±0.85 96.77±0.83 95.30±0.96 97.08±0.41 98.75±0.87 

AA(%) 90.28±2.68 94.65±2.48 87.52±1.75 90.89±1.77 94.07±1.39 94.70±0.86 92.36±1.25 95.77±0.58 98.01±1.36 

K×100 92.90±1.98 96.18±1.38 90.86±1.44 92.94±1.07 95.53±0.95 96.41±0.93 94.77±1.06 96.75±0.45 98.62±0.97 

300 

OA(%) 95.34±1.09 98.29±0.83 94.43±0.79 95.28±0.99 97.69±0.69 98.21±0.69 98.57±0.91 98.21±1.07 99.19±0.63 

AA(%) 93.12±1.59 97.45±1.48 91.81±1.05 92.91±2.43 96.66±1.17 96.30±1.50 97.58±1.53 97.27±1.49 98.35±1.51 

K×100 94.81±1.22 98.10±0.93 93.79±0.88 94.75±1.10 97.44±0.77 98.01±0.77 98.41±1.01 98.01±1.19 99.10±0.70 

Table 13. Classification with spectral-spatial features on the Houston data set with different training 

samples. 

Training 

Samples 
Method 

EMP-

SVM 

EMP-

CNN 

EMAP-

RF 

EMAP-

SVM 
3D-CNN 

SSRN 

[49] 

3D-EMAP-

CNN 

3D-

Capsule 

3D-Conv-

Capsule 
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100 

OA(%) 79.39±2.63 71.35±2.59 76.57±4.43 78.82±1.74 70.29±4.07 74.58±3.64 73.51±2.80 77.96±3.49 82.61±2.83 

AA(%) 77.13±4.67 67.57±3.46 75.32±4.53 76.75±2.61 67.77±4.83 75.19±3.91 70.60±3.45 76.04±3.77 80.82±3.86 

K×100 77.69±2.86 68.97±2.81 74.64±4.80 77.07±1.89 67.82±4.41 72.51±3.94 71.31±3.05 76.16±3.78 81.18±3.08 

200 

OA(%) 86.63±1.26 85.46±2.05 85.68±1.86 87.20±1.51 85.19±1.95 85.12±1.49 87.54±1.92 88.69±1.92 90.41±1.28 

AA(%) 86.29±2.19 85.40±1.95 85.30±1.80 86.63±1.87 83.11±2.74 85.47±1.39 85.43±1.96 86.83±2.75 89.46±1.72 

K×100 85.54±1.36 84.29±2.21 84.51±2.01 86.17±1.63 83.98±2.11 83.90±1.62 86.52±2.07 87.77±2.08 89.63±1.38 

300 

OA(%) 90.44±1.34 89.76±1.97 90.17±0.93 90.52±0.75 90.02±1.02 90.64±1.97 91.78±1.48 92.55±1.32 94.16±1.62 

AA(%) 90.10±1.77 89.74±2.78 90.12±1.09 89.75±1.27 89.19±1.68 91.00±1.90 92.19±1.41 91.87±1.86 93.73±2.32 

K×100 89.66±1.45 88.93±2.13 89.37±1.01 89.74±0.81 89.21±1.10 89.88±2.13 91.11±1.60 91.94±1.43 93.69±1.76 

Due to the high performance in terms of classification accuracy of SVM, some SVM-based HSIs 

classifiers were adopted for comparison. The extended morphological profile with SVM (EMP-SVM) 

is a widely used spectral-spatial classifier [19]. In the EMP-SVM method, the morphological opening 

and closing operations were used to extract spatial information on the first three components of HSIs, 

which were computed by PCA. In the experiments, the shape structuring element (SE) was set as a 

disk, and the radius of disk increased from two to eight with an interval of two. Therefore, 27 spatial 

features were generated. The learned features were fed to an RBF-SVM to obtain the final 

classification results. EMAP is a generalization of the EMP and can extract more informative spatial 

information. EMAP was also combined with the random forest classifier (EMAP-RF) [20]. In order to 

have a fair comparison, the parameters in EMAP were kept the same as for the 3D-Conv-Capsule. In 

RBF-SVM, the optimal parameters � and � were also obtained by grid-search and four-fold cross-

validation methods. Furthermore, CNN was also used for comparison. We conducted 3D-CNN, 

EMP-CNN and 3D-EMAP-CNN. Their CNN architectures were the same as in [31]. To give a 

comprehensive comparison, a spectral–spatial residual network recently proposed in [49] was 

adopted for comparison. 

