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Abstract: The automatic production of land use/land cover maps continues to be a challenging
problem, with important impacts on the ability to promote sustainability and good resource
management. The ability to build robust automatic classifiers and produce accurate maps can
have a significant impact on the way we manage and optimize natural resources. The difficulty
in achieving these results comes from many different factors, such as data quality and uncertainty.
In this paper, we address the imbalanced learning problem, a common and difficult conundrum
in remote sensing that affects the quality of classification results, by proposing Geometric-SMOTE,
a novel oversampling method, as a tool for addressing the imbalanced learning problem in remote
sensing. Geometric-SMOTE is a sophisticated oversampling algorithm which increases the quality of
the instances generated in previous methods, such as the synthetic minority oversampling technique.
The performance of Geometric- SMOTE, in the LUCAS (Land Use/Cover Area Frame Survey)
dataset, is compared to other oversamplers using a variety of classifiers. The results show that
Geometric-SMOTE significantly outperforms all the other oversamplers and improves the robustness
of the classifiers. These results indicate that, when using imbalanced datasets, remote sensing
researchers should consider the use of these new generation oversamplers to increase the quality of
the classification results.
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1. Introduction

The production of accurate land use/land cover (LULC) maps offers unique monitoring
capabilities within the remote sensing domain [1]. LULC maps are being used for a variety of
applications, ranging from environmental monitoring, land change detection, and natural hazard
assessment to agriculture and water/wetland monitoring [2]; therefore, accurate and timely production
of LULC maps is of great significance. LULC maps are usually produced by two main procedures:
photo-interpretation by the human eye, which is time and resource consuming and is not suitable for
operational LULC-mapping over large areas; and second, automatic mapping using remotely sensed
data and different classification algorithms.

The availability and a swift update of high-quality satellite remote sensing data has brought
tremendous progress in providing up-to-date and accurate land cover information. Multispectral
images, particularly, are an essential resource for building LULC maps, allowing for the use of
classification algorithms to automate their production. Although significant progress has been made
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in the use of supervised learning techniques for automatic image classification [3], the acquisition of
labeled training sets continues to be a bottleneck [4]. In order to build accurate and robust supervised
classifiers it is crucial to have a large enough training dataset. Often, the problem is that different land
cover types have very different levels of area coverage, which causes some of them to be frequent in
the training dataset, while others are limited [5].

A particular case where this phenomenon happens is the LUCAS dataset: Land Use and Coverage
Area frame Survey coordinated by The Statistical Office of the European Commission (Eurostat) [6].
LUCAS surveys have been carried out every three-years since 2006 and are freely accessible. For this
statistical sampling survey, a 2 km regular grid is implemented, and over 1,000,000 points were
observed in the European Union territory for the year of 2015. Although the LUCAS dataset is
designed for statistical estimation, some existing studies used this data for training machine learning
classifiers for land cover classification successfully [7,8], since each observation is empirically registered
in the field (in situ). This sampling strategy is particularly interesting for this research, as it causes
uneven representation of different land cover classes in the dataset for the given area.

The above-mentioned asymmetry in class distribution affects the performance of classifiers
negatively. In the machine learning community, the problem is known as imbalanced learning
problem [9]. The imbalanced learning problem generally refers to a skewed distribution of data across
classes in both binary and multiclass problems [10]. The latter, in particular, appears to be an even
more challenging task [11]. In both cases, during the learning phase, the minority class(es) contribute
less to the minimization of accuracy, the typical objective function, inducing a bias towards the majority
class. Consequently, as typical classification algorithms are designed to work with reasonably balanced
datasets, learning the decision boundaries between different classes becomes a very difficult task [12].

The possible approaches to deal with the class imbalance problem can be divided into three main
groups [13]:

1. Cost-sensitive solutions. They introduce a cost matrix that applies higher misclassification costs
for the examples of the minority class.

2. Algorithmic level solutions. They modify the algorithmic procedure to reinforce the learning of
the minority class.

3. Resampling solutions. They rebalance the class distribution either by removing instances from
the majority class or by generating artificial data for the minority class(es).

The latter method constitutes a more general approach, since it can be used for any classification
algorithm and it does not require any type of domain knowledge in order to construct a cost matrix.

There are several resampling solutions to deal with the imbalanced learning problem, which also
can be divided into three categories:

1. Undersampling algorithms reduce the size of the majority class.
2. Oversampling algorithms attempt to even the distributions by generating artificial data for the

minority class(es).
3. Hybrid approaches use both oversampling and undersampling techniques to ensure a

balanced dataset.

