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Abstract: The use of remote sensing to map the distribution of plant diseases has evolved 

considerably over the last three decades and can be performed at different scales, depending on the 

area to be monitored, as well as the spatial and spectral resolution required. This work describes 

the development of a small low-cost field robot (Remotely Operated Vehicle for Infection 

Monitoring in orchards, XF-ROVIM), which is intended to be a flexible solution for early detection 

of Xylella fastidiosa (X. fastidiosa) in olive groves at plant to leaf level. The robot is remotely driven 

and fitted with different sensing equipment to capture thermal, spectral and structural information 

about the plants. Taking into account the height of the olive trees inspected, the design includes a 

platform that can raise the cameras to adapt the height of the sensors to a maximum of 200 cm. The 

robot was tested in an olive grove (4 ha) potentially infected by X. fastidiosa in the region of Apulia, 

southern Italy. The tests were focused on investigating the reliability of the mechanical and 

electronic solutions developed as well as the capability of the sensors to obtain accurate data. The 

four sides of all trees in the crop were inspected by travelling along the rows in both directions, 

showing that it could be easily adaptable to other crops. XF-ROVIM was capable of inspecting the 

whole field continuously, capturing geolocated spectral information and the structure of the trees 

for later comparison with the in situ observations. 

Keywords: Robotics; computer vision; multispectral imaging; LiDAR; pest detection aid; 

vegetative indices; asymptomatic detection 

 

1. Introduction 

Xylella fastidiosa (X. fastidiosa) was first detected in Italy (Apulia region, southern Italy) in 2013 

[1], and it has since spread rapidly throughout the region causing severe damage to olive crops. Its 

detection throughout Corsica (France) and in south-eastern France, along with the more recent 

outbreaks in Mallorca (2016), Alicante (2017) and Madrid (2018), in Spain [2], have greatly increased 

the awareness of the threat that this pathogen poses to European agriculture and the environment 

[3]. As a consequence of the X. fastidiosa outbreak in Italy affecting mostly olive trees, almost the 

entire province of Lecce (Apulia Region) has been declared an area under containment [4]. The 

project XF-ACTORS (EU H2020 727987) tackles these problems from a multidisciplinary research 

approach. The solutions proposed include the setting up of proximal and remote-sensing tools for 

early diagnostic and surveillance programmes. However, the representativeness of diagnostics relies 

heavily on proper sampling design, which should include both the field and the individual plant 
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level with fine resolution, but also large spatial coverage that can only be achieved through extensive 

testing.  

Spectral remote detection collects information by measuring the radiance emitted, reflected and 

transmitted from the vegetation. The sensors used to obtain this information, such as red, green and 

blue (RGB) cameras, spectral imaging systems, point spectrometers or thermographic cameras, 

measure the electromagnetic energy reflected or emitted by the vegetation in different spectral 

ranges or at particular wavelengths [5]. This information is affected by several structural and 

biochemical components of the plants, such as leaf area, porosity, chlorophyll and water content or 

nitrogen concentration, which can change and thus result in stresses that are potentially detectable 

by these spectral devices [6]. In addition, fluorescence emission and canopy temperature can be 

quantified from remote sensing images, which are directly related to plant photosynthesis and 

transpiration rates and are used for the early detection of stresses that can be caused by diseases or 

invasion by pests [7]. For these reasons, both healthy and diseased plants have particular spectral 

signatures, which allow detection of the physiological and biochemical effects of the early stages of 

the infection, for example, by the use of vegetative indices [8]. In addition, some information can be 

obtained from the study of the 3D structure of plants [9], which can be affected as a result of serious 

diseases. This information can be collected using detection devices capable of obtaining the structure 

of the plants by measuring the distance between the device and the plant and creating its point 

cloud, such as stereo cameras, time-of-flight cameras or laser scanners. One of the most widely used 

sensors in the field for this purpose is a light detection and ranging (LiDAR) sensor, which is a 

device that can measure the distance to the nearest object by emitting a laser beam in a given 

direction; the time elapsed between the emission and reception of the signal is then used to calculate 

the distance to the target. Therefore, by crossing the entire plant with the sensor, geometric 

parameters such as height, width, volume and other structural parameters of the canopy can be 

estimated [10]. Moreover, the laser pulses emitted by the LiDAR sensor can penetrate through the 

canopy and, thus, the effects of shading or saturation are reduced [11,12]. 