Tables 11–13 give the classification results of the proposed methods and contrast methods on 

the three data sets. We also used the classification results with 200 training samples as an example. 

For the Salinas data set, the 3D-Conv-Capsule exhibited the highest OA, AA, and K, with the 

improvements of 3.64%, 3.35%, and 0.0409 over 3D-EMAP-CNN, respectively. On the other hand, 

our 3D-Capsule approach also performed better than 3D-EMAP-CNN in terms of OA, AA, and K. 

For the KSC data set, 3D-Conv-Capsule improved the OA, AA, and K of EMP-CNN by 2.19%, 3.36%, 

and 0.0244, respectively. Our 3D-Capsule method also showed higher classification accuracy than 

EMP-CNN with improvements of 0.52%, 1.12%, and 0.0057 in terms of OA, AA, and K. For the 

Houston data set, we obtained similar results. Experiments with 100 and 300 training samples were 

investigated as well. The detailed classification results are shown in Tables 11-13. Compared with 

other state-of-the-art methods, the 3D-Conv-Capsule demonstrated the best performance under 

different training samples.  

In the experiment using the 3D-Conv-Capsule, we also explored how a different number of 

principal components that are used in EMAP analysis may affect the classification results. Due to the 

spatial information being considered and the EMAP analysis significantly increasing the data volume, 

we used relatively fewer principal components here compared with the 1D-Conv-Capsule. Figure 11 

shows the classification result for the 3D-Conv-Capsule. The 3D-Conv-Capsule with different 

 

Figure 11. Classification results of the 3D-Conv-Capsule on three data sets with respect to 

different principal components. 
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numbers of principal components outperformed the other contrast experiments. Unlike 1D-Conv-

Capsule, the preservation of more principal components leads to a vast data volume which brings a 

higher requirement for hardware and longer training time in 3D-Conv-Capsule. Though the 

classification accuracy may be higher with relatively more components, we only used three principal 

components in consideration of computational cost in the 3D-Conv-Capsule. 

5.5. Parameter Analysis 

In the 3D-Conv-Capsule, convolutional layers were used as feature extractors, and they 

converted the original input into a capsule’s input. Thus, the number of convolutional layers and the 

convolutional kernel size used in 3D-Conv-Capsule influences the classification performance of the 

model. Furthermore, due to the fact that the input of a 3D-Conv-Capsule is the a×a neighbors around 

the pixel, the size of neighborhoods is also an important factor. These factors are analyzed below. 

When we explored the influence of a parameter on the classification result, the other parameters 

were fixed. The neighborhood size and convolution kernel size were set to 27 and 3 when we 

analyzed the number of convolutional layers. For the analysis of the convolution kernel size, 27×27 

neighborhoods and two convolutional layers were used in the 3D-Conv-Capsule. Similarly, the 

number of convolutional layers and the convolution kernel size were set to 2 and 3 for analysis of the 

size of the neighborhood. All the experiments for this analysis were conducted with 200 training 

samples. Tables 14–16 shows the detailed classification results. As reported in Table 14, the use of 

two convolutional layers gave better classification results. Furthermore, one convolutional layer 

could not extract features efficiently while three layers made the model prone to overfitting. Table 15 

shows the classification results with different convolution kernel sizes. The 3D-Conv-Capsule 

performed better when the kernel size was 3. For the neighborhood size, the 3D-Conv-Capsule 

obtained good classification accuracies on the Salinas and KSC data sets when the neighborhood size 

was relatively large, but the result for the Houston data set was the other way around.  

Table 14. Classification results of the 3D-Conv-Capsule with different numbers of convolutional 

layers on three data sets. 