In this paper, we compare the performance of various oversampling algorithms on EUROSTAT’s
publicly available Land Use/Cover Area Statistical Survey (LUCAS) dataset [14] with Landsat 8 data.
The experimental procedure included a comparison of five oversamplers using five classifiers and three
evaluation metrics. Specifically, the oversampling algorithms were Geometric-SMOTE (G-SMOTE) [15],
the synthetic minority oversampling technique (SMOTE) [16], Borderline-SMOTE (B-SMOTE) [17],
the adaptive synthetic sampling technique (ADASYN) [18] and random oversampling (ROS), while no
oversampling was included as a baseline method. Results show that G-SMOTE outperforms every
other oversampling technique, for the selected evaluation metrics.
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This paper is organized in five sections: Section 2 analyzes the resampling methods, Section 3
describes the proposed methodology, Section 4 shows the results and discussion, and Section 5 presents
the conclusions drawn from this study.

2. Resampling Methods

Data modification through resampling has been the most popular approach to deal with the
imbalanced learning problems in machine learning in general and remote sensing in particular
[5]. As mentioned above, by decoupling the imbalance problem from the classification algorithms,
resampling allows the users to apply any standard algorithm once the resampling preprocessing step
is done. This stratagem is especially convenient for users that are not machine learning experts and
want to use several classifiers. Additionally, resampling methods can be naturally applied to multiclass
imbalanced data, which is relevant for LULC classification. In this section, we present the most relevant
applications of resampling methods for imbalanced remote sensing data classification.

2.1. Random Resampling

Random resampling refers to non-informed strategies that remove instances from the majority
class or replicate instances from the minority class. As such, the selection of the data occurs randomly
without exploiting any additional information.

Some of the existing remote sensing studies implement the random undersampling (RUS)
method [19], which randomly reduces the number of the majority class training samples. However,
this method has the disadvantage of information loss, as it discards samples from the majority class [5].
Contrary to RUS, ROS is a method that can be considered equivalent to Bootstrapping, as it avoids
information loss. However, ROS simply replicates randomly selected instances of the minority class,
increasing the risk of overfitting [20]. Reference [21] reports that balancing data with ROS affects the
classification performance differently for various classifiers. In their study, land cover classification
with highly imbalanced data was carried out with six different models. The application of ROS slightly
improved the performance of the random forest (RF) and support vector machine (SVM) classifiers.
On the other hand, it reduced the classification accuracy for ecision tree (DT), artificial neural network
(ANN), k-nearest neighbors (KNN) and boosted DT classifiers.

2.2. Informed Resampling

In the above section, the disadvantages of RUS and ROS have been pointed out. Informed
resampling methods aim to overcome these insufficiencies. More specifically, they use the local
or global information of the class distribution to remove or generate instances. Our focus is on
oversampling algorithms, since the size of the LUCAS dataset does not favor the use of undersampling
approaches. Additionally, reference [22] carried out a comparative analysis of undersamplers’ and
oversamplers’ performance for land cover classification with the rotation forest ensemble classifier,
showing that oversampling methods outperform undersampling methods.

SMOTE is the most popular informed oversampling method, and it has been used to successfully
deal with the class imbalance problem in land cover classification [23]. In this approach, the minority
class is oversampled by randomly selecting a minority class instance and generating synthetic examples
along the line segment joining it with one of its minority class neighbors. A number of studies
report significant improvements in LULC mapping accuracy with the use of SMOTE oversampling.
For instance, the variational semi-supervised learning (VSSL) proposed by [23] aims to deal with the
imbalance problem in LULC mapping. VSSL is a semi-supervised learning framework consisting of a
deep generative model. It allows learning successfully from both labeled and unlabeled samples while
using SMOTE to balance the data. In [24], they used OpenStreetMap crowdsourced data and Landsat
time series for LULC classification. Similarly, the application of SMOTE improved the classification
results. Other examples of the successful application of SMOTE in remote sensing can be found
in [25,26].



Remote Sens. 2019, 11, 3040 4 of 14

Although recent studies demonstrate the usefulness of SMOTE for remote sensing applications,
it still has some drawbacks. The SMOTE algorithm has the disadvantage of generating noisy data [27].
In order to mitigate this problem, many variations of SMOTE have been developed. B-SMOTE is one
of the most popular SMOTE-based oversamplers. Similarly to SMOTE, it uses the k- nearest neighbors
selection strategy. The main difference to the original algorithm is that it modifies the data generation
mechanism by generating samples closer to the decision boundary. B-SMOTE has also been reported to
perform better than SMOTE in a number of studies [28,29]. ADASYN is another well-known variation
of SMOTE. It is based on the idea of adaptively generating minority class instances according to their
weighted distribution: more instances are generated for those minority class instances that are harder
to learn compared to ones that are easier to learn [18].

