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Abstract: High-Performance Computing (HPC) has recently been attracting more attention in
remote sensing applications due to the challenges posed by the increased amount of open data
that are produced daily by Earth Observation (EO) programs. The unique parallel computing
environments and programming techniques that are integrated in High-Performance Computing
(HPC) systems are able to solve large-scale problems such as the training of classification algorithms
with large amounts of Remote Sensing (RS) data. This paper shows that the training of state-of-the-art
deep Convolutional Neural Networks (CNNs) can be efficiently performed in distributed fashion
using parallel implementation techniques on HPC machines containing a large number of Graphics
Processing Units (GPUs). The experimental results confirm that distributed training can drastically
reduce the amount of time needed to perform full training, resulting in near linear scaling without
loss of test accuracy.

Keywords: distributed deep learning; high performance computing; residual neural network;
convolutional neural network; classification; sentinel-2

1. Introduction

Modern Earth Observation (EO) programs have an open data policy and provide a massive
volume of free multisensor data every day. Their systems have substantially advanced in recent
decades due to the technological evolution integrated into Remote Sensing (RS) optical and microwave
instruments [1]. NASA’s Landsat [2] (i.e., the longest running EO program) and ESA’s Copernicus [3]
provide data with high spectral–spatial coverage at high revisiting time, which enables global
monitoring of the Earth in a near real-time manner. Copernicus, with its fleet of Sentinel satellites,
is now the World’s largest single EO program (https://sentinel.esa.int/web/sentinel/missions).
These programs are showing that the vast amount of raw data available call for re-definition of the
challenges within the entire RS life cycle (i.e., data acquisition, processing, and application phases). It is
not by coincidence that RS data are now described under the big data terminology, with characteristics
such as volume (increasing scale of acquired/archived data), velocity (rapidly growing data generation
rate and real-time processing needs), variety (data acquired from multiple satellites’ sensors that have
different spectral, spatial, temporal, and radiometric resolutions), veracity (data uncertainty/accuracy),
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and value (extracted information) [4,5]. The Sentinel-2 mission, for instance, has been operating since
June 2017 with a constellation of two polar orbiting satellite platforms, which allow a temporal
resolution of 5 days at the equator (and even less for areas covered by more than one orbit).
Both Sentinel-2A and Sentinel-2B are equipped with a Multispectral (MS) instrument which acquires
13 optical narrow bands in moderate-to-high spatial resolution (10, 20, and 60 m) and generates
23 TB/day of MS data. The freely available imagery from Sentinel-2 received major attention within
the research community. From 1 December 2017 to 30 November 2018, the Sentinel Data Access
System had a publication rate of over 26,500 products/day with an average daily download volume
of 166 TB (https://sentinels.copernicus.eu/web/sentinel/news/-/article/2018-sentinel-data-access-
annual-report). The large-scale, high-frequency monitoring of the Earth requires robust and scalable
Machine Learning (ML) models trained over annotated (i.e., not raw) time series of multisensor images
at global level [6,7] (e.g., acquired by Landsat 8 and Sentinel-2). However, these data do not exist
yet. This is largely due to the inherent interpretation complexity of RS data (e.g., hyperspectral and
RADAR data) and the effort and cost involved in the collection of training samples. This remains a
key limiting factor in the RS community for the research and development of successfully operational
Deep Learning (DL) classifiers for RS data.

Nevertheless, DL has already brought crucial achievements in solving RS image classification
problems, working on raw multispectral satellite image data [8–10]. The state-of-the-art results
have been achieved via deep networks with backbones based on convolutional transformations
(e.g., Convolutional Neural Networks (CNNs) [11,12], Recurrent Neural Networks (RNNs) [13],
and Generative Adversarial Networks (GANs) [14]). Their hierarchical architecture composed of
stacked repetitive operations enables the extraction of useful image features from raw pixel data
and modeling high-level semantic content of RS images. However, DL architectures have a much
larger number of parameters to estimate than classic ML methods (e.g., shallow classifiers based on
handcrafted features) [15]. Thus, their performance and generalization capabilities are considerably
dependent on the amount and quality of available training data. That is, to train these networks, a very
large annotated training set of sufficient diversity is needed in order to learn effective models.

