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Abstract: FengYun-4A (FY-4A)’s Geostationary Interferometric Infrared Sounder (GIIRS) is the
first hyperspectral infrared sounder on board a geostationary satellite, enabling the collection of
infrared detection data with high temporal and spectral resolution. As clouds have complex spectral
characteristics, and the retrieval of atmospheric profiles incorporating clouds is a significant problem,
it is often necessary to undertake cloud detection before further processing procedures for cloud pixels
when infrared hyperspectral data is entered into assimilation system. In this study, we proposed
machine-learning-based cloud detection models using two kinds of GIIRS channel observation sets
(689 channels and 38 channels) as features. Due to differences in surface cover and meteorological
elements between land and sea, we chose logistic regression (lr) model for the land and extremely
randomized tree (et) model for the sea respectively. Six hundred and eighty-nine channels models
produced slightly higher performance (Heidke skill score (HSS) of 0.780 and false alarm rate (FAR) of
16.6% on land, HSS of 0.945 and FAR of 4.7% at sea) than 38 channels models (HSSof 0.741 and FAR of
17.7% on land, HSS of 0.912 and FAR of 7.1% at sea). By comparing visualized cloud detection results
with the Himawari-8 Advanced Himawari Imager (AHI) cloud images, the proposed method has
a good ability to identify clouds under circumstances such as typhoons, snow covered land, and bright
broken clouds. In addition, compared with the collocated Advanced Geosynchronous Radiation
Imager (AGRI)-GIIRS cloud detection method, the machine learning cloud detection method has
a significant advantage in time cost. This method is not effective for the detection of partially cloudy
GIIRS’s field of views, and there are limitations in the scope of spatial application.
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1. Introduction

Improvements in forecasting weather patterns have advanced due to the assimilation of data
from hyperspectral infrared (HIR) sounders on meteorological satellites into operational numerical
weather prediction systems. These sounders include the Atmospheric Infrared Sounder (AIRS) on
board the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS)
Aqua platform [1,2], the Infrared Atmospheric Sounding Interferometer (IASI) on board the European
Meteorological Operational (MetOp) satellites [2,3], and the Cross-Track Infrared Sounder (CrIS) on
board the Suomi National Polar-Orbiting Partnership [2,4]. In order to reliably predict high-impact
weather events, such as local severe storms, it is important that atmospheric temperature and moisture
information with a high temporal/spatial resolution, two key parameters in regional Numerical Weather

Remote Sens. 2019, 11, 3035; doi:10.3390/rs11243035 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-6420-3171
http://dx.doi.org/10.3390/rs11243035
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/24/3035?type=check_update&version=2


Remote Sens. 2019, 11, 3035 2 of 25

Prediction (NWP) models are accurately obtained. Compared with low earth orbit sounders, a HIR
sounder from a GEostationary Orbit (GEO) has a higher temporal resolution and local continuous
detection capability, providing tracking information with high temporal and vertical resolution in local
rapidly developing weather processes [5].

A new generation of Chinese geostationary meteorological satellites was introduced with the
launch of the first FengYun-4A (FY-4A) on 11th December 2016, equipped with four payloads:
Geostationary Interferometric Infrared Sounder (GIIRS), Advanced Geosynchronous Radiation Imager
(AGRI), Lightning Mapping Imager (LMI), and the Space Environment Package (SEP) [6,7]. FY-4A’s
GIIRS is the first high spectral resolution advanced infrared sounder on board a geostationary
weather satellite, aiming to obtain rapidly changing water vapor and temperature structures and
contents of trace gases in China and the surrounding areas. Information from the GIIRS provides
three-dimensional dynamic and thermodynamic information required to improve nowcasting and
NWP services, important for estimating diurnal variations of trace gases that support forecasting air
quality and monitoring of atmospheric minor constituents [6,7].

For infrared spectra, liquid water and ice crystals in clouds result in satellite sensors not detecting
atmospheric or ground radiation below the upper cloud layer [8]. In addition, it is currently difficult
for radiation transfer observation operators to accurately simulate radiation effects of clouds, and the
weather forecast model is not perfect, resulting in difficulties in accurately providing cloud water profile
information [9]. As the spatial resolution of HIR is low, and there are very few completely cloudless
pixels in all Field of Views (FOVs)s (usually only about 10%) in instruments with a spatial resolution
of 10 km [10]. Although existing hyperspectral sounders usually produce high-spectral-resolution,
due to technical constraints they produce low-spatial resolution data. Therefore, in actual quantitative
applications of infrared hyperspectral data, data contaminated by clouds must be eliminated or
alternative pre-processing of cloud pixels must be undertaken, such as cloud clearing [11] or clear
channel detection [12]. The process of judging whether clouds exist in a FOV is called cloud detection,
and this is the first step before dealing with cloud contaminated FOVs, being an important step
in the use of HIR data. GIIRS data also needs to go through cloud detection when entering the
assimilation system.

Currently, some multi-channels threshold methods are proposed on the basis of cloud physical
characteristics as clouds have higher reflectivity relative to land/sea surfaces in the visible and near
infrared bands, and lower temperatures in infrared bands, for example the International Satellite
Cloud Climatology Project (ISCCP) method [13,14], the AVHRR (Advanced Very High Resolution
Radiometer) Processing Scheme Over Clouds, Land and Ocean (APOLLO) method [15], the Clouds
from AVHRR (CLAVR) method [16], the CO2 slicing method [17], and the Moderate Resolution
Imaging Spectroradiometer (MODIS) cloud detection method [18,19]. Due to its solid physical
background, the multi-band threshold method effectively provides the required resolution and spectral
range. However, this method cannot be used by HIR sounders for spectral bands and spatial
resolution limitations.

At present, the cloud detection method assisted with imagers for HIR sounders is widely used.
AIRS cloud detection is objectively determined by spatially matching 1 km MODIS cloud detection
products that fall into each AIRS FOV [20]. Eressmaa [21] used three criteria to evaluate the AVHRR
FOVs that falls in the IASI FOV, and only when all three criteria are passed is the IASI field of view
considered to be cloudless.