The use of remote sensing to map the distribution of plant diseases has evolved considerably 

over the last three decades and can be performed at different scales, depending on the area to be 

monitored as well as the spatial and spectral resolution required [13]. Apart from satellites, which 

are necessary when very large regions need to be covered, manned aircraft remain the only 

alternative to obtain maps at larger scales with optimum spatial and spectral resolution for the early 

detection of disease outbreaks [14]. In [15], the authors demonstrated that the use of airborne 

imaging spectroscopy and thermography allows the detection of symptomatic olive trees infected by 

X. fastidiosa as well as the prediction of the infection before the symptoms are visible, with an 

accuracy of above 80%. They surveyed more than 7000 trees by means of a manned aircraft, using 

hyperspectral and thermal sensors to capture information about the physiological alteration of the 

trees caused by X. fastidiosa. The information was confirmed by visual observations and molecular 

analyses of selected trees using quantitative polymerase chain reaction. Their findings indicated that 

it is possible to perform accurate detections of the infection by X. fastidiosa at landscape level by 

using remote sensing equipment, in particular, hyperspectral imaging and thermography. 

At the plant level, the spectral information has to be gathered at high spatio-temporal 

resolution. Sensors for this purpose can be mounted on unmanned aerial vehicle (UAV) platforms to 

obtain low-cost imagery at spatial resolutions from 1 to 100 cm [16]. However, when higher spatial 

resolutions are required (from the plant to a leaf level) hand-held devices or sensors mounted on 

ground vehicles are a good solution [17]. In [18], the authors tested different sensing technologies, 

including an ultrasonic sensor, a LiDAR sensor, a Kinect camera and an imaging array of four 

high-resolution cameras mounted on a ground vehicle platform to measure the plant height in the 

field. They compared the performance of these sensors with the images captured by a camera 

mounted on a UAV, concluding that data obtained from the ground achieved higher correlations 

than aerial images. In [19], a ground vehicle equipped with a multispectral imaging system was also 

employed to obtain vegetative indices that were used to characterise the vine foliage of several 

varieties of grapevine. In [20], the authors developed the Shrimp robotic ground-vehicle, which was 
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used as an information collection system for almond orchard mapping and yield estimation. The 

sensing system continuously recorded data while the vehicle drove through the orchard. The 

equipment included a LiDAR, a colour camera, a gamma radiometer to record passive soil gamma 

emissions and an electromagnetic induction instrument to measure apparent soil electrical 

conductivity. Although unmanned vehicles have already been studied in agriculture to collect 

extensive information about the crop, when more detailed data need to be collected in complex 

environments, remotely driven vehicles equipped with sensing equipment are a realistic solution 

[21].  

The aim of this work is to develop a flexible robotic-based approach with proximal sensing 

tools specifically developed to detect X. fastidiosa and to implement and test it in the field under real 

conditions. Therefore, a small ground robotic platform (X. fastidiosa—Remotely Operated Vehicle for 

Infection Monitoring, XF-ROVIM) was built for the early detection of X. fastidiosa, primarily in olive 

trees, but it is also adaptable to other crops.  

2. Materials and Methods  

2.1. Robotic Platform  

Sensing technologies based on optical measurements that can be installed on all-terrain 

human-operated vehicles are already available for crop monitoring. However, some of the vehicles 

currently used for agricultural tasks are too large or they are dedicated to a single or a small group of 

crops. Autonomous vehicles are a good solution, but they need advanced navigation algorithms to 

deal with a complex and highly variable environment [22]. Hence, they often need to be 

programmed with precision to be able to work in the particular environment for which they are 

designed. When the vehicle with the sensing equipment has to work with different crops and under 

different terrain and environmental conditions, remote driving is an adequate option, especially if 

the availability of any regular vehicle in which to install the sensing equipment is not guaranteed for 

the test fields. Hence, the systems need to be small and the integration of the sensing equipment also 

needs to be improved to be able to create more usable and flexible solutions [23]. As X. fastidiosa can 

infect more than 560 host species [24], XF-ROVIM has been designed and built as a flexible platform 

that can work on different crops because of its small size, capability to be driven remotely and 

adaptability to crops with very different heights. One required restriction is a relatively small size so 

that it can be easily transported in a van, and hence its maximum size is 100 × 60 cm. Two accessible 

and easy-to-replace gel batteries power two direct current (DC) motors. A platform containing the 

cameras can be elevated up to 200 cm for better measurement of the highest trees, which is of special 

importance as the trees in the testing region are relatively tall (up to 6 m) and, in the early stages, the 

infection prevails in the upper part of the canopy [1]. 