Table 1 shows the main free annotated remote sensing datasets (i.e., for classification of RGB and
MS images) that are currently available for benchmarking DL classifiers. The gap in terms of data
size with the computer vision domain (e.g., ImageNet with 14,197,122 images (http://www.image-
net.org/)) is still considerably high. Nonetheless, there is an evident trend towards datasets with a
higher number of annotated samples and degree of classification complexity (e.g., BigEarthNet [16],
a multiclass classification task of 590,326 images). Consequently, the computational intensity and
memory demands of DL will continuously increase in the future. In this scenario, approaches relying
on local workstation machines (i.e., using MATLAB, R, SAS, SNAP, and ENVI for data analysis and
interpretation), can provide only limited capabilities. Despite modern commodity computers and
laptops becoming more powerful in terms of multicore configurations and GPUs, the limitations with
regard to computational power and memory are always an issue when it comes to fast training of
large high-accuracy models from correspondingly large amounts of data. Therefore, the use of highly
scalable and parallel distributed architectures (such as clusters [17], grids [18], or clouds [19]) is a
necessary solution to train DL classifiers in a reasonable amount of time, which can then also provide
users with a high-accuracy performance in the recognition tasks. High-Performance Computing (HPC)
systems can reach a performance in the order of petaflops (i.e., 1015 floating point operations per
second) and are already delivering unprecedented breakthroughs [20]. It is important to observe that
ML and DL algorithms have transformed the workloads and workflows that run on these systems,
especially when compared to classic HPC simulation problems. DL algorithms require higher memory
and networking bandwidth throughput capabilities, as well as optimized software and libraries to
deliver the required performance. On the one hand, DL can lead to more accurate classification results
of land cover classes when networks are trained over large RS annotated datasets. On the other hand,
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deep networks pose challenges in terms of training time. In fact, the use of a large datasets for training
a DL model requires the availability of non-negligible time resources.
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Table 1. Non-exhaustive list of open remote sensing datasets for image classification.

Datasets Image Type Image Per Class Scene Classes Annotation Type Total Images Spatial Resolution (m) Image Sizes Year Ref.

UC Merced Aerial RGB 100 21 Single/Multi label 2100 0.3 256 × 256 2010 [21]

WHU-RS19 Aerial RGB ∼50 19 Single label 1005 up to 0.5 600 × 600 2012 [22]

RSSCN7 Aerial RGB 400 7 Single label 2800 – 400 × 400 2015 [23]

SAT-6 Aerial MS – 6 Single label 405,000 1 28 × 28 2015 [24]

SIRI-WHU Aerial RGB 200 12 Single label 2400 2 200 × 200 2016 [25]

RSC11 Aerial RGB 100 11 Single label 1323 0.2 512 × 512 2016 [26]

Brazilian Coffee Satellite MS 1438 2 Single label 2876 – 64 × 64 2016 [27]

RESISC45 Aerial RGB 700 45 Single label 31500 30 to 0.2 256 × 256 2016 [28]

AID Aerial RGB ∼300 30 Single label 10,000 0.6 600 × 600 2016 [29]

EuroSAT Satellite MS ∼2500 10 Single label 27,000 10 64 × 64 2017 [30]

RSI-CB128 Aerial RGB ∼800 45 Single label 36,000 0.3 to 3 128 × 128 2017 [6]

RSI-CB256 Aerial RGB ∼690 35 Single label 24,000 0.3 to 3 256 × 256 2017 [6]

PatternNet Aerial RGB ∼800 38 Single label 30,400 0.062∼4.693 256 × 256 2017 [31]

BigEarthNet Satellite MS 328 to 217,119 43 Multi label 590,326 10,20,60

120 × 120

2018 [16]60 × 60

20 × 20
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The objective of this contribution is to show that HPC systems speed up the training of DL
networks through distributed training frameworks, which can exploit the parallel environment of HPC
clusters. The distribution of the model among multiple nodes can considerably speed up the process
of training it. This enables deployment of various models and comparison of their performances in a
reasonable amount of time. The training of the model is performed via a multimachine data parallelism
strategy that allows minimizing the time required to finish full training: The processing is distributed
across multiple machines connected by a fast dedicated network (i.e., InfiniBand). This paper proposes
a high-performance distributed implementation of the Residual Network (ResNet) [32] type of deep
convolutional networks (so-called deep residual networks) for the multiclass RS image classification
problem. The experiments are performed with the BigEarthNet [16] dataset over the HPC systems
that are based at the Jülich Supercomputing Centre. The experimental results attest that distributed
deep neural network training can extremely reduce the amount of time that is required to complete
the training step without affecting prediction accuracy.

2. Deep Learning

2.1. The ResNet

ResNet is a deep residual CNN architecture developed by He et al. in [32] to overcome difficulties
in training networks with a very large number of layers (>20, up to 1000 layers and more possible [33]),
winning the ImageNet competition in 2015 [34]. The first instantiations of deep feed-forward CNNs
were the ones providing groundbreaking advances in the field of computer vision on tasks like object
detection and object recognition, outperforming previous state-of-the-art ML methods by large margins,
e.g., AlexNet with 8 layers [35], VGG with 16 layers [36] or GoogleNet (Inception) with 22 layers [37].
An increasing number of processing layers resulted in further increasing accuracy performance on
ImageNet challenges in terms of class recognition rates (the ImageNet-1k challenge has 1000 different
object classes that have to be successfully learned during the training on 1.2 Million images [35,38]).