AGRI is operated in conjunction with GIIRS. This instrument has 14 channels from visible light
to the long wave infrared band, and it can be used to clearly distinguish the different phase states of
clouds and high and middle water vapor levels [5,6]. According to previous studies, after temporal
and spatial matching between AGRI and GIIRS, the cloud detection results of GIIRS can be objectively
determined using Cloud Mask (CLM), the L2 product of AGRI. However, the main disadvantage of
this method is that FOV matching is a time-consuming step.
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Due to the expansion of high-resolution earth observation, the remote sensing (RS) data are
undergoing an explosive growth. The proliferation of data has also resulted in an increase in complexity
of RS data, such as diversity and an increase in dimensionality characteristics of the data. RS data
are regarded as RS “Big Data” [22]. To fully understand RS data, new approaches and novel learning
techniques are required [23]. Over the past decade, machine learning techniques have been widely
adopted in a number of large and complex data-intensive fields, such as medicine, astronomy and
biology. In the field of meteorological target detection, some researchers have examined data using
machine learning methods. These detection methods based on machine learning algorithms can be
roughly divided into two categories according to the input. In the first category, satellite images
with high resolution are used as input [24–35]. Many studies have achieved good results in cloud
detection on satellite images after adjusting or changing some layers of the classical neural network
(e.g., U-Net, VGG-16) [34,35] and other deep learning networks [31–33]. The second category takes
the observations of multiple channels of meteorological satellites or their combination as input.
Some researches have studied the application of machine learning algorithms such as random
forest [36–38], logistic regression [26], and extremely randomized tree [39] to this kind of problem.
The training time of these methods is short, and the contribution of each channel in the classification
process can be presented. In addition, there may be two problems in cloud detection of infrared
hyperspectral data using the method with images as input: (1) at present, the input of the classical
neural networks mentioned above is generally a color image (with three channels of Red-Green-Blue
(RGB)) or a grayscale image (with one channel). HIR data contain hundreds of infrared channels which
are sensitive to different height, and the observation of each channel can form an image. It is unknown
at which height the cloud appears, which means the selection of will become an important issue. If the
input channels are different from classical neural network, a new architecture for HIR data need to be
established, which requires lots of labeled training images and training time. It can be an aspect of
future research; (2) low spatial resolution increases the difficulty of HIR data cloud detection based
on images.

No machine learning model is widely applicable to most problems. The method proposed based
on machine learning algorithms in this study was an attempt to discriminate cloudy and clear GIIRS
FOVs. In this study, a machine learning cloud detection method for GIIRS data is proposed (source
code is available at https://github.com/ZhangQi2327/CloudDetection). The cloud detection process
is regarded as a binary classification problem, with a value of 0 for a cloud GIIRS FOV and 1 for
a clear GIIRS FOV. Using different combinations of GIIRS channel observations as input features,
supervised cloud detection machine learning models for land and sea were established by highlighting
cloud labels using the AGRI CLM product and GIIRS as true labels.

There are three parts in the machine learning cloud detection algorithm flow chart (Figure 1):
Parts 1 is the training and test data generation module using AGRI-GIIRS cloud matching algorithm;
Parts 2 is the machine learning cloud detection model training module; and Parts 3 is the cloud
detection module using the established machine learning model, in which data format preprocessing
is used to transform satellite data format to machine learning algorithm’s input format.

https://github.com/ZhangQi2327/CloudDetection
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2. Methods and Materials

2.1. Methods

2.1.1. AGRI-GIIRS Cloud Detection Method

AGRI-GIIRS cloud detection was objectively determined using 4 km AGRI cloud detection
products that fell in each GIIRS FOV. The AGRI FOV and the GIIRS FOV were regarded as two points
on the earth sphere. It was considered that the AGRI FOV occurred in the GIIRS FOV when the
distance between the two points was less than the radius of the GIIRS FOV. However, as the FOV of
a detector is not always circular, the shape of FOV gradually becomes an egg shape which is difficult
to describe mathematically, especially as the scanning angle increases. Considering deformation of
the FOV, we set the distance threshold to 9 km, that is, the AGRI FOV fell in the GIIRS FOV when
the distance between the two points was less 9 km. Finally, the cloud label of the GIIRS pixel was
determined by the proportion of the clear AGRI FOVs and the cloud AGRI FOVs fell in the GIIRS FOV.

The specific steps used in the AGRI-GIIRS cloud detection method were:
1. Time matching

|tGIIRS − tAGRI | < δmax_sec (1)

where, tGIIRS is the observation time of the GIIRS pixel; tAGRI is the observation time of the AGRI pixel;
and δmax_sec is 600 s.

2. Spatial matching
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As shown in Figure 2, AGRI-GIIRS FOV pairs (x1, y2) and (x2, y2) were considered spatially
matched when their distances satisfied Equations (2) and (3). Equation (2) calculates the distance
between two points on a sphere, as:

d = 2R sin−1

√
(sin

x2− x1
2

)
2
+ cos x1 ∗ cos x2 ∗ (sin

y2− y1
2

)
2

(2)

d < dmax (3)

where, x1 is the central latitude of the GIIRS FOV; x2 is the central latitude of the AGRI FOV; y1 is the
central longitude of the GIIRS FOV; y2 is the central longitude of the AGRI FOV; R is the radius of the
earth (6371 km); and d_max is the distance threshold which is set at 9 km.
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(GIIRS) pixels and Advanced Geosynchronous Radiation Imager (AGRI) pixels.