The SMOTE algorithm can be decomposed into two parts: the selection strategy for the minority
class instances and the data generation mechanism. The first part is related to the generation of
noisy instances since the SMOTE selection strategy considers all the minority samples as equivalent.
The above-mentioned SMOTE variations (B-SMOTE and ADASYN) aim to deal with this problem.
On the other hand, the second part is responsible for the diversity of the artificial instances. There are
scenarios where the linear interpolation mechanism used in SMOTE generates nearly duplicate
instances that may lead to overfitting. The G-SMOTE algorithm is an extension of SMOTE that
aims to deal with both problems. G-SMOTE defines a flexible geometric region around each
minority class instance for synthetic data generation. The shape of this area is controlled by a
set of hyperparameters. This element significantly increases the diversity of instances generated.
Furthermore, G-SMOTE is designed to avoid noisy sample generation since it modifies the SMOTE
selection strategy. G-SMOTE has been shown to outperform SMOTE and its above-mentioned
variations across 69 imbalanced datasets for various classifiers and evaluation metrics. Figure 1 depicts
the data generation mechanisms of both SMOTE and G-SMOTE using a deformed geometric region.

Figure 1. Example of minority class oversampled by SMOTE and G-SMOTE algorithms. G-SMOTE
generates non-noisy samples with greater variety than SMOTE.
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3. Methodology

This section describes the evaluation process of G-SMOTE’s performance. A description of the
study area, dataset, oversamplers, classifiers, evaluation metrics, and the experimental procedure is
provided. Figure 2 represents the flowchart of the steps applied in this experiment.

Figure 2. Flowchart containing the steps applied in the entire method.

3.1. Study Area

The area of study was within north-western Portugal, corresponding to the area covered by the
Landsat 8 image from track 204 and row 32, shown in Figure 3. The area contains all eight main land
cover types defined by LUCAS 2015: artificial land, cropland, woodland, shrubland, grassland, bare
land, water, and wetlands.
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Figure 3. Study area and LUCAS 2015 reference data (coordinate system: WGS-84 UTM Zone 29,
projection: Transverse-Mercator, Landsat image acquisition date: 25 May 2015).

3.2. Remote Sensing Data

The remotely sensed data includes eight images from the moderate-resolution Landsat 8
multi-spectral sensor. The images are Level-2 surface reflectance products (OLI/TIRS); one image
was acquired each month from February to September 2015. The acquisition mode was descending.
Data were pre-processed in order to remove pixels with cloud cover. Only bands 2, 3, 4, 5, 6, and 7
were used from each image. Accordingly, each reference point from the LUCAS dataset had 48 features,
representing pixel values from each spectral band from each image.

3.3. LUCAS Dataset

The 2015 LUCAS data was used as reference data for both model training and validation.
The LUCAS point label represents the corresponding land cover/use type within the radius of 1.5 m for
homogeneous classes and a 20 m radius extent (“extended window”) for heterogeneous classes (e.g.,
shrubland), gathered by field observation and a very high-resolution photo interpretation [6]. In order
to reduce the risk of having Landsat pixel information represented wrongly in the field, we only kept
points observed in situ from a close distance (<100 m). With the same objective we removed the points
which had linear features in the observation (e.g., roads). This procedure was solely not applied to the
class of “artificial land”, as this would have removed most parts of the samples. Furthermore, points
with cloudy pixels in the Landsat data were also excluded. This way, 1694 out of 2060 LUCAS points
were retained. This dataset contains eight classes that represent the main land cover types for the
study area.

This pixel selection excluded a large number of unacceptable reference points, and we assumed
the remaining ones to be suitable enough to represent the land cover type in a Landsat pixel coverage
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area of 30 × 30 m. Further, we surmised that classifiers are capable of overcoming the noise caused by
pixels having mixed land cover representation if such pixels are still available in the dataset.

The number of samples per class and the imbalance ratio (IR), defined as the ratio of the number of
samples for the majority class over the number of samples for any of the minority classes, is presented
in Table 1.

Table 1. LUCAS nomenclature and classes’ distributions.