However, simply increasing the number of layers further by stacking more and more convolutional
and other layers (pooling, etc) on top of each other was not functionally successful. The training of
very deep networks resulted in worse accuracy, contrary to expectations set by previous results. It has
been noted that degradation of the training accuracies may be partly caused by a phenomenon known
as vanishing (or exploding) gradients. ResNet architecture has been designed to overcome this issue
by introducing so-called residual blocks featuring skip connections. These connections implemented
an explicit identity mapping for each successor layer in a deep network in addition to the learned
operations that were applied to the input before it reaches the next layer [32,33]. The network was
thus forced to learn residual mappings corresponding to useful transformations and feature extraction
on the image input, while loss gradients could still flow undisturbed during the backward pass via
available skip connections through the whole depth of the network. Different ResNet networks were
shown to train successfully with a number of layers that was impossible to handle before, while using a
smaller number of parameters than previous, less deep architectures (e.g, VGG or Inception networks),
thus allowing for faster training.

ResNet-50 (where the number indicates the number of layers) has since then established a strong
baseline in terms of accuracy, representing good trade-off between accuracy, depth, and number of
parameters, in the same time being very suitable for parallelized, distributed training. As it still
remains the strong baseline for object recognition tasks and is also widely used in scenarios for transfer
learning ([39–41]), the ResNet-50 architecture is adopted for experiments to show successful distributed
training for multiclass, multilabel classification from RS multispectral images.

2.2. Distributed Frameworks

Despite the permanently increasing computational power of Central Processing Unit (CPU)- and
Graphics Processing Unit (GPU)-based hardware and essential improvements in efficiency of deep
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neural network architectures like ResNet, it remains still a computationally very demanding procedure
to train a particular deep neural network to successfully perform a challenging task like object
recognition. Even with state-of-the-art hardware like NVIDIAs V100, full training of a ResNet-50 object
recognition network on ImageNet-1k dataset of 1.2 Million images using a single GPU can still take
more than one day on a single workstation machine (also when taking into account possible acceleration
via more efficient mixed-precision (fp16 and fp32) training or special optimized computational graph
compilers like TensorFlow’s XLA). To conduct a multitude of experiments with various network
architectures on large datasets, training therefore constitutes a prohibitively time-expensive procedure.

To overcome these limitations imposed by computationally expensive training, the DL community
envisages different methods that enable distributed training across multiple computing nodes of
clusters or HPC machines equipped with accelerators like GPUs or highly specialized TPUs [42,43].
Using these methods, it became possible to perform distributed training of large network models
without loss of task performance and drastically reduce the amount of time necessary for a complete
training. For instance, the time to fully train an object recognition network model on ImageNet-1k
(1.2 Millions of images, ca. 80–100 epochs necessary for training to converge) was reduced by orders of
magnitude only within a few years from almost one day to few minutes without substantial loss in
recognition accuracy [44,45].

This work relies on a certain type of distributed training to conduct scaling experiments and make
use of Horovod—a software library that offers a convenient way to execute training and supports
TensorFlow and Keras [46]. Using Horovod, only a few modifications in the standard code used
for quick single node model prototyping are necessary to adapt it for distributed execution across
many nodes.

To enable distributed training, Horovod adapts a data parallel scheme. In the data parallel scheme,
it is assumed that a network model to be trained can fit into the memory of a single GPU device.
Many so-called workers can be then instantiated during the training, each occupying one available
GPU. Each worker contains a clone of the network to train and gets a separate portion of data to
train on, so that for each model update iteration, the global data mini-batch is split into different
portions that are assigned to each worker. Working on their own portion of the mini-batch, each worker
performs a forward pass to compute the network activations and the local loss given their current
input, and a backward pass to compute the local gradients.

To keep all the network models across workers in sync, Horovod employs a decentralized,
synchronous update strategy based on Ring-AllReduce operations [46,47], where gradients of all
workers are collected, averaged, and applied to every clone model network to update their parameter
weights. This is in contrast to centralized update strategies that usually require so-called parameter
servers (PS) to communicate model parameters to the workers.

However, those implementations rely on TCP/IP internode communication, which is not available
on our machines. On the other hand, Horovod relies on operations based on MPI and NCCL libraries,
thus being our preferred choice.

The decentralized update makes better use of network topologies connecting the respective
machines and thus usually employs a more efficient, homogeneous communication strategy to perform
distributed training. On the one hand, the centralized parameter server-based update strategy offers
the flexibility to add or remove the workers, which requires only reconfiguration of a parameter
server. On the other hand, the decentralized approach may offer higher fault tolerance in terms of
not having one weak spot in the communication chain—when a parameter server fails, it is hard
to resume training; when a worker node fails, communication in the decentralized approach can
still be reconfigured without affecting training, as every other working node possesses a full copy of
the model.