Data Set Convolutional Layers 1 2 3 

Salinas 

OA(%) 97.60±1.12 97.92±0.30 97.69±0.77 

AA(%) 95.69±2.77 96.21±1.87 95.84±2.45 

K×100 97.32±1.25 97.68±0.34 97.41±0.87 

KSC 

OA(%) 97.80±1.20 98.75±0.87 98.20±1.24 

AA(%) 96.53±2.10 98.01±1.36 97.08±2.09 

K×100 97.55±1.33 98.62±0.97 97.99±1.37 

Houston 

OA(%) 88.86±1.58 90.41±1.28 89.04±1.17 

AA(%) 88.03±2.80 89.46±1.72 86.94±1.84 

K×100 87.96±1.72 89.63±1.38 88.15±1.27 

Table 15. Classification results of the 3D-Conv-Capsule with different convolutional kernel sizes on 

three data sets. 

Data Set Kernel Size 3 5 7 

Salinas 

OA(%) 97.92±0.30 97.08±1.21 97.39±0.84 

AA(%) 96.21±1.87 95.59±3.77 96.90±2.05 

K×100 97.68±0.34 96.73±1.35 97.08±0.95 

KSC 

OA(%) 98.75±0.87 97.39±1.10 98.25±1.19 

AA(%) 98.01±1.36 95.68±1.65 97.26±1.85 

K×100 98.62±0.97 97.10±1.22 98.05±1.32 

Houston 

OA(%) 90.41±1.28 88.40±1.28 89.06±1.77 

AA(%) 89.46±1.72 87.71±2.72 87.84±1.89 

K×100 89.63±1.38 87.46±1.38 88.18±1.91 
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Table 16. Classification result of the 3D-Conv-Capsule with different neighborhood sizes on three 

data sets. 

Data Set Neighborhoods 11 17 21 27 

Salinas 

OA(%) 95.73±0.87 96.65±2.11 97.07±0.81 97.92±0.30 

AA(%) 95.52±2.98 95.34±4.28 96.15±1.06 96.21±1.87 

K×100 95.24±0.97 96.25±2.36 96.73±0.90 97.68±0.34 

KSC 

OA(%) 97.36±0.81 97.68±1.18 97.46±1.15 98.75±0.87 

AA(%) 95.69±1.30 96.34±1.75 94.92±3.42 98.01±1.36 

K×100 97.07±0.90 97.42±1.30 97.18±1.27 98.62±0.97 

Houston 

OA(%) 91.56±0.87 91.35±0.78 91.08±1.30 90.41±1.28 

AA(%) 91.81±1.43 89.92±0.70 90.10±1.89 89.46±1.72 

K×100 90.88±0.94 90.65±0.84 90.36±1.41 89.63±1.38 

5.6. Visualization of Learnt Features from the Capsule Network  

Unlike traditional neural networks which use a sequence of scalar value to represent the 

probability of the input belonging to different classes, capsule networks output n_class (i.e., the 

number of classes) capsules that represent different classes of entity. The length of the vector output 

of each capsule (i.e., the Euclidean norm of the vector) represents the probability that a corresponding 

entity exists. In HSI classification tasks, the length of different capsules’ output vectors can be 

interpreted as the probability that the input belongs to different classes.  

We randomly choose several samples from the test data set and imported them into the trained 

3D-Conv-Capsule network. The length of the vector output of each capsule in the ClassCaps layer is 

computed and visualized in Figure 12. From the results shown in Figure 12, it is possible to observe 

that the capsule corresponding to the true class output the longest vector. Due to the similarity 

between the Graminoid marsh and Spartina marsh, the experimental results of three samples from 

the Graminoid marsh class show that the length of the vector corresponding to the similar class was 

longer than those of the other classes. 

(a) 

(b) 

(c)  
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Figure 12. The visualization of learnt features (i.e., length of vector output of each capsule in 

ClassCaps layer) from 3D-Conv-Capsule network on the KSC data set. The four pictures in each row 

are the results of three randomly selected samples of the same class and an example of input images 

(i.e., false color image). (a) Scrub class; (b) Willow swamp class; and (c) Graminoid marsh class. 