3. Determining the GIIRS FOV cloud label
According to Equations (2) and (3), 13–17 AGRI FOVs fell in each GIIRS FOV. The GIIRS FOVs are

divided into three class: (1) a GIIRS FOV was considered to have a cloud label (label = 0) if all of the
AGRI labels were cloud; (2) a GIIRS FOV was considered to have a clear label (label = 1) if all of the
AGRI labels were clear; (3) a GIIRS FOV was considered to have a partially cloudy label (label = 2) if
any cloud FOV and clear FOV of AGRI fell into the GIIRS FOV at the same time.

The GIIRS FOV was eliminated when AGRI FOVs that fell in the GIIRS FOV satisfied the following
conditions:

(1) all AGRI FOVs were probably clear or probably cloud.
(2) some AGRI FOVs were probably cloud or probably clear, while others were clear or cloud.

Cloud labels defined by GIIRS using the AGRI-GIIRS cloud detection method are shown in
Figure 3c, and the missing points are GIIRS FOVs that satisfy the above two conditions. Here, red dots
represent clear FOVs, the blue dots represent cloud FOVs and green dots represent partially cloudy
FOVs. Results indicate that the cloud label obtained using the matching method was consistent with
the visible cloud image (Figure 3a) and the cloud detection product of AGRI AGRI (Figure 3b).
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Figure 3. Time(UTC): 3 a.m. on 15 May 2019; (a) Advanced Himawari Imager (AHI) visible cloud
image; (b) AGRI L2 product Cloud Mask (CLM), the cloud label is divided into four categories: clear
sky, possible clear sky, possible cloud, and cloud; (c) GIIRS cloud labels obtained using the AGRI-GIIRS
cloud detection algorithm (blue dots represent cloud field of views (FOVs), red dots represent clear
FOVs and green dots represent partially cloudy FOVs).

2.1.2. Machine Learning Cloud Detection Method

First of all, it needs to be emphasized that we established three kinds of datasets, each of which
was divided into training set and test set. The first data set contained only totally cloudy and totally
clear GIIRS FOVs, called training set 1 and test set 1. The second kind of dataset regarded totally
cloudy and partially cloudy GIIRS FOVs as cloud GIIRS FOVs (label = 0), called training set 2 and
test set 2. The third data set divided GIIRS pixels into three categories (totally clear, partially cloudy,
and totally cloudy), which was called training set 3 and test set 3.

In this paper, the machine learning cloud detection method regards GIIRS pixel cloud detection as
a binary classification problem, with a 0 value indicating a cloud FOV and a 1 value of indicating a clear
FOV. The cloud detection model and results shown in the experiments and results (Section 3, Section 4)
only used the data from training set 1 and test set 1. However, the effect of the model proposed in this
paper on test set 2 was evaluated in Section 5.5. Section 5.5 also discussed the binary classification
cloud detection model using training set 2 and the multi-classification cloud detection model using
training set 3.

Currently there are many effective supervised machine learning algorithms for binary classification
problems, such as random forest, Super Vector Machine (SVM), and logistic regression. For supervised
algorithms, training datasets and test datasets are key processes in these methods. It is important that
both datasets must include the FOV cloud label and the corresponding model input features. In our
investigation, the cloud label derived from the AGRI-GIIRS cloud detection method, however we
only retained GIIRS FOVs labeled 0 and 1. The radiation observations of GIIRS long wave infrared
channels were taken as the features. The purpose of this method was to train the machine learning
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cloud detection model. Here, the cloud label of any GIIRS FOV can be obtained by inputting the
channel radiation observations into the established model.

The specific steps of the machine learning cloud detection algorithm were:
1. Selection of machine learning algorithm for cloud detection
Logistic regression is suitable for fast binary classification [40,41]. which has been widely used in

data mining and classification [42]. In the field of cloud detection, Luo [26] used the logistic regression
method for IASI cloud detection, obtaining robust results for sea areas with a test accuracy of 97%.
Equation (4) is the cost function of the logistic regression, which consists of two terms, the first term is
the loss function, and the second term is the regular term:

J(θ) = −
1
N

∑
log

(
1/

(
1 + e−(θ

Tx)
))
+ (1− y) log

(
1− 1/

(
1 + e−(θ

Tx)
))
+ C||θ||p (4)

where, θT is the coefficient of logical regression discriminant function; and C is the penalty coefficient,
which is the inversion of regularization strength, smaller values specifying stronger regularization and
indicating a more simple model.

When p = 1, L1 regularization [43,44] occurs, and when p = 2, L2 regularization [44] occurs. L1
regularization can achieve the purpose of feature selection through sparse features; both regularization
methods can avoid overfitting. For small sample data sets, L1 regularization can be iterated using the
“liblinear” [45] method to optimize the loss function, and L2 regularization can be optimized using the
“newton-cg” [46], “lbfgs” [47], and “liblinear” methods.

The underlying surface on land is more complex, therefore the accuracy of logical regression on
the land test set declined to 88%, thus other algorithms were considered. Commonly used ensemble
learning methods, such as random forest [48], adaboost [49,50], extremely randomized tree [51],
and gradient boosting decision tree [52] are composed of multiple decision trees, which usually have
better results than those using a single model. In addition, extremely randomized tree is more random
in selecting and dividing nodes, resulting in a better generalization effect [53].

Finally, we selected the logistic regression (lr) model for cloud detection over sea and the extremely
randomized tree (et) model for areas over land.

2. Model feature selection
GIIRS long-wave infrared radiation observations of different channels were selected in this study

as the feature input of the cloud detection model. This selection was made as absorption and scattering
spectra of clouds have relatively limited local spectral variation at 10–15 microns, and cloud-sensitive
long-wave infrared radiation observations can be used to retrieve the cloud top height and effective
cloud emissivity of monolayer clouds [54].

Two kinds of training sets were constructed in this study, differing only in channel selection.
The first set used all 689 channels of GIIRS long wave infrared. The other set used 38 channels, including
35 long wave infrared channels, selected by Han [55], by analyzing GIIRS channel observation errors
and channel noise and three other window channels. The number of training samples are shown in
Table 1.