For less reliable cluster systems, decentralized updates are therefore a viable option. For robust
HPC systems, where note failure is rare, centralized schemes can be a performant choice as well.
However, to avoid bottlenecks in communication during large-scale distributed training on HPC,
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the setup of many PS is required, which complicates resource allocation, increases complexity of the
necessary code, and makes proper training implementation difficult [42]. Thus, using a decentralized
update scheme as employed by Horovod is an efficient choice in terms of simplicity and speed for
distributed training on HPC.

As a high-level framework at the top of deep learning libraries, Horovod uses well-established MPI
CUDA-aware routines and relies on the NCCL library [46,48] for efficient and robust implementation
of communication between workers that makes the best out of the available network topology and
bandwidth. The choice for Horovod as library for efficient distributed training is also motivated by
the ease, clear structure, and transparency of the necessary code modifications. The corresponding
strategy can be as well implemented in pure TensorFlow via the distributed strategies framework [49];
however, the effort to rewrite a single node prototype code is still considerably more when compared
to modifications required by Horovod. Horovod also supports a unified scheme for using it with
other libraries (PyTorch, MxNet), which again minimizes the effort to deal with specific details of each
respective framework when implementing distributed training.

Apart from issues regarding efficient communication of information necessary for model updates
during distributed training across multiple nodes, there is a further aspect to be dealt with in the
algorithmic challenge to perform distributed training. This aspect is rooted in the nature of the
optimization procedure that performs actual loss minimization. The majority of the optimization
methods used to minimize loss during training are different variations of Stochastic Gradient Descent
(SGD). If training has to be distributed across a substantial amount of workers, the effective size
of the global mini-batch has to grow. Optimization thus has to cope with mini-batch sizes that are
substantially larger that those used for training on a single node. Large mini-batches (for ImageNet,
in the order of a few thousand images per batch as compared to the standard mini-batch size of a few
hundreds for single node training) lead to substantial degradation of performance, e.g., recognition
accuracy, if used without any additional countermeasures [50]. This may be partly due to the very
nature of SGD, which requires a certain amount of noise produced by the rather small sizes of
mini-batches used for update steps.

Currently, there are different solutions to secure the same performance level achieved on a
single node with small mini-batch sizes despite the essential increase of the effective mini-batch size
during distributed training. In the core of the simplest solutions is the tuning of the learning rate
schedule that uses warm-up phases before the training, scales the learning rate with the number
of distributed workers, and reduces the rate according to a fixed factor after a fixed number of
epochs [6,44,50]. More sophisticated strategies to deal with very large batch sizes (for ImageNet,
for instance, greater than 213 = 8192) use adaptive learning rates that are tuned dependent on network
layer depth and the value of computed gradients and progress of training, such as that employed in
LARS (Layer-wise Adaptive Rate Scaling)—an adaptive optimizer dedicated to large-scale distributed
training setting [45,51].

3. Experimental Setup

3.1. Data

The training of the models was carried out using the list of patches provided by BigEarthNet
(http://bigearth.net/). BigEarthNet is an archive consisting of 590,326 patches extracted from 125
Sentinel-2 tiles (Level 2A) acquired from June 2017 to May 2018 [16]. A number of labels is associated
with each patch. The 43 labels originate from the CORINE Land Cover (CLS) inventory of 2018,
available for 10 European countries. According to [16], the number of labels for each patch varies
between 1 and 12, being in 95% of the cases at most 5. The patches have 12 spectral bands: (a) the
3 RGB bands and band 8 at 10 m resolution (120 × 120 pixels), (b) bands 5, 6, 7, 8a, 11, and 12 at 20 m
resolution (60 × 60 pixels), and (c) band 1 and 9 at 60 m resolution (20 × 20 pixels). Band 10 has been
excluded since it is used mainly for cirrus detection [52]. BigEarthNet also provides a list of the patches

http://bigearth.net/
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with a significant amount of the area covered by snow or clouds, making it possible to exclude them
from the analysis [53]. Figure 1 shows an example of the patches.

(a) (b) (c) (d)

Figure 1. Example of patches: (a) agro-forestry areas, complex cultivation patterns, non-irrigated arable
land, transitional woodland/shrub, water bodies, (b) airports, olive groves, permanently irrigated
land, (c) broad-leaved forest, burnt areas, transitional woodland/shrub, (d) beaches/dunes/sands,
estuaries, sea and ocean, and sport and leisure facilities.

3.2. Environment

The experiments were carried on two HPC sytems installed at the Jülich Supercomputing Centre:
the Jülich Wizard for European Leadership Science (JUWELS) [54], and the Jülich Research on Exascale
Cluster Architectures (JURECA) [55] supercomputers. In both machines, GPUs partitions were used:
JUWELS consists of 46 nodes, with each having four NVIDIA V100 GPUs (with 16 GB of memory each),
while JURECA has 75 nodes, each equipped with four NVIDIA K80 GPUs (with 24 GB of memory
each). The available benchmark for the experiments relies on a maximum of 24 nodes (i.e., 96 GPUs)
for each system.