5.7. Time Consumption 

All experiments in this paper were conducted on a Dell laptop equipped with an Intel Core i5-

7300H processor with 2.5 GHz, 8 GB of DDR4 RAM, and an NVIDIA GeForce GTX 1050Ti graphical 

processing unit (GPU). The software environment used Windows 10 as an operating system, CUDA 

9.0 and cuDNN 7.1, Keras framework using TensorFlow as a backend, and Python 3.6 as the 

programing language. The training and test times of different models are reported in Tables 17–18. 

The traditional RF and SVM classifiers demonstrated superior computational efficiency. As for deep 

learning models, the model was able to be trained within a few minutes due to the limited number 

of training samples and the GPU’s strong computing acceleration power. The 3D-Conv-Capsule 

required nearly the same training time as 3D-CNN and less time than SSRN. In the experiments, it 

was found that capsule network-based method converged “faster” than the CNN-based method (e.g., 

100 epochs for 3D-Conv-Capsule and 500 epochs for 3D-EMAP-CNN). In future work, the use of 

more specific computing acceleration for the capsule network could further boost the computational 

efficiency of the capsule-based method.  

Table 17. Training and test times of different spectral classifiers for the three HSI data sets with 200 

training samples. 

Methods 

Data sets 
RF MLP L-SVM RBF-SVM RNN 1D-CNN 1D-PCA-CNN 1D-Capsule 1D-Conv-Capsule 

Salinas 
Train (s) 23.5 6.8 0.43 4.8 190.3 19.5 17.1 230.3 92.2 

Test (s) 1.5 0.2 1.5 1.65 4.1 0.29 0.25 120.5 56.3 

KSC 
Train (s) 21.0 6.5 0.37 4.4 160.2 19.1 17.5 160.2 88.5 

Test (s) 0.2 0.04 0.11 0.13 2.1 0.02 0.02 8.2 5.2 

Houston 
Train (s) 26.0 6.5 0.49 4.0 135.1 17.5 17.7 145.3 110.2 

Test (s) 0.5 0.07 0.36 0.45 3.5 0.07 0.07 22.3 16.8 

Table 18. Training and test times of different spectral-spatial classifiers for the three HSI data sets 

with 200 training samples. 

Methods 

Data sets 

EMP-

SVM 

EMP-

CNN 

EMAP-

RF 

EMAP-

SVM 

3D-

CNN 
SSRN 

3D-EMAP-

CNN 

3D-

Capsule 

3D-Conv-

Capsule 

Salinas 
Train (s) 1.1 32.5 18.7 2.95 130.2 240.3 72.2 270.2 140.2 

Test (s) 0.38 3.7 1.5 0.8 19.2 43.6 28.4 220.4 128.4 

KSC 
Train (s) 1.0 28 19.1 2.75 122.3 215.5 72.1 240.1 140.1 

Test (s) 0.04 0.4 0.15 0.08 1.5 3.8 1.0 17.6 12.3 

Houston 
Train (s) 1.2 45.0 22.2 3.2 133 190.2 75.2 255.7 135.2 

Test (s) 0.13 1.2 0.5 0.31 3.0 9.0 4.9 65.2 36.1 

5.8. Classification Maps 

Lastly, we evaluated the classification accuracies from a visual perspective. The trained models, 

including 1D-CNN, 1D-Conv-Capsule, EMAP-SVM, 3D-CNN and 3D-Conv-Capsule, were selected 

to classify the whole images. All parameters in these models were optimized. Figures 13–15 show the 

classification maps obtained by different models using the three data sets. From Figures 13-15, we 

can figure out how the different classification methods affect the classification results. Although the 

1D-Conv-Capsule demonstrated a higher accuracy than 1D-CNN, the 1D-CNN and 1D-Conv-

Capsule models, which only utilize spectral features, depicted more errors compared with spectral-

spatial-based methods for the three data sets. Spectral-based models always result in noisy scatter 

points in the classification map (see Figures 13–15, (b),(c)). Spectral-spatial methods overcome this 

shortcoming. Obviously, 3D-CNN and 3D-Conv-Capsule, which directly use the neighbor 

information as the model input, resulted in smoother classification maps. By comparing the true 

ground reference with the classification maps, the 3D-Conv-Capsule obtained more precise 



Remote Sens. 2019, 11, 223 23 of 27 

 

classification results, which demonstrates that the capsule network is an effective method for HSI 

classification. 