Table 1. Hyperparameters of the two models.

Model C n_estimators max_depth max_features min_samples_leaf Min_samples_split

lr X - - - - -
et - X X X X X

3. Data preprocessing
In logistic regression, if regularization is used, the features must be standardized.

The regularization term prevents overfitting by punishing large parameters. If the features are
not standardized, those with larger values tend to get greater weights. The regularization term forces
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the norm of the large parameters to be as small as possible, however small parameters are ignored.
Based on this experience, the normal distribution of eigenvalues was standardized in this study, as

XStandardization = (X− µ)/σ (5)

4. Model performance assessment and hyperparameter tuning
Figure 4 is the confusion matrix of cloud detection classification [48]. Based on confusion matrix,

five performance metrics were calculated: accuracy Equation (9), Probability Of Detection (POD;
Equation (10)), False Alarm Rate (FAR; Equation (11)), Heidke Skill Score (HSS; Equation (12)) [56],
and Area Under the ROC Curve (AUC; Equation (8)) [57,58].
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AUC score was selected to measure models’ performance in the process of model tuning. When the
number of positive and negative samples are not balanced, ROC has an advantage as it remains the
same. In ROC, the x-axis is a False Positive Rate (FPR; Equation (6)) and the y-axis is a True Positive
Rate (TPR; Equation (7)). Performance of the model is better when FPR is closer to 0 and TPR is closer
to 1. AUC is defined as the area between the ROC curve and the x-axis, having a probability value
between 0 and 1. The larger the AUC value is, the more likely the model is to put the positive sample
in front of the negative sample when given a positive sample.

In the experimental results section, accuracy, POD, FAR, and HSS were used to evaluate the
classification effect of the model. HSS eliminate forecasts which would be correct due to random
chance (range from −∞ to 1, with ‘0’ indicating no skill and ‘1’ indicating perfect score).

FPR = FP/(FP + TN) (6)

TPR = TP/(TP + FN) (7)

AUC =

∫
ROC (8)

Accuracy = TP + TN/(TP + TN + FP + FN) (9)

POD = TP/(TP + FN) (10)

FAR = FP/(FP + TP) (11)

HSS = 2(TP*TN−FP*FN)/((TP + FN)*(TN + FP)+(TP + FP)*(TN + FN)) (12)

The trend of the effect of the model with the number of training sample numbers can indicate the
state of the model (over-fitting/underfitting), and indicate what training sample size is needed for the
corresponding classification problem. Only after understanding the state of the model is it possible to
tune the hyperparameters of the model. In Section 3.3., the learning-curve [59] is selected to finish
this part.

In machine learning, hyperparameters are critical as different hyperparameters often result in
models having significantly different performances [60]. Parameters are usually selected by setting
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different values and training different models. As there were five parameters (Table 1) that needed to
be tuned at the same time in the extremely randomized tree, the “grid search” [61] method was used to
select a parameter combination with the best classification effect. Among all the candidate parameters,
the “grid search” method identified the parameter combination with the greatest evaluation score by
traversing each set of parameter combinations.

Based on the prediction probability (p) and the probability threshold θ, logistic regression and
extremely randomized tree were used to classify each FOV. If p ≥ θ, the cloud label of the FOV was
1, representing a clear FOV; if p < θ, the cloud label of the FOV was 0, representing a cloud FOV.
Although the default value of θ was 0.5, it was not always the best threshold for every classification
problem. In this study, the confusion matrix [62] (Figure 4) was used as a guide to select the right
probability threshold of cloud detection machine learning model. Composition of the confusion
matrix indicates that changing the classification threshold will result in changes in TP, FN, FP, and TN.
When the ratio of TP to TN was closer to 1, and the ratio of FN to FP was closer to 0, the classification
threshold was considered to be more appropriate.

2.2. Data and Materials

2.2.1. Input Data of the AGRI-GIIRS Cloud Detection Method

GIIRS is one of the key payloads on FY-4A, and Michelson interference spectroscopy was used
to observe three spectral bands: medium wave infrared (MW) band, long wave infrared (LW) band
and visible (VIS) band. GIIRS has 689 LW channels measuring from 700 to 1130 cm−1, 981 MW
channels measuring from 1650 to 2250 cm−1 and one visible light channel measuring from 0.55 to
0.75 µm. For the infrared channels, GIIRS records 60 earth observation residence points per observation
period, and each residence point contains 128 probe elements arranged in a 32*4 formation, providing
infrared information at a 16 km horizontal resolution at nadir with a spectral resolution of 0.625 cm−1.
Cloud reflection and radiation emission is recorded by GIIRS using the LW band, containing a window
band ranging from 8.84 to 12 µm. Channels in this band were therefore selected as the input features
of the model.

AGRI, another main load of FY-4A, is equipped with 14 channels, including the visible light band,
the near infrared band, the short wave infrared band, the medium wave infrared band, and the long
wave infrared band. Using AGRI not only enables a panoramic view of large scale weather systems
to be observed, it also enables observation of rapid evolution processes of medium and small scale
weather systems. AGRI level 2 product CLoudMask (CLM) was generated by performing 13 spectral
and spatial uniformity tests and 2 restore tests [63]. Cloud labels for AGRI FOV were divided into four
categories in CLM: cloud (label = 0), probably cloud (label = 1), probably clear (label = 2), and clear
(label = 3). The MODIS products have been well validated through comparison with activate remote
sensing data and radiance simulations [64–66], its Collection 6 (C6) cloud mask product is commonly
used as the benchmark or truth for evaluating the performance of new cloud mask algorithms [67,68].
Lai [69] compared AGRI CLM product with MODIS C6 cloud mask product, and the result showed
that the AGRI fractions are quite similar to the MODIS results with differences of less than 2% in the
four categories.