For the evaluation, the following Python libraries were used: TensorFlow 1.13.1, Keras 2.2.4,
Horovod 0.16.2, Mpi4py 3.0.1 and Scikit-learn 0.20.3.

In order to upsample the Sentinel-2 bands at a lower resolution to the maximum resolution of
10 m, we use two different upscaling methods. One is based on the super-resolution deep network
approach proposed by Lanaras et al. in [56]. Using super-resolved images, we can obtain the same
high resolution across different bands. The authors provide a pretrained CNN model (i.e., DSen2 (https:
//github.com/lanha/DSen2)) that was trained over a large Sentinel-2 training set which covers a wide
range of geographical locations across different climate zones and land-cover types [56]. Another is
based on simple standard bilinear interpolation. The simple upscaling is there to check whether there
is any advantage in using an advanced super-resolution technique in our case.

The extraction of the patches was carried out with the Geospatial Data Abstraction Library GDAL
2.3.2 through its Python API. GDAL [57] is an open source programming library and set of utilities
that facilitates the manipulation of raster data: It helps with data translation from different file formats,
data types, and map projections.

3.3. Preprocessing Pipeline

One of the aims of this work is to evaluate models’ performance that take Sentinel-2 patches
as input, with all the multispectral bands upsampled to the resolution of 10 m for the RGB bands.
The original BigEarthNet archive was used as a basis to extract the information for generating a
new dataset, one that includes super-resolved patches, as well as the original ones (i.e., publicly
available (http://hdl.handle.net/21.11125/921dbc5e-5948-4453-90c0-40b399ffa418)). In order to
extract bands at a higher resolution, and to study whether those could help in enhancing the
performances of the classification scheme, the DSen2 framework was employed to obtain patches
in which the bands originally at a lower resolution (20 and 60 m) were super-resolved: In this way,

https:// github.com/lanha/DSen2
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all bands become available at the maximum resolution of 10 m. DSen2 consists of two CNNs to
perform the trained enhancement of the lower resolution bands into the highest resolution [56].

As shown in Figure 2, the first step in the preprocessing pipeline was to download the
freely-available 125 Level 2A tiles from Copernicus Data Hub (https://scihub.copernicus.eu/).
After that, the tiles were given as input to DSen2, and in this way, the upsampled tiles were computed.
To extract BigEarthNet’s original 519,226 patches with a low percentage of snow or cloud coverage, the
approach described by the parallel Algorithm 1 was adopted. The algorithm computes the number of
patches belonging to each Sentinel-2 tile and creates a matrix with the indices of the tile to be processed
by each CPU, in such a way that the total amount of total patches is similar among all processors.
With this strategy, idle time is avoided (e.g., a process that already extracted a small number of patches
has to wait until other processes to finish their task). The algorithm was executed in parallel using
72 CPUs on JURECA.

The patches were saved in a single Hierarchical Data Format 5 (HDF5) [58] file. This format can
be written and read in parallel. It has been organized by associating the data with different keys:
“data_super” is the key of the datacube with the 12 upsampled multispectral bands, “data_10m”,
“data_20m” and “data_60m” stands for datacubes of bands at the original resolution of 10, 20, and
60 m. respectively, and “classes” includes the labels of each patch already binarized.

Figure 2. Preprocessing pipeline: extraction of the Sentinel-2 patches and their corresponding classes.
Patches covered in snow and clouds are excluded.

Algorithm 1 Distribution of tiles
Input: input parameters n number of CPUs and t tiles

Output: matrix M with indices of tiles per processor

1: M← range(nproc)

2: if n− size(t) > 0 then
3: for i← 1 to len(t)/n) do
4: arr ← zeros([nproc])

5: arr ← t.values[0 : nproc]

6: M ← vstack([M, f lip(pad(range((i + 1) × nproc, (i + 1) × nproc + len(b), 1), (0, len(arr) −

len(b)))
7: else
8: M← t
9: return M

3.4. Multilabel Classification

Even though in some RS applications, the use of a single label per sample of a scene may be
sufficient for a correct classification, there are cases where it might not be sufficient. As stated in [59],

https://scihub.copernicus.eu/
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an image of a beach could be correctly classified with a single label, without the need for separated
labels such as “sand”, “sea”, or “buildings”. Multilabel classification is defined as that type of
classification where classes associated to each sample are not mutually exclusive [60].

According to [59], however, more complex scenarios require finer-grain labeling. For instance,
distinguishing between images of urban areas with different building densities would require specific
classes, which may also occur in combination with the presence of other classes, such as “road” or
“green area”. A characteristic of multilabeling classification is, in fact, that the occurrence of some class
could be correlated with those of others appearing in similar scenarios.