(a) (b) (c) (d) (e) (f)  

Figure 13. Salinas. (a) False color image. (b) to (f) Classification maps of different classifiers: (b) 1D-

CNN; (c) 1D-Conv-Capsule; (d) EMAP-SVM; (e) 3D-CNN; and (f) 3D-Conv-Capsule. 

(a) (b) (c) (d) (e) (f)  

Figure 14. KSC. (a) False color image. (b) to (f) Classification maps obtained by different classifiers: 

(b) 1D-CNN; (c) 1D-Conv-Capsule; (d) EMAP-SVM; (e) 3D-CNN; and (f) 3D-Conv-Capsule. 
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(a)

(b)

(c)

(d)

(e)

(f)  

Figure 15. Houston. (a) False color image. (b) to (f) classification maps obtained by different classifiers: 

(b) 1D-CNN; (c) 1D-Conv-Capsule; (d) EMAP-SVM; (e) 3D-CNN; and (f) 3D-Conv-Capsule. 

6. Conclusions 

In this paper, an improved capsule network called the convolutional capsule (Conv-Capsule) 

was proposed. On the basis of Conv-Capsule, new deep models called 1D-Conv-Capsule and 3D-

Conv-Capsule were investigated for HSI classification. Furthermore, 1D-Conv-Capsule and the 3D-

Conv-Capsule were combined with PCA and EMAP, respectively, to further improve the 

classification performance. 

The proposed models, 1D-Conv-Capsule and 3D-Conv-Capsule, can effectively extract spectral 

and spectral-spatial features from HSI data. They were tested on three widely-used hyperspectral 

data sets under the condition of having a limited number of training samples. The experimental 

results showed the superiority over the classical SVM-based and CNN-based methods in terms of 

classification accuracy.  

The proposed methods explored the convolutional capsule network for HSI classification, 

representing a new methodology for better modeling and processing of HSI. Compared with a fully 

connected capsule layer, the convolutional capsule layer dramatically reduces the trainable 

parameters, which is critical in order to avoid over-training. In our future work, based on the 
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convolutional capsule, deep capsule architecture like SSRN in CNN will be conducted to fully 

investigate the potential of capsule networks. 
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Appendix A 

There are many abbreviations in the paper. For paper’s readability, an abbreviation list that 

explicitly explains each abbreviation’s meaning is given here (see Table A1).  

Table A1. Abbreviation list. 

Abbreviation Nomenclature Abbreviation Nomenclature 

AP Attribute profile BN Batch normalization 

CNN Convolutional neural network Conv-Capsule Convolutional capsule 

EMAP Extend multi-attributes profile EMP Extend morphological profile 

HSI Hyperspectral image L-SVM Linear SVM 

MLP Multi-layer perceptron MP Morphological profile 

PCA Principal component analysis RBF radial basis kernel function 

RBF-SVM SVM with RBF kernel ReLU Rectified linear unit 

RF Random forest RNN Recurrent neural network 

SVM Support vector machine 1D-CNN One dimension CNN 

1D-PCA-CNN 
1D-CNN with PCA as 

preprocessing 
1D-Capsule 

One dimension fully connected 

capsule network 

1D-Conv-Capsule 

One dimension convolutional 

capsule network with PCA as 

preprocessing 

3D-CNN Three dimension CNN 

EMP-SVM 
RBF-SVM with EMP as 

preprocessing 
EMAP-RF RF with EMAP as preprocessing 

EMAP-SVM 
RBF-SVM with EMAP as 

preprocessing 
EMP-CNN 

3D-CNN with EMP as 

preprocessing 

3D-EMAP-CNN 
3D-CNN with EMAP as 

preprocessing 
SSRN 

Spectral-spatial residual network 

proposed in [49] 

3D-Capsule 
Three dimension fully connected 

capsule network 
3D-Conv-Capsule 

Three dimension convolutional 

capsule network with EMAP as 

preprocessing 
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