To build the traction control board, two DC motor control drivers were used (H-Bridge), which 

allow the operator to control the speed and torque of the motors as well as their direction of rotation. 

The use of a driver for each wheel allows manoeuvres to be performed with greater precision, since 

one wheel can be braked in order to make turns or to run each wheel in opposite directions, thus 

reducing the angle of rotation. A rotary encoder was placed on one wheel, allowing accurate 

measurement of both speed and distance advanced. Based on the information from the encoder, 

which is processed by the controller, a trigger is sent to the equipment to obtain data synchronised 

with the forward movement. The board includes an 868 MHz radiofrequency module to 

communicate bi-directionally with a wireless controller. All the electronics on this board are 

managed by a 16-bit microcontroller (PIC24EP, Microchip Technology Inc., AZ, USA). The range of 

the wireless connection is between 500 and 1000 m, depending of the crop structure and 

characteristics, which is in any case enough for this application. 

The wireless control was designed to include a joystick that allows the robot to be steered, while 

a sliding potentiometer allows the speed to be adjusted (when the automatic mode is selected) in 

order to obtain greater precision. A selector allows the operator to choose between manual and 

automatic modes. When the automatic mode is selected, a proportional–integral–derivative (PID) 
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controller continuously compares the speed set by the user with the speed read by the encoder and 

applies the necessary power to the motors in a closed loop process. In addition, another selector 

makes it possible to pre-set the advance distance at which the sensing equipment is to be triggered. 

All these elements are connected to an especially designed board, which includes another 

radiofrequency module. Apart from the sensing equipment, the cost of the robot itself is less than 

€ 5000. 

2.2. Sensing Equipment 

The sensors mounted on XF-ROVIM included two digital single-lens reflex (DSLR) cameras 

(EOS 600D, Canon Inc, Japan), one of them modified to obtain images showing the blue normalised 

difference vegetation index (BNDVI), a multispectral camera (CMS-V, Silios Technologies, France) 

that can obtain simultaneous images at eight different wavelengths (558, 589, 623, 656, 699, 732, 769, 

and 801 nm), a low-cost hyperspectral system in the visible and near infrared (NIR) range between 

400 nm and 1000 nm (spectrograph Imspector V10, Specim Spectral Imaging Ltd., Finland + camera 

uEye 5220CP, iDS Imaging Development Systems GmbH, Germany) and a thermal camera (A320, 

FLIR Systems, USA). All cameras were configured to capture one image per metre, synchronised 

with the advance of the robot.  

The equipment was completed with a LiDAR (LMS111, Sick AG, Germany) with an effective 

sweep angle of 270° and a resolution of 0.5°. All data were geolocated using a GPS with a horizontal 

positioning accuracy of 10 mm (Hiper SR, TOPCON Corp., Japan) and corrected by means of the 

data captured by an IMU based on a 9-axis absolute orientation sensor (BNO055, Adafruit learning 

system, USA). A general view of the robot and the sensing equipment is shown in Figure 1. The 

accuracy of the GPS was 25 cm, which was found to be sufficient to meet the requirements. The 

LiDAR, the GPS and the IMU were configured to operate in free range, with the highest resolution of 

each sensor. Accordingly, data from the three units were synchronised by means of the timestamp 

(with a resolution of 1 ms) provided in the data streams captured by each sensor. Apart from the 

sensing equipment, the setup is also equipped with an industrial computer, a folding screen and all 

the electronics required to capture the data. 

 

Figure 1. XF-ROVIM robot working in the field with details of the sensors mounted. 

2.3. Field Tests 

Field tests were carried out to test the performance of all the systems in a real environment, 

including the mechanics, the electronics, the geolocalisation and correction system, and how long 
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the batteries lasted during the monitoring operation. Two experiments were carried out in the 

province of Lecce in September 2017 and June 2018, in an olive grove known as C20 (18.119561 

latitude, 40.460148 longitude) with a surface area of 3 Ha (Figure 2a). This field has 430 olive trees cv. 