LUCAS Category Land Cover Type Instances IR

A Artificial land 131 5.81
B Cropland 270 2.81
C Woodland 761 1.00
D Shrubland 296 2.61
E Grassland 185 4.11
F Bareland 37 20.56
G Water 10 76.10
H Wetlands 4 190.25

Table 2 presents a description of the LUCAS dataset, including information about the majority
class C and the smallest minority class H to emphasize the imbalanced character of the dataset:

Table 2. Description of the LUCAS dataset.

Dataset LUCAS

Features 47
Instances 1694

Instances of class C 761
Instances of class H 4

IR of class H 190.25

3.4. Evaluation Metrics

Amongst the possible choices existing for a classifier’s performance evaluation, Accuracy,
user’s accuracy (or Precision) and producer’s accuracy (or Recall) are the most common in LULC
classification [30,31]. For a binary classification task, their calculation is given in terms of the true
positives TP, true negatives TN, false positives FP, and false negatives FN [30]. More specifically,
Precision = TP

TP+FP and Recall = TP
TP+FN . For the multiclass case, the average value across classes is

used, as explained below.
The LUCAS dataset is highly imbalanced, having a wide range of IRs for the different minority

classes. Therefore, the use of the metrics above is not an appropriate choice since they are mainly
determined by the majority class contribution [32]. An appropriate evaluation metric should consider
the classification accuracy of all classes. A simple approach for the multiclass case is to select a binary
class evaluation metric; apply it to each binary sub-task of the multiclass problem, i.e., consider each
class versus the rest; and finally, average its values. For this purpose, F-score and G-mean metrics were
used as the primary evaluation methods, while Accuracy is provided for discussion:

– The Accuracy is the number of correctly classified samples divided by the sum of all samples.
Assuming that the various classes are labeled by the index c, Accuracy is given by the
following formula:

Accuracy =
∑
c

TPc

∑
c
(TPc + FPc)

.

– The F-score is the harmonic mean of Precision and Recall. The F-score for the multiclass case can be
calculated using their average per class values [32]:
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F-score = 2
Precision× Recall
Precision + Recall

.

– The G-mean is the geometric mean of Sensitivity and Specificity. Sensitivity is identical to the Recall
while Specificity is given by the formula Specificity = TN

TN+FP . Therefore, they are equal to the true
positive and true negative rates, respectively. The G-mean for the multiclass case can be calculated
using their average per class values:

G-mean =
√

Sensitivity× Speci f icity.

3.5. Machine Learning Algorithms

The main objective of the paper is to show the effectiveness of G-SMOTE when it is used on
multiclass, highly imbalanced data of a remote sensing application and to compare its performance to
other oversampling methods. Four oversampling algorithms were used in the experiment along with
G-SMOTE. ROS was chosen for its simplicity. SMOTE was selected for being the most widely used
oversampler. ADASYN and B-SMOTE were selected for representing popular modifications of the
original SMOTE algorithm. Finally, no oversampling was applied as an additional baseline method.

For the evaluation of the oversampling methods, the classifiers logistic regression (LR) [33],
k-nearest neighbors (KNN) [34], decision tree (DT) [35], gradient Boosting classifier (GBC) [36], and
random forest (RF) [37] were selected. The choice of classifiers was made according to the following
criteria: learning type, training time, and popularity within the remote sensing community. All these
algorithms were found to be computationally efficient and commonly used for the proposed task, with
the exception of LR, which is rarely used in remote sensing applications [2,21].

3.6. Experimental Settings

In order to evaluate the performance of each oversampler, every possible combination of
oversampler, classifier, and metric was formed. The evaluation score for each of the above combinations
was generated through an n-fold cross-validation procedure with n = 3. Before starting the training of
each classifier, and in each stage i ∈ {1, 2, . . . , n} of the n-fold cross-validation procedure, synthetic data
Si were generated using the oversampler, based on the training data Ti of the n− 1 folds, such that the
resulting Si ∪ Ti training set became perfectly balanced. This enhanced training set, in turn, was used
to train the classifier. The performance evaluation of the classifiers was done on the validation data
Vi of the remaining fold, where Vi ∪ Ti = D, Vi ∩ Ti = ∅ while D represents the dataset. The process
above was repeated three times, and the results were averaged.

The range of hyperparameters used for each classifier and oversampler are presented in Table 3:
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Table 3. Hyperpameters grid.