2.2.2. Input Data for the Machine Learning Cloud Detection Algorithm

• When training machine learning cloud used the detection model, the real cloud label of GIIRS
FOV was obtained using the AGRI-GIIRS cloud detection algorithm (0 for cloud GIIRS FOVs and
1 for clear GIIRS FOVs) and the GIIRS channels observation data were used as input features.

• When using the established machine learning cloud detection model, GIIRS data were processed
into the file which conformed to the model input format through the preprocessing program as
the input.
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2.2.3. Auxiliary Validation Data

In the result verification phase, the cloud detection results of the machine learning cloud detection
model was verified by comparing the visualized cloud detection results with the cloud images of
AHI [70].

Three visible light and three near infrared bands were used in the visible light cloud image: red
light (0.47 µm), green light (0.51 µm), and blue light (0.64 µm) in the visible light band and channel 4
(0.86 µm), channel 5 (1.6 µm), and channel 6 (2.3 µm) in the near infrared band. Infrared cloud images
use channel 11 (8.6 µm), channel 12 (9.6 µm), channel 13 (10.4 µm), channel 14 (11.2 µm), channel 15
(12.4 µm), and channel 16 (13.3 µm).

3. Machine Learning Cloud Detection Experiment

3.1. Training Data and Test Data

We studied the scan range of the GIIRS (Figure 5). A scanning period consisted of seven time
periods corresponding to different scanning regions.
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Figure 5. Spatial distribution of GIIRS data during a scanning cycle. E represents an even number;
O represents an odd number. T1: E:00:00–E:10:44; T2: E:15:00–E:25:44; T3: E:30:00–E:40:44; T4:
E:45:00–E:55:44; T5: O:00:00–O:10:44; T6: O:15:00–O:25:44; T7: O:30:00–O:40:44 period. Area A is the
distribution area of the training data and area B is the distribution area of the test data. Areas C and D
were selected to verify the model spatial applicability (see Section 5.2.2).

The land training set and test set selected in our study were distributed in area A, corresponding
to time period T2. The ocean training set and test set are distributed in area B, corresponding to
the time periods T4 and T5. Spatial applicability of the model was verified using areas C and D
(see Section 5.2.2).

The number of training samples and test samples for land and sea (with and without cloud cover)
are listed in Table 2. Test data are sampled from different seasons and different time of the day (Table 3).

Table 2. The number of training and test samples.

Type Training Data Test Data

sea_cloud 4254 1986
sea_clear 4855 1885

land_cloud 4301 2068
land_clear 4486 2081



Remote Sens. 2019, 11, 3035 11 of 25

Table 3. Sampling time of the test samples.

Date(YYYY-MM-DD-HH:MM) Land/Sea Flag Day/Night Flag

2019-01-24-00:15 Land Day
2019-05-14-12:15 Land Night
2019-05-15-03:00 Land Day
2019-06-15-12:15 Land Night
2019-02-11-19:00 Sea Night
2019-05-15-03:00 Sea Day
2019-05-15-20:45 Sea Night
2019-08-15-15:00 Sea Night

3.2. Machine Learning Cloud Detection Model

Four models’ information are summarized in Table 4.

Table 4. Information relating to the two machine learning models.

Model Area Input Features Abbreviation Data Solution

et Land 689 channels et(689 channels) -
et Land 38 channels et(38 channels) -
lr Sea 689 channels lr(689 channels) Standardization
lr Sea 38 channels lr(38 channels) Standardization

3.3. Model Parameter Tuning and Performance Evaluation

3.3.1. Sample Size

It is important to highlight that:

• The AUC score for the test data in this section was derived using a 5-fold cross-validation method;
• The shaded parts of Figures 6–8 represent the dispersion of the score, having the following equation:

Dispersion = xmean ± µ (13)

where, xmean is the average score; and µ is the standard deviation of the score.
• The default value was used for hyperparameters (e.g., C = 1).
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1. Logistic regression.
Changes in AUC with different training sample numbers are shown in Figure 6. The first column

used 689 channels as input features and the second column used 38 channels; the first row used L2
regularization and the second row used L1 regularization.

From Figure 6, we can infer that:

• All AUC scores in the four models (training and test data) tended to be stable when the sample
number was greater than or equal to 4000, indicting that at least 4000 samples are required for 4
cloud detection models.

• The AUC score of lr (689 channels) (Figure 6b,d) on the training set was always higher than that of
on the test set, indicating that the model was over-fitted. Generally speaking, over-fitting can
be improved by increasing the amount of data, reducing the complexity of the model (stronger
regularization) or reducing the number of model features. Compared with lr (689 channels)
models, the score of lr (38 channels) models (Figure 6a,c) on the training set was the same as
that on the test set when the number of training samples is more than 4000, which indicated that
over-fitting phenomenon did disappear after reducing some features. Additionally, when the
number of training samples increased from 4000 to 7000, the over-fitting phenomenon of the
lr (689 channels) models still existed. Thus, increasing the number of training samples could
not improve the over-fitting in this problem. In Section 3.3.2, hyperparameter ‘C’ was tuned to
improve the over-fitting issue.

• For models with the same input features, L1 and L2 regularization almost scored the same when
the AUC of the training set and test set were not changed with sample size.

2. Extremely Randomized Tree
Results for the extremely randomized tree AUC change trends (Figure 7) indicated stable

trends when the sample size was greater than 6000. The AUC score of both models on the
training set were always higher than those of on the test set, indicating that both models were
over-fitted. Hyperparameters listed in Table 1 determined an extremely randomized tree’s architecture.
Those hyperparameters needed to be tuned to improve over-fitting and models’ performance by
changing the shape of the trees’ architecture.

3.3.2. Hyperparameters Tuning

1. Logistic regression
In the previous section, models with 689 channels recorded over-fitting. In addition, we were not

aware whether models with 38 channels were underfitting. In order to solve these two problems and
find the optimal hyperparameters for logistic regression models, we observed how the performance of
the models changed when hyperparameter “C” ranged from 0.0001 to 1000 at intervals of 10 (Figure 8).