‘Ogliarola’ and ‘Cellina di Nardò’. It is located in the contention area demarcated by the EU (Figure 

2b). During both tests, XF-ROVIM was deployed in the field, advancing along each row at a speed of 

1 m/s. The cameras are focused towards one side of the robot. Hence, as it advances along a row, 

only images of the trees located on one side of the row can be captured. When a row is finished, the 

robot must go back along the same row to obtain the images of the trees on the other side. After 

covering the entire field in one direction, the same inspection process was repeated in the 

perpendicular rows to image the north and south sides of each tree. The first surveys (September 

2017) were used to fine-tune the electronics and to set up and programme all the sensors, collect 

preliminary data and improve autonomy and ease of handling. The more recent tests (June 2018) 

were carried out to collect data on the orchard status that will serve to detect the presence of the 

infection in the trees.  

Each camera is different but all of them can be triggered externally. Thus, every time a trigger 

was generated, the cameras captured the images and stored them on the solid-state disk (SSD) of the 

computer for later analysis, except in the case of the DLSR cameras, which stored the images on their 

own secure digital (SD) card. When the inspection of a row was finished, a command on the remote 

control allowed all the images from the computer's memory to be transferred to the SSD and to 

update the labels of the images with information about the next row to be inspected. The images 

acquired using the modified DLSR served to calculate the BNDVI index, while those captured by the 

multispectral camera at 800 nm and 670 nm were used to capture the NDVI index. Bearing in mind 

the specifications of each camera, the two indices were calculated as shown in Equations (1) and (2) 

respectively. 

BNDVI = (850 nm – 480 nm) / (850 nm + 480 nm) (1)

NDVI = (800 nm – 670 nm) / (800 nm + 670 nm) (2)

Before, during and after the inspection, images of a standardised colour checker (ColorChecker 

SG Chart, X-Rite Inc, USA) and a white reference target (Spectralon 99%, Labsphere, Inc, NH, USA) 

were acquired for further image correction.  

In addition, a visual inspection of each tree was carried out on the basis of the severity of its 

symptoms. Each of the four sides of the tree were measured on a rating scale of disease severity from 

0 (no symptoms) to 4 (prevalence of dead branches) [15]. However, as the field is currently active, 

the farmer usually removes the branches in poor condition so that the visible symptoms do not 

always correspond to the actual degree of infection. This is a critical point to obtain reference data on 

early detection of asymptomatic infected trees, but does not affect the detection of the symptoms 

when present. Apart from measuring the visual symptoms, some trees were analysed using 

molecular biology techniques to detect the presence of the infection with greater accuracy. 
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(a) 
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Figure 2. (a) Experimental olive grove located in the province of Lecce showing the directions 

travelled by XF-ROVIM during the surveys; and (b) demarcations of the infected area in the Apulia 

Region (southern Italy), including the indications of the European phytosanitary technical committee 

on Xylella fastidiosa. (source website of the XF-ACTORS project: 

https://www.xfactorsproject.eu/enlargement-of-the-apulian-demarcated-area/). 

2.4. Data Management 

2.4.1. Tree Reconstruction from LiDAR Data 

The data from the LiDAR, the GPS and the IMU sensors were stored in ASCII format, one file 

being recorded per row/column scanned. The LiDAR coordinates, originally in millimetres in a 

cylindrical coordinate system, were converted to metres in a Cartesian coordinate system and 

subsequently geolocated with the GPS reference using the WGS 84/UTM coordinates system in the 

34T zone. These coordinates were later corrected by means of the IMU unit using the pitch, yaw and 

roll angles to minimise the impact of the roughness of the terrain experienced during the movement 

of the robot. The LiDAR sensor and the GPS and IMU units were synchronised by means of the 

timestamp in the data streams captured with a time resolution of one millisecond. 