Classifier Hyperparameters Values

LR maximum iterations 10,000
KNN number of neighbors 3, 5

DT maximum depth 3, 6
GBC maximum depth 3, 6

number of estimators 50, 100
RF maximum depth None, 3, 6

number of estimators 50, 100

Oversampler

G-SMOTE number of neighbors 3, 5
selection strategy combined, minority, majority
truncation factor −1.0, −0.5, 0, 0.25, 0.5, 0.75, 1.0

deformation factor 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0
SMOTE number of neighbors 3, 5

BORDERLINE SMOTE number of neighbors 3, 5
ADASYN number of neighbors 2, 3

3.7. Software Implementation

The implementation of the experimental procedure was based on the Python programming
language, using the Scikit-Learn [38], Imbalanced-Learn [39], and Geometric-SMOTE libraries.
All functions, algorithms, experiments, and results reported are provided at the GitHub repository of
the project. Additionally, the Research-Learn library provides a framework to implement comparative
experiments, also being fully integrated with the Scikit-Learn ecosystem.

4. Results and Discussion

This section presents the results and analyses of oversamplers’ comparisons on the LUCAS dataset.
The classification results are shown for all combinations of oversamplers and classifiers used in the
experiment. The next subsection covers their interpretation in detail.

4.1. Results

For each combination of classifier and metric, a cross-validation score for all oversamplers is
provided in Table 4. The highest score for each row is highlighted:

Table 4. Cross-validation scores of oversamplers.

Classifier Metric NONE ROS SMOTE B-SMOTE ADASYN G-SMOTE

LR Accuracy 0.574 0.499 0.495 0.532 0.480 0.506
LR F-score 0.296 0.293 0.288 0.299 0.282 0.313
LR G-mean 0.513 0.529 0.525 0.530 0.518 0.566

KNN Accuracy 0.558 0.445 0.426 0.491 0.419 0.557
KNN F-score 0.274 0.243 0.248 0.263 0.244 0.280
KNN G-mean 0.496 0.478 0.487 0.500 0.483 0.504

DT Accuracy 0.514 0.431 0.419 0.474 0.417 0.479
DT F-score 0.243 0.243 0.250 0.272 0.250 0.267
DT G-mean 0.488 0.483 0.490 0.508 0.492 0.519

GBC Accuracy 0.584 0.560 0.560 0.566 0.551 0.574
GBC F-score 0.313 0.310 0.313 0.315 0.306 0.329
GBC G-mean 0.532 0.537 0.540 0.545 0.537 0.559
RF Accuracy 0.587 0.576 0.557 0.571 0.552 0.579
RF F-score 0.306 0.313 0.317 0.315 0.314 0.341
RF G-mean 0.528 0.542 0.545 0.550 0.542 0.572
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A ranking score was assigned to each oversampling method, with the best and worst performing
methods receiving scores of 1 or 6, respectively. Table 5 presents the ranking scores per classifier and
evaluation metric. The highest ranking for each row is highlighted:

Table 5. Ranking of oversamplers.

Classifier Metric NONE ROS SMOTE B-SMOTE ADASYN G-SMOTE

LR Accuracy 1 4 5 2 6 3
LR F-score 3 4 5 2 6 1
LR G-mean 6 3 4 2 5 1

KNN Accuracy 1 4 5 3 6 2
KNN F-score 2 6 4 3 5 1
KNN G-mean 3 6 4 2 5 1

DT Accuracy 1 4 5 3 6 2
DT F-score 5 6 4 1 3 2
DT G-mean 5 6 4 2 3 1

GBC Accuracy 1 4 5 3 6 2
GBC F-score 3 5 4 2 6 1
GBC G-mean 6 5 3 2 4 1
RF Accuracy 1 3 5 4 6 2
RF F-score 6 5 2 3 4 1
RF G-mean 6 5 3 2 4 1

The percentage difference between G-SMOTE and NONE, ROS, and SMOTE, respectively,
for every combination of metric and classifier, was calculated from the following formula:

Percentage Difference = 100× Score(G− SMOTE)− Score(Oversampler)
Score(Oversampler)

For each combination of an oversampler, classifier, and metric, a positive (negative) value of the
above formula indicates the G-SMOTE’s relative performance gain (loss) compared to the oversampler.
Table 6 presents the results of the above calculation:

Table 6. Percentage difference between G-SMOTE and other popular methods.