In Figure 7, parameter ‘C’ was set to default value ‘1’. In Figure 8a,c, it is clear that AUC score
improved when C was greater than 1. The increase of C indicated that the intensity of regularization
decreased and the complexity of the model increased. Thus, it can be inferred that there was a bit of
underfitting of lr (38 channels) in Figure 7, and a bigger value for C (>1) could improve underfitting.
Although the AUC score on the two data sets remained unchanged when C was greater than or equal
to 10, the best value for ‘C’ was 10. The reason is that the larger the C is, the weaker the regularization
is, so the higher the complexity of the model is, the worse the generalization ability of the model is.
Considering that scores of the two regularization methods on the two training sets and test sets were
similar, and L1 regularization can be used for feature selection, L1 regularization (C = 10) was selected
for the logistic regression model in the following experiments.

2. Extremely randomized tree
Table 5 listed the optimal hyperparameters selected for two extremely randomized tree models.

AUC score in the test set increased for both models after the parameters had been tuned by using “grid
search” method.
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Table 5. hyperparameters of the two extremely randomized tree models.

Model n
estimators

max
features max depth n samples split min samples

leaf
AUC

(origin)
AUC

(tuned)

et (38channels) 100 20 5 2 1 0.975 0.980
et (689channels) 130 30 10 2 1 0.980 0.984

3.3.3. Probability Threshold Tuning

By using the et (689 channels) model as an example, Figure 9 shows how the confusion matrix
changed when the probability threshold (θ) ranged from 0.1 to 0.9. This result indicates that the best
threshold was between 0.4 and 0.6, then we can get a better classification threshold by narrowing
the interval between 0.4 and 0.6. The process of threshold selection for each model is not listed here,
and Table 6 lists the optimal probability thresholds of the four models.
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Table 6. Optimal classification thresholds for the four models.
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0.55 0.6 0.98 0.98

4. Results

4.1. Statistics of Four Cloud Detection Models on Test Data

According to the statistical results listed in Table 7, four cloud detection models produced
high accuracy, high POD, and low FAR from the test data statistics (Table 7), indicating their good
performance for detecting clouds in the case of totally cloudy totally clear. In addition, the classification
results of the 689 channels models were slightly better than those of the 38 channels models. Results for
the logistic regression model showed a robust result for sea areas, with accuracy exceeding 95% and
HSS exceeding 90% for both models. The Extremely randomized tree model also performed well on
areas of land. Due to the complexity of the situation over the land, the effect of land cloud detection is
lower than that of the sea surface.
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Table 7. Test data statistics of the four models on the corresponding test set.

Model POD FAR ACC HSS

et(38 channels) 0.914 0.177 0.872 0.741
et(689 channels) 0.916 0.166 0.891 0.780
lr(38 channels) 0.986 0.071 0.956 0.912

lr(689 channels) 0.993 0.047 0.973 0.945

4.2. Visualization Verification of The Model Classification Effect

In order to test the classification effect of the machine learning model in the complete sky scene,
we selected six scenes (Table 8) to further verify the classification results of the model through
visualization results.

Table 8. Site information for the six scenes.

Scene Number Date
(YYYY-MM-DD-HH:MM)

Day/Night
Flag Region Land/Sea Flag Characteristics

1 2019-08-16-08:15 Day 80◦E–120◦E,
36◦N–42.5◦N Land Snow, Cloud

Shadow

2 2019-08-20-04:15 Day 80◦E–120◦E,
36◦N–42.5◦N Land Multi-layer

Cloud

3 2019-08-18-12:15 Night 80◦E–120◦E,
36◦N–42.5◦N Land -

4 2019-08-14-02:30 Day 122◦E–142◦E,
27.9◦N–34.4◦N Sea Typhoon

KROSA

5 2019-08-21-04:30 Day 122◦E–142◦E,
27.9◦N–34.4◦N Sea Thin Cirrus,

Broken Cloud

6 2019-08-08-12:45 Night 120◦E–140◦E,
21.5◦N–28◦N Sea Typhoon

LEKIMA

In Figure 10, the six cloud images in the left column contain different types of clouds under
different conditions. The middle column lists the classification results of the model using 38 channels,
and the right column lists classification results of the model using 689 channels. With six cloud images
as references, most of the cloud FOVs were correctly detected using the model incorporating two
kinds of feature input. It is worth noting that both cloud detection models detected the majority of
broken clouds floating on the snow surface (in the red circle) in Figure 10a1,a2. In addition, some of
the mistakenly divided FOVs are circled in blue, and the correctly classified FOVs are circled in red.
On the whole, the machine learning cloud detection model using the two feature input recorded good
cloud detection capabilities.
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Figure 10. (a–c): cloud images over land (a1–c1): et (38channels); (a2–c2): et (689 channels); (d–f):
cloud images over sea; (d1–f1): lr (38 channels); (d2–f2): lr (689 channels). Red dots represent clear
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5. Discussion

5.1. Time Complexity of AGRI-GIIRS Cloud Detection and Machine learning Cloud Detection

Time Complexity

Figure 11 shows the pseudocode of the AGRI-GIIRS cloud detection algorithm. Lines 1–14 retained
only AGRI pixels covered in all GIIRS pixels area, and lines 19–30 calculated the distance between each
GIIRS pixel and the reserved AGRI pixel, placing each AGRI pixel that fell within the GIIRS field of
view into the list. The time complexity of the algorithm was O(M ∗N(1 + 10 ∗N)), N is the number of
GIIRS pixels

(
latg, long

)
; and M is the number of reserved AGRI pixels (latsave, lonsave). A GIIRS FOV

can match 13–17 GIIRS pixels, therefore M is about 10 times that of N, so the algorithm complexity is
O
(
N3

)
.
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The essence of the training logistic regression model is to generate a set of characteristic coefficients
and establish a good discriminant function. Therefore, when the logistic regression model is used,
the channel observation value of each GIIRS pixel can be substituted into the established discriminant
function, resulting in the complexity of the model to be O(P), P is the number of input feature channels.
As the extremely randomized tree is composed of many decision trees, its prediction time complexity is
O(N ∗ p ∗ ntrees), where N is the input number of GIIRS pixels and ntrees is the number of trees. The time
complexity of the model is related to the structure of the tree (i.e., ntrees) which is a constant number.