First, XF-ROVIM scanned the field with all the mounted sensors in the direction represented by 

arrows in Figure 2a and all the data gathered were stored in files. As an off-line process, the LiDAR 

points corresponding to each 270° sweep were converted from polar to Cartesian coordinates, fixing 

the origin of the coordinates at the position of the LiDAR (the so-called body coordinates) for that 

sweep. Then a filtering process was performed to remove the points that do not belong to the 

canopy, such as the ground, trunk and distant points. Different threshold values were applied to the 

scanned points according to the field configuration. First, a vertical threshold was determined, 

which corresponded to the height of the lowest leaves of the trees. All points with a lower height 

were discarded. Second, points scanned out of a given radius distance (considering a top view of the 

field) from the centre of the corresponding tree were also discarded. The body coordinates were later 

corrected using the Euler angles and the GPS location, which transformed them into Universal 

Transverse Mercator (UTM) coordinates (equivalent to NED—North–East–Down—system 

coordinates). The GPS location was used to geolocate the origin of the body coordinates and the 

Euler angles (Yaw Ψ, Pitch θ and Roll Φ) were used to orient the LiDAR points in space. 
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Subsequently, the previously selected UTM centroids of each tree were used to reconstruct the trees. 

In this process, the LiDAR points close to each centroid and under a certain distance were chosen as 

belonging to a particular tree. This distance was set as half the distance between the rows of trees. 

Figure 3 shows one tree point cloud from the tree point cloud structure generated in this process. 

Lastly, the top views (horizontal projection of all the tree points in the NED plane) were used to 

extract the contour of the point cloud of each tree. The workflow of the entire process is shown in 

Figure 4, where the main steps of the algorithm developed are depicted. 

  

(a) (b) 

Figure 3. Three-dimensional points in UTM coordinates captured from one tree by the LiDAR. The 

two images (a and b) represent two different views of the same olive tree. 
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Figure 4. Algorithm to process raw LiDAR data. 

All the software to analyse and process this information was developed in MATLAB (9.3 

R2017b, The MathWorks Inc., USA). 
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2.4.2. Tree Leaf Indices Calculation 

Once the LiDAR information was processed and the 3D tree structure was created, the tree leaf 

index (LAI) and the leaf area density (LAD) were calculated for each tree in particular, since they are 

some of the Main variables used to evaluate processes such as photosynthesis or evapotranspiration, 

which have a great influence on the reflectance of the canopy. The LAD is defined as the total 

one-sided leaf area of photosynthetic tissue per unit canopy volume, while the LAI is obtained by 

integrating the LAD over the height of the canopy [25]. There are different approaches to calculate 

these indices. This work adapted the method proposed by [26] based on the voxel-based canopy 

profile (VCP). Basically, as proposed by this method, the cloud of points of the tree was considered 

to be inside of a three-dimensional cube, which was divided into voxels (3D volume elements) with 

a resolution of 10 x 10 x 10 cm. Then, a voxel was set to “on” or “off” according to the presence or not 

of scanned points inside. In this way, each tree was represented by a 3D voxel-based structure 

integrated by the voxels set to “on” that belonged to the tree. Finally, the LAD and LAI calculations 

were performed following Equations (3) and (4). The LAD was calculated for each horizontal layer 

as the effective area density obtained as the voxel relation “on” in that layer and the total area of the 

tree’s contour in that layer. The LAI of the tree was calculated as the sum of the different LAD 

projected in the different layers to complete the height of the tree. The representation of the trees 

based on voxels allowed that 3D image techniques could be applied, thus facilitating all the 

necessary calculations. The overestimation problems were not considered, since the overlapping 

points in the LiDAR data were represented in the model as a single voxel. The flowchart describing 

this process is shown in Figure 5. 

��� = �(�) (3)

In this equation, u = surface density coefficient of a layer in the tree foliage; z = specific height of 

the layer. 

���(�) = � ���(�)��;
�

���

 (4)

In m2m-2 units, where h goes from 0 to tree height; LAD(z) = surface density coefficient. 
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Figure 5. Algorithm to calculate the tree leaf index. 

The LAD indices were calculated using the different horizontal planes (XY planes) (Figure 6c), 

where the effective area calculated for each plane was the leaf area found inside the external contour 

of the profile in each plane. 

 
(a)                                              (b) 

 

 
(c) (d) (e) 
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Figure 6. (a) Binarised LiDAR image of a tree (voxel size 10 x 10 x 10 cm); (b) orientation of the three 

main planes: top or horizontal (XY), front (XZ) and left (YZ); (c) effective leaf area of the middle top 

plane, used for the LAD calculations; (d) and (e) voxels in the middle Front and Left planes. 

3. Results and Discussion 

3.1. Robotic Platform 

XF-ROVIM worked properly during the tests in a field of relatively tall olive trees, as it was 

capable of continuously inspecting the whole field without interruptions while capturing valid data. 