The standard approach when it comes to the computation of the loss function in the multilabel
classification case is the binary cross entropy. A vector of dimension equal to the number of classes is
associated to each sample, where every vector cell represents the presence or absence of a specific class.
In this way, the problem can be dealt with as a binary classification problem for each of the classes,
hence treating them independently. The activation function used for multilabel classification is the
sigmoid function, squashing all the elements of the label vector between 0 and 1. This is different from
using the softmax activation function, which transforms the probabilities so that they sum up to 1.
Instead, using the sigmoid function, it is possible to assure that the labels are not mutually exclusive in
the multilabel case, but more than one can be associated to each sample.

3.5. Restricted RGB and Original Multispectral ResNet-50

Two configurations have been considered for the experiments to establish baselines for successful
training. They differ according to the data in input: (a) input is limited to three RGB bands only, and (b)
input contains 12 multispectral bands. The motivation is, on the one hand, to prepare grounds for
transfer learning experiments using ImageNet pretraining on the data that contain RGB channels
only. On the other hand, RGB configuration serves as a minimal baseline to check whether a full
multispectral input can provide any additional boost for classification performance within standard
ResNet architecture.

The classification scheme used in this paper is based on a slightly modified version of ResNet-50.
In the present work, some changes to the model have been made to better adapt it to the land cover
classification problem. The output layer has been modified to output the prediction probabilities for
the 43 CLC classes. The input size has been changed from the original size of 224 × 224 pixels for
each image to the size of the patches (i.e., 120 × 120 for the 10 m, 60 × 60 for the 20 m, and 20 × 20
for the 60 m resolution). Two different kinds of regularization have been adopted to reduce the
risk of overfitting: (1) an L2 regularization has been applied to all convolutional layers to penalize
large weights, and (2) a dropout with probability equal to 0.5 has been placed before the model’s last
dense layer.

Two data augmentation techniques were used. The first one is a simple rotation of 90, 180 or
270◦ and a flip operation, applied randomly to the patches.The second method is called a mix-up and
consists in taking a batch and subtracting from it a shuffled version of itself, with a probability drawn
from a beta distribution for each patch [61]. The use of these virtual augmented data created with a
simple linear combination of the original samples encourages the model to learn smoother decision
boundaries, making it more robust when unseen samples are fed into the network. An SGD with
Nesterov momentum was selected as an optimizer [62]. The initial learning rate was computed as
η = 0.1 kn

256 [50], where k is the number of workers (i.e., GPUs) and n is the batch size for each worker,
which in this paper is set to 64. In our work, a step decay learning annealing schedule was used:
The actual learning rate was computed multiplying by 0.1 the original learning rate after 30 epochs,
by 0.01 after 60 epochs. and by 0.001 after 80 epochs. In our work, we trained the models for a total
of 100 epochs. This technique is used to reduce the probability of the model to get stuck in a plateau
using a too small learning rate, while on the other hand, a learning rate which is too high may cause
an instability in the optimization process [63]. A warm-up of 5 epochs was applied at the start of the
training process.
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4. Results

4.1. Classification

The classification results are presented for the RGB and the multispectral models. Both models
were adapted to the problem of multilabel classification from the original ResNet-50 [32]. For the
performance metric of the experiment, we employed the F1 score, which is widely used for multiabel
image classification problems. In Tables 2 and 3, the prediction results for a single experiment
performed over 1 node of JUWELS (i.e., 4 NVIDIA V100 GPUs) are reported. For this proposed
ResNet-50 architecture, the model trained on RGB bands performs almost as well as the multispectral
model (see Table 2 that shows the global scores). The prediction scores of each individual class are
reported by Table 3. It can be seen that some classes have a very high F1 score: e.g., the class “Sea
and ocean” has a high F1 score. This is not surprising due to to the specific distinguishable spectral
signature of water. For the same reason, the class “Coastal lagoons” is also easily detected by the model,
despite heavy imbalance—this class has a much smaller number of samples compared, for instance,
to “Sea and ocean”.

Table 2. Classification results for the RGB and multispectral model: P precision, R recall and F1 score.

P R F1

RGB 0.82 0.71 0.77
multispectral 0.83 0.75 0.79

Table 3. Classification results of each class for the RGB and multispectral model: F1 score and support
for each class considering the test set.