The time complexity of the AGRI-GIIRS cloud detection method, logistic regression and extremely
randomized tree are the input number of GIIRS pixels (N) to the power of three, N to the power of
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one and N to the power of 0, respectively. So it is clear that the cost of time of the AGRI-GIIRS cloud
detection method increased faster than machine learning methods with the input number of GIIRS
pixels (N).

We ran the AGRI-GIIRS cloud detection code and four machine learning cloud detection methods’
code on an 8G i5 computer (Table 9). The average time cost of running the AGRI-GIIRS cloud detection
method was significantly greater than time taken to run the machine learning cloud detection methods.

Table 9. The average running time (ten times) of AGRI-GIIR cloud detection method.

Model GIIRS FOV Number Runtime

AGRI-GIIRS Cloud Detection
1280 265
1920 600
2560 885

et (38 channels)
1280

within 1.5 s1920
2560

et (689 channels)
1280

within 1.5 s1920
2560

lr (38 channels)
1280

within 0.15 s1920
2560

lr (689 channels)
1280

within 0.2 s1920
2560

5.2. Applicability of The Machine Learning Cloud Detection Algorithm

5.2.1. Applicability of Time

Experimental results in Section 4 highlighted that the classification accuracy of the four machine
learning cloud detection models was more than 90% in the test data covering winter, spring, and summer.
In addition, visualization results showed that the cloud detection results for day and night were
basically the same as the cloud images. This finding highlights that the machine learning cloud
detection algorithm can detect clouds using GIIRS data in different seasons and different times of
the day.

5.2.2. Spatial Applicability

The area selected for land training and the test set in this study was located between 35 ◦N and
45 ◦N. Compared with areas further south, surface vegetation coverage is lower, air humidity is smaller,
and climate and topography are different. In order to investigate whether the model can achieve good
cloud detection results in different regions, we tested the land model on 2179 test samples in areas
further south (Area C in Figure 5) and the sea model on 1200 middle-high latitude sea areas (Area D
in Figure 5). The accuracy of et (689 channels) and et (38 channels) on land test samples was 77.1%
and 78.6%, respectively. The accuracy of lr (689 channels) and lr (38 channels) on sea test samples was
66.4% and 64.67%, respectively.

By adding the training samples to the training data within Areas C and D, the overall accuracy of
the new model on the test data set was reduced by about 7%. Therefore, the machine learning cloud
detection method, which only depends on GIIRS observation data, can achieve better cloud detection
results if a separate model for the region of interest is established, however this is not a spatially
universal method.
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5.3. Comparison of Cloud Detection Methods Between Machine Learning Cloud Detection and Weather
Research and Forecasting Model Data Assimilation System(WRFDA)

Currently, WRFDA is one of the most widely used assimilation systems. This system uses
the following four criteria to determine whether Atmospheric Infrared Sounder (AIRS) pixels are
contaminated by the cloud [71]:

• model cloud water path detection;
• 956 cm−1 long wave window channel brightness temperature detection;
• sea surface temperature deviation detection;
• cloud cover area detection.

Except for observations, the first bullet point and the third bullet point also depend on the
background field. When a large deviation in the background field occurs, criteria for cloud detection
becomes unreliable. However, the machine learning cloud detection method, which uses GIIRS channel
observations as features, only depends on the GIIRS observation data itself.

5.4. Channel Contribution

Figure 12 shows channels’ contribution in four cloud detection models. For lr (689 channels),
most of the channels do not contribute to the cloud detection process with coefficient equal to 0.
For et (689 channels), most of the channels’ importances were close to 0. However, almost all 38
channels made contributions to cloud detection in lr (38 channels) and et (38 channels). In addition,
the average difference between model accuracy for 38 channels and 689 channels was about 0.02
(Table 7), indicating that even a small number of accurate channel observations can achieve cloud
detection results similar to those using all 689 channels.
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5.5. Limitations and some Exploration of Machine Learning Cloud Detection Method

5.5.1. Model Applicable Scenario

The method proposed in this paper performed well when the GIIRS pixel was totally cloudy or
totally clear. Due to the technical limitation, the HIR data characterized with high spectral resolution
and low spatial resolution, so it is inevitable that many pixels are partially cloudy.

Therefore, in this section, the following two parts are discussed:

• Can the model established above separate partially cloudy GIIRS FOVs from the totally clear
GIIRS FOVs?

We added 1214 partial cloud test samples to the original sea test set (Table 2), 1109 partially cloudy
test samples to the original land test set (Table 2), then we set the label of partially cloudy test samples
to ‘0’. Therefore, there were still two types of FOVs (cloudy FOVS and totally clear FOVs) in the
test set, and the statistical results are listed in the Table 10. The FAR of the four models increased
significantly compared to statistical results in Table 7, indicating that many partially cloudy FOVs were
misjudged as totally clear FOVs. Accuracy and HSS also decreased significantly. It showed that the
model established in this paper was still difficult to distinguish between partially cloudy FOVs and
totally clear FOVs.

Table 10. Statistical results of 4 established models on new test set.

Model POD FAR ACC HSS

et (38 channels) 0.902 0.460 0.749 0.432

et (689 channels) 0.912 0.431 0.775 0.501

lr (38 channels) 0.873 0.376 0.766 0.527

lr (689 channels) 0.929 0.36 0.787 0.504

• Can adding some cloud pixels to the training set improve the effect of the model recognition part
with cloud pixels?