During each survey, around 35000 images (one every metre) were captured with all five cameras 

(colour, multispectral, hyperspectral, thermal and DLSR modified to capture BNDVI images). The 

remote driving unit was seen to be a flexible easy-to-use tool for moving the robot around the whole 

field. Some driving tests were conducted, which showed the possibility of surrounding each tree for 

a complete individualised inspection. Nevertheless, the decision was made to inspect entire rows. As 

the remote control could be programmed to maintain the speed and the direction once established, 

no intervention was needed during the inspection of the rows. The batteries lasted for more than six 

hours of continuous operation, and they could be changed for another set in less than 15 minutes. 

The GPS ran in free mode at 25 Hz. As the robot was programmed to advance at a speed of 

1 m/s, the location was captured approximately every 40 mm. For the images, the accuracy of the 

location was not a true problem, because only those images containing complete trees were selected 

(only one image per tree: those captured between consecutive trees were discarded). Then, every 

image could be properly associated with each tree. As the images of each tree were geolocated, all 

the trees in the field could also be geolocated with great accuracy. The association between an image 

and the GPS information was performed by timestamp. The millisecond in which each image was 

acquired was stored along with the image and associated with the closest timestamp of all GPS 

locations. The association between the LiDAR and the GPS was more critical, not because of the 

exact location but because the tree must be reconstructed with great precision. Equally, a timestamp 

with a precision of milliseconds was recorded along with the data. This timestamp allowed the data 

from the LiDAR to be associated with the closest GPS location with a high degree of accuracy. The 

system developed to raise the sensors to different heights allowed the equipment to adapt the 

measurements to the canopy of very tall trees. The information provided by the robot was used to 

obtain, measure and visualise the structure of the trees. In addition, the spectral images of all the 

trees were captured and used to obtain vegetative indices of each tree.  

Other examples of scouting robots for crop surveillance can be found, but they have been 

developed to work only on specific crops and offer little information about the design, construction, 

functionalities and cost of the prototypes. Ladybird [27] is an autonomous multipurpose farm robot 

for surveillance, mapping, classification, growth monitoring, and pest detection for different 

vegetables using laser and hyperspectral scanning. Mantis [28] is a flexible general-purpose robotic 

data collection platform equipped with different sensors like RADAR, LiDAR and panospheric, 

stereovision and thermal cameras. The VineRobot (http://www.vinerobot.eu) and its continuation 

VineScout (http//www.vinescout.eu) are autonomous robots equipped with advanced sensors and 

artificial intelligence to monitor vineyards. VinBot [29] is another all-terrain mobile robot with 

advanced sensors for autonomous image acquisition and 3D data collection in vineyards used for 

yield estimation. GRAPE (http://www.grape-project.eu) is a ground robot also for vineyard 

scouting, plant detection and health monitoring, and even the manipulation of small objects. In 

general, brief descriptions of these solutions can be found but no information on their performance 

(of platforms and sensors) or tests have been published.  

3.2. Data Collection 

The external symptoms of disease observed by the visual inspection (levels 0 to 4) are shown in 

Figure 7. Most of the trees did not show any symptoms of the disease, probably due to the cleaning 

process carried out by the grower, but some others grouped in patches did show slight-to-moderate 
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symptoms. Nonetheless, altogether 174 trees showed some symptom, mostly those on the west and 

north sides. The first results of the automated analysis of the NDVI and BNDVI indices of the trees 

from the captured images (Figure 8) achieved a coefficient of determination R2 in relation to the 

observed symptoms lower than 0.45 in both cases, which indicates that these indices are not suitable 

in this problem, as already stated by Zarco-Tejada et al. in [15]. Moreover, as has been demonstrated 

in [15], other vegetative indices related to different pigments that involve wavelengths in the 

VIS/NIR range (400–1000 nm) are offering promising results in the detection of the infection by Xf in 

olive trees. These indices typically involve measurement at a wavelength associated with absorption 

of the pigment of interest, referenced by measurement at a wavelength used for background 

correction that is not affected by pigment absorbance, but scattering in the plant tissue. As these 

biochemical constituents can be altered by the stress caused by the infection [6], they are potentially 

detectable by the spectral devices incorporated in the robot.  