Classifier Metric NONE ROS SMOTE

LR Accuracy −12.0 1.3 2.1
LR F-score 5.7 6.8 8.5
LR G-mean 10.2 7.0 7.8

KNN Accuracy −0.1 25.0 31.0
KNN F-score 2.0 15.2 13.0
KNN G-mean 1.5 5.5 3.5

DT Accuracy −6.9 11.0 14.2
DT F-score 10.0 10.2 7.0
DT G-mean 6.4 7.5 6.0

GBC Accuracy −1.7 2.4 2.5
GBC F-score 5.3 6.3 5.3
GBC G-mean 5.1 4.1 3.5
RF Accuracy −1.3 0.5 4.0
RF F-score 11.6 8.9 7.6
RF G-mean 8.4 5.6 5.0

Wilcoxon signed-rank test was used as an alternative to the paired Student’s t-test when the
distribution of the differences between the two samples cannot be assumed to be normally distributed.
In our case, it was applied to test the null hypothesis that the pairwise difference between G-SMOTE’s
scores and the scores of the remaining oversampling methods follows a symmetric distribution around
zero; i.e. G-SMOTE performs similarly to them. The values for the Accuracy metric are excluded in the
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NONE case, while for the remaining oversampling methods all metrics are used. This choice will be
justified in the next section. Table 7 presents the p-values for the Wilcoxon tests:

Table 7. Wilcoxon test.

Oversampler p-Value Significance

NONE 5.10 × 10−3 True
ROS 6.50 × 10−4 True

SMOTE 6.50 × 10−4 True
B-SMOTE 9.00 × 10−3 True
ADASYN 6.50 × 10−4 True

4.2. Discussion

From Table 4, we can observe that G-SMOTE outperforms all other oversampling methods for both
F-score and G-mean metrics on all classifiers. The absolute best results are achieved when G-SMOTE
is combined with LR and RF. It is vital to notice that the Accuracy scores show the well-known bias
towards the majority class, as discussed in Section 3.4. In a multiclass classification problem with an
imbalanced dataset, where the prediction of all the classes are of equal importance as in many remote
sensing applications, Accuracy should be of secondary importance compared to more robust metrics,
such as F-score and G-mean. Nevertheless, even for the Accuracy metric, G-SMOTE shows the best
performance among the oversamplers.

In Table 5, the rankings of the oversamplers are presented and show the superiority of G-SMOTE.
Although ROS and SMOTE are the most popular oversampling methods in remote sensing applications,
it is clear from the tables that they produce suboptimal results. Table 6 directly compares the
performance of G-SMOTE with ROS and SMOTE, including also NONE as a baseline method.

Table 7, provides a statistical confirmation of the previous conclusions. Using the Wilcoxon
signed-rank test, the null hypothesis that the pairwise difference of scores between G-SMOTE and any
of the remaining oversampling methods follows a symmetric distribution around zero is rejected at a
significance level of alpha = 0.01.

This study is the first to present a systematic comparison of oversampling algorithms in remote
sensing. However, several previous studies reported results consistent with our findings. Reference
[25] reported an increase in F-score and G-mean when oversampling was applied, while Accuracy did
not improve. Similarly, results obtained in [5] demonstrated increased classification performance when
using SMOTE. According to our experiment, performance can be further increased by using G-SMOTE.
A number of other studies [21,23] did not use specific imbalanced metrics; therefore, they cannot be
directly compared to our results.

5. Conclusions

In this paper we applied G-SMOTE, a novel oversampling algorithm, on a LULC classification
problem, using a highly imbalanced, multiclass dataset (LUCAS). G-SMOTE’s performance was
evaluated and compared with other oversampling methods. More specifically, ROS, SMOTE, B-SMOTE,
and ADASYN were the selected oversamplers, while LR, KNN, DT, GBC, and RF were used
as classifiers.

The experimental results show that using G-SMOTE can significantly improve the classification
performance, resulting in higher values of F-score and G-mean. Therefore, readers should consider
using G-SMOTE when accurately predicting the minority classes is of equal or higher importance
compared to the accurate prediction of the majority class. Examples of the above case include the
detection of land cover change and rare land cover type classification.

G-SMOTE can be a useful tool for remote sensing researchers and practitioners, as it systematically
outperforms the currently widely used oversamplers. G-SMOTE is easily accessible to the users
through an open source implementation.
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Abbreviations

The following abbreviations are used in this manuscript:

OS oversampling
CV cross-validation
LULC land use/land cover
LUCAS land use/cover area statistical survey
SMOTE synthetic Minority over-sampling Technique
ADASYN adaptive synthetic sampling Technique
G-SMOTE geometric synthetic minority over-sampling technique
B-SMOTE borderline synthetic minority over-sampling technique
ROS random oversampling
NONE no oversampling
LR logistic regression
KNN k-nearest neighbors
DT decision trees
GBC gradient boosting classifier
RF random forest
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