Support F1 (Multispectral) F1 (RGB)

Agro-forestry areas 5611 0.803621 0.795872
Airports 157 0.300518 0.374384
Annual crops associated with permanent crops 1275 0.457738 0.442318
Bare rock 511 0.604819 0.620192
Beaches, dunes, sands 319 0.695810 0.608964
Broad-leaved forest 28,090 0.791465 0.771761
Burnt areas 66 0.029851 0
Coastal lagoons 287 0.884758 0.880294
Complex cultivation patterns 21,142 0.722448 0.698238
Coniferous forest 33,583 0.874152 0.866716
Construction sites 244 0.234482 0.213058
Continuous urban fabric 1975 0.784672 0.517737
Discontinuous urban fabric 13,338 0.780262 0.722825
Dump sites 181 0.287037 0.268518
Estuaries 197 0.699088 0.585034
Fruit trees and berry plantations 875 0.452648 0.417887
Green urban areas 338 0.387750 0.369477
Industrial or commercial units 2417 0.552506 0.556856
Inland marshes 1142 0.408505 0.364675
Intertidal flats 216 0.635097 0.584126
Land principally occupied by agriculture 26,447 0.686677 0.667633
Mineral extraction sites 835 0.507598 0.490980
Mixed forest 35,975 0.834221 0.797793
Moors and heathland 1060 0.561134 0.430953
Natural grassland 2273 0.569581 0.512231
Non-irrigated arable land 36,562 0.865387 0.839924
Olive groves 2372 0.621071 0.541914
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Table 3. Cont.

Support F1 (Multispectral) F1 (RGB)

Pastures 20,770 0.780565 0.771802
Peatbogs 3411 0.535477 0.690319
Permanently irrigated land 2505 0.675662 0.643835
Port areas 93 0.503597 0.522388
Rice fields 709 0.669542 0.604770
Road and rail networks and associated land 671 0.300785 0.268623
Salines 75 0.608000 0.517857
Salt marshes 264 0.568578 0.532299
Sclerophyllous vegetation 2114 0.762123 0.671300
Sea and ocean 13,964 0.909013 0.979917
Sparsely vegetated areas 261 0.483460 0.380681
Sport and leisure facilities 996 0.367029 0.406827
Transitional woodland/shrub 29,671 0.664189 0.639412
Vineyards 1821 0.564012 0.545454
Water bodies 11,545 0.858107 0.823858
Water courses 1914 0.803948 0.737060

4.2. Processing Time

The processing times of the JURECA and JUWELS systems are reported only for the multispectral
model. Due to the limited amount of computing time (i.e., core hours) allocated for this project,
each experiment has been run only twice. Figures 3 and 4 report the mean and standard deviation
values. It can be observed that the training time using two nodes (i.e., 8 GPUs) is half (172 s for an
epoch on JUWELS) of the time required to execute the same training with one node (i.e., 4 GPUs)
(347 s). The same can be said in the cases where 2 vs. 4 (172 s vs. 86 s), 4 vs. 8 (86 s vs. 42 s) and 8 vs. 16
(42 s vs. 20 s) nodes are considered. However, the scaling between 12 and 24 nodes seems to be less
than linear (27 s vs. 15 s).

The use of this distribution approach has allowed us to reduce the total time for a full training on
JUWELS from almost 35,000 s using 4 GPUs on 1 node to less than 2500 s using 96 GPUs on 24 nodes.
The results on JURECA shown in Figure 4 confirm this observation. Although it can be seen that
the full run on JURECA (on 2 nodes approximately 14 h, as can be seen in Figure 5) takes almost 3
times more time than those run on JUWELS (on 2 nodes in less than 5 h) due to the available GPUs
(K80 vs. V100), on the other hand, taking advantage of this parallelization framework has enabled the
full training of the model using older GPUs in a reasonable amount of time.

5. Discussion

The class imbalance poses a serious caveat on the performances of the models. In fact, it can
be observed that there are classes which are heavily under-represented compared to others—e.g.,
in the test subset considered for this work, there are more than 30,000 patches associated with the
label “Coniferous forest” but just 93 with label “Port areas”. Thus, it comes as no surprise that the
F1 score obtained for the classes with a low support (i.e., low number of samples) is on average less
than the F1 score of the most populated classes of the dataset, since it is known that class imbalance
can cause a bias towards the majority class [64]. As reported in Section 3.5 in this work, two simple
data augmentation techniques were applied. However, the problem of class imbalance may require
the use of of different techniques, e.g., upsampling of the under-represented samples [65] or loss
weighting to let the model give more importance to samples associated with classes present in a lesser
amount [64]. These methods should be implemented and tested in future work.W Another limitation
that stems from the imbalance problem is that the spectral signature (i.e., the radiation reflected by
the surface as a function of the wavelength) of areas associated with some classes could change over
time, causing low classification results. That may be the case for the class “Burnt areas” (an example
in Figure 1c), showing a very low F1 score. An approach to deal with such a class could be the adoption
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of a multitemporal analysis, implementing, for instance, a change detection method to identify when
a significant change in the spectral signature of a patch (such as the one caused by a fire) occurs.
Moreover, CLS classes may be semantically too stringent for the purpose of classification of land cover
using optical data alone. As an example, CLS has two different classes for “Discontinuous urban fabric”
and “Green urban areas”, which may represent patches with a similar information content. One last
point which could be considered is the fact that the presence of some classes may be correlated with
those of another one. For instance, it is reasonable to assume that “Beaches, dunes, sands” is correlated
with the presence of classes associated with water, as can be observed in Figure 1d, or that a cultivation
pattern is present at the same time of arable land as in in Figure 1a. In this work, it has not been used a
method to explicitly take this information into account, as, e.g., it was done in [16], where the local
descriptors generated by a CNN were then updated using an LSTM network on subtiles of the patches.