 

Figure 7. Visual symptoms of each tree in the field. Levels of visual symptoms range from 0 (no 

symptoms) to 4 (prevalence of dead branches). 
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(a) (b) (c) 

Figure 8. (a) Colour image of an olive tree, (b) NDVI image, and (c) BNDVI image of the same tree. 

The LiDAR information allowed 3D reconstruction of the trees in a subsequent off-line process 

with a total execution time of 850 s for the entire field. The original polar points of the LiDAR were 

converted to UTM Cartesian coordinates and the points corresponding to ground or trunk were 

removed using different threshold values. The trees were later reconstructed from the points that 

were close to each tree centroid with a distance lower than a specific radius value, established as half 

the distance between two consecutive trees. The 3D structure of the tree was used to calculate 

dimensions such as height, length, width, top projected area and volume. In addition, the LAI 

(cumulative LAD) was calculated, thus providing important information about each individual tree 

that can later be compared to future scans to determine the changes in the evolution of the disease. 

The study of the temporal evolution can provide key information for early diagnostic and 

surveillance applications using proximal or remote-sensing tools. To facilitate the graphical 

visualisation of this information and the interaction with the user, key tree features were associated 

with numbered pushpins in the Google Earth application using KML language with MATLAB. 

Thus, when a user browses the field on Google Earth, key information about the tree pops up 

automatically on clicking on the tree pushpin. Figure 9 shows the top view of the orchard that was 

studied ready to obtain the information about any tree. An example of the information 

corresponding to tree 34 is detailed, showing the extracted features, including the LAI and NDVI 

indices. However, as in the case of spectral indices, the structural variables could not be individually 

related to the visual symptoms (R2 less than 0.40), probably because the field is pruned periodically 

to eliminate the dead branches, so it is necessary to use them in combination with the spectral 

information or to study the temporal evolution of the disease. 

 

Figure 9. Projection (top view) of the studied orchard in the Google Earth application using the KML 

language. The image shows the data obtained from tree #34 when the user clicks on the 

corresponding tree pushpin within the Google Earth environment. 
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The data were represented on maps to allow visualisation of the captured data. The data were 

not totally related to the accurate level of the infection, especially in the asymptomatic cases. To 

achieve this, further surveys are needed, and the data extracted must be related to the results of 

molecular analyses of the inspected trees, especially quantitative polymerase chain reaction (qPCR), 

in order to determine the level of infection accurately [30]. However, this was not the objective at this 

stage, the aim being instead to create, test and fine-tune a robotic platform to collect sensing data 

about the crop in an efficient, fast and flexible way.  

Further research will involve improvements of XF-ROVIM as an autonomous sensing platform 

(i.e., by incorporating solar panels to power the sensing equipment and a self-guidance system). 

Moreover, all the information captured will be processed by means of predictive statistical models 

(i.e., PLSR), including the thermal, spectral (specific wavelengths and vegetative indices) and 

structural information (including LAI and LAD) as predictors in a multisensory approach.  

4. Conclusions 

XF-ROVIM has proved to be a flexible tool that is economical, easy to transport and capable of 

carrying remote or proximal sensing equipment for tree crop inspection. It can inspect a field of 4 ha 

without interruptions in less than six hours, allowing the capture and storage of high-resolution 

field data that is geolocated and synchronised with its advance. 

A remote control system has been designed to drive it through the field, which allows the speed 

and direction to be pre-set automatically. Different colour, thermal, multi and hyperspectral cameras 

have been installed, as well as a LiDAR scanner and a geolocation device for georeferencing all the 

acquired data. The design allows the cameras to be raised up to 200 cm to adapt them to the height of 

different trees. 

The system has been tested in a field of olive trees potentially infected by X. fastidiosa located in 

an area of Italy. The first field tests have been performed satisfactorily and both the robot and the 

equipment worked properly without any problems during the tests. The acquired data have allowed 

images of all the trees in the field to be collected on all four sides in addition to the creation of field 

maps showing the 3D structure of the trees as well as different vegetative indices.  

The results obtained so far indicate that some indexes by themselves, such as the BNDVI and 

the NDVI, did not obtain good results in acquiring information on the actual state of the crop in 

terms of the presence of a pest. Other variables, such as the LAI and the LAD, also didn’t. It is, 

therefore, essential to use multivariate models that include structural, spatial and spectral data to try 

to achieve an effective prediction. XF-ROVIM facilitates the efficient collection of this data at the 

field level. 
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