GIIRS’s cloud labels were classified into three categories (these three types of cloud labels are defined
in Section 2.1.1, point 3.). Two kinds of models (Table 11) were constructed using the training sets
of different label combinations: the first model was a three-class classification model (totally clear,
partially cloudy, totally cloudy); the second model was a binary-classification model, which regarded
the totally clear sky FOVs as one class, and the totally cloudy and partially cloudy FOVs together
as the second class. After selecting the appropriate number of training samples and adjusting the
parameters as described in Section 3.3, the two kinds of models’ classification results were listed in
Table 12. Both of the models were based on extremely randomized tree. From the scores of ACC and
HSS (see [56] for multi-classification HSS calculation), the classification effects of the two models were
no better than those of the original model. The two models were also trained based on the logistic
regression algorithm, while the statistical results were no better than Table 12 and were not listed
here. Whether the recognition effect of partially cloud FOVs can be enhanced by using other machine
learning algorithms or adding other feature input needs to be further studied.

Table 11. Training sets’ cloud labels and sample size of two kinds of models.

Cloud Clear Partial Cloud
Label Training Samples

Label
Training Samples Label Training Samples

Sea Land Sea Land Sea Land
Model_1 0 7000 9300 1 7000 9300 2 6830 9202
Model_2 0 7000 9300 1 14,500 16,595 0 6830 9202
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Table 12. Two kinds of models’ statistical results.

Type model region input features ACC HSS

Three-Class
Classification

Model_1 Land 38 channels 0.562 0.334
Model_1 Land 689 channels 0.571 0.351
Model_1 Sea 38 channels 0.644 0.438
Model_1 sea 689 channels 0.736 0.604

Binary
Classification

Mdoel_2 Land 38 channels 0.783 0.401
Model_2 Land 689 channels 0.797 0.511
Model_2 Sea 38 channels 0.762 0.467
Model_2 sea 689 channels 0.769 0.545

Based on the discussion above, the method proposed in this paper is not effective in distinguishing
partially cloudy FOVs. It is suitable for situations where the distribution of clouds in the sky is relatively
concentrated (such as scene 1, scene 2, scene 3, scene 4, scene 5, scene 7 in Figure 10). Under such
situation, there are more FOVs of totally cloudy and totally clear skies, while partially cloudy FOVs are
relatively few.

5.5.2. The Reliability of Training Set and Test Set

Supervised machine learning depends heavily on the correctness of the label. This article treats
AGRI’s CLM product as reference data. Although this product had validated with MODIS cloud
product, there was no guarantee that the training data label retrieved from AGRI in the selected time
period was correct. In the training set, the wrong GIIRS FOVs added noise in the process of building
the model. In the test set, the GIIRS FOVs with the wrong labels might affect the selection of the
classification threshold, which would directly lead to misclassification. In addition, when the GIIRS
FOV was not located at the nadir point, the deformation of FOV occurred, and the situation of GIIRS
matching AGRI became more complex, so the method of matching two FOVs according to distance
also had uncertainty.

6. Conclusions

It has been noted that weather forecasting can only be significantly improved when the detection
accuracy of global atmospheric vertical temperature and humidity profiles attain the level of radio
sounding. Infrared hyperspectral data play an important role in the retrieval of temperature and
humidity profiles by virtue of its hyperspectral resolution. GIIRS, the first infrared hyperspectral
sounders attached to a geostationary satellite, can provide high frequency observation information
and track major weather processes. The use of GIIRS data will inevitably improve forecasting ability.

However, current methods using cloudy hyperspectral data is still an important issue.
Commonly used methods used to identify cloud FOVs include the clear sky channel cloud detection
algorithm and the optimal cloud clearing algorithm. However, before these methods are used for cloud
FOVs, it is necessary to correctly distinguish between cloud FOVs and clear FOVs.

In this study, a machine learning cloud detection method for infrared hyperspectral data was
proposed. Due to noticeable differences between sea and land, cloud detection models have been
established for each area separately. Four machine learning models were trained with 689 channel
observations and 38 channel observations as features, and cloud labels were obtained by AGRI-GIIRS
matching algorithm as truth values. After selecting the appropriate classification threshold, sea test
data using the lr (689 channels) model and the lr (38 channels) model attained accuracy levels of 97.3
and 95.6%, respectively. The land test data set using the et (689 channels) model and the et (38 channels)
model attained an accuracy level of 89.1 and 87.2%, respectively.

In addition, six real cloud scenes were randomly selected over areas of land and sea to verify
results gained using the machine learning cloud detection method. The machine learning method
showed good performance in distinguishing clouds and the underlying surface covered by snow,
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distinguish the boundary between clouds and clear skies, depict the two-dimensional shape of typhoon,
and correctly identify some broken clouds.

Compared with the AGRI-GIIRS cloud detection algorithm, the machine learning cloud
detection method significantly reduces time costs. Compared with the cloud detection settings
in WRFDA, the machine learning cloud detection method only depends on real observations of GIIRS,
thereby avoiding uncertainty caused by background fields. Our experimental results have also shown
that cloud detection accuracy can be achieved by using only a small number of effective channels.
Although this method has a good classification result for different periods of the day and different
seasons of the year, there are some limitations to this study. First of all, this method is effective for
the detection of totally cloudy and totally clear GIIRS FOVs, but not for partially cloudy FOVs, so
it is suitable for cases where the distribution of clouds in the sky is relatively concentrated, where
the portion of partially cloudy FOVs is small. Secondly, the spatial universality of the non-training
area is poor. In particular, a partly cloudy FOV is required in some algorithms (e.g., optimal cloud
clearing algorithm), so it is not enough to regard the cloud detection as a binary classification problem.
Future research includes: (1) developing cloud detection method with spatio-temporal information to
improve spatial limitation; (2) dividing cloud FOVs into two categories: fully cloud and partly cloudy;
(3) developing cloud phase detection model using machine learning algorithms with the help of other
observation data.
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