In Section 3.2, we stated that our work makes use of DSen2 to upsample the patches to the same
resolution of 10 m across the different bands. We used DSen2 since it is a well-established method for
super-resolution. However, an experiment in which we used a simple bilinear interpolation, run on 8
nodes on JUWELS, showed a very similar F1 score to those obtained using DSen2 (shown in Figure 6).
Further studies should be conducted to investigate whether different DL models could take advantage
of the enhanced spectral characteristics provided by DSen2.

Section 4.1 mentions that the model trained on RGB bands obtains a slightly lower average F1 score
to the one achieved by the multispectral model. However, for the class airports, bare rock, peatbogs,
port areas, sea ocean, and sport and leisure facilities, the F1 score of RGB is higher. For these classes,
the model that is trained with the multispectral data is not able to isolate the RGB information from the
other bands. Generally, a correct network architecture should deliver at least the same classification
results (since multispectral data include the same RGB bands). As we explain in Section 2.1, we selected
the ResNet-50 since it is a well-established baseline architecture in terms of accuracy, represents a
good trade-off between depth and number of parameters, and is very suitable for parallelization.
According to the current results, we established that ResNet-50 is not suitable to deal properly with the
information provided by all the multispectral bands. However, a more detailed study (i.e., out of the
scope of this work) should be conducted by considering different experimental classification settings
(e.g., compare the classification result obtained with one band against RGB).

As has been stated at the introduction of this paper, DL poses challenging questions in terms
of time required for the training of a model due to the large number of parameters. The results
presented in Section 4.2, confirmed that the Horovod distributed training framework enables the
achievement of near linear scaling. However, when dealing with distributed training, the consistency
of the classification results has to be constantly monitored. The reason is that when the size of the
batch is increased (defined as be = bg × k, where be is the effective batch size, bg is the batch size
per GPU, and k is the number of GPUs) a degradation of the accuracy often occurs. At first glance
in Figure 6, a slow trend of a decrease in the fscore is apparent when a larger number of nodes is
employed. The results obtained using JUWELS are confirmed also by those from JURECA (please
note that the fscore of 1 node is not reported, since the computation time has exceeded the limit of
the system). Without further special mechanisms, stable training with SGD is possible only for a
total batch size of <8192 [66]. During training, an explosion of the loss during the first epochs with
a high learning rate was typically observed, which does not occur at a more advanced stage of the
training when a lower learning rate is used. This phenomenon is particularly noticeable when a
large number of nodes is used. The initial learning rate is in fact dependent on the number of nodes
in the formula shown in Section 3.5. As a direct consequence, if a large number of nodes is used,
the initial learning rate is large. The step decay learning rate scheduler used in the present work is the
one defined by Goyal et al. [50]; however, different schemes such as the polynomial decay scheduler
could be employed to make the loss less prone to explosion during the training process. The use of
different types of optimizers could as well be studied further in detail as a workaround to overcome
this known problem.
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Figure 3. JUWELS: One node, 1, 2, 3 and 4 GPUs, time per epoch, multispectral model.

Figure 4. Multinode, time per epoch, multispectral model.
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Figure 5. Training time, multispectral model.

Figure 6. Fscore, multispectral model.
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6. Conclusions

Large-scale deep neural networks have millions of weights and require large amounts of data to
optimize these parameters to converge to a satisfactory testing accuracy. With the size of the learning
networks and annotated remote sensing datasets growing, it becomes possible to automatically extract
useful features and representations suitable for high-accuracy classification tasks, but at the cost of
higher computation time necessary for the full training. The experimental results of this paper confirm
that distributed training over HPC systems can drastically reduce the amount of time needed to
complete the training step, resulting in near linear scaling without significant loss of test accuracy.
The publication of this paper includes the availability of the dataset and the Python implementation of
the models (https://gitlab.com/rocco.sedona/mdpi-paper-bigearth).
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The following abbreviations are used in this manuscript:

EO Earth Observation
RS Remote Sensing
DL Deep Learning
ML Machine Learning
HPC High-Performance Computing
MPI Message Passing Interface
CNN Convolutional Neural Network
RNN Recurrent Neural Network
GAN Generative Adversarial Network
MS Multispectral
ResNet Residual Network
JUWELS Jülich Wizard for European Leadership Science
JURECA Jülich Research on Exascale Cluster Architectures
GPU Graphics Processing Unit
CPU Central Processing Unit
SGD Stochastic Gradient Descent
CLS CORINE Land Cover
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