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Abstract: This study proposes a cuboid model for soil moisture assessment. In the model, the three
edges were the meteorological, soil, and vegetation feature parameters highly related to soil moisture,
and the edge lengths represented the degree of influence of each feature parameter on soil moisture.
Soil moisture is assessed by the cuboid diagonal, which is referred to as the cuboid soil moisture
index (CSMI) in this paper. The model was applied and validated in the Huang-Huai-Hai Plain.
The results showed that (1) the difference in land surface temperature between day and night (∆LST),
land surface water index (LSWI), and accumulated precipitation (AP) were most closely correlated
with soil moisture observation data in our study area, and were therefore selected as soil, crop, and
meteorological system parameters to participate in CSMI calculations, respectively. (2) CSMI-1, with
a cuboid length coefficient of 2/1/2, was the best model. The correlation of soil moisture derived
from CSMI-1 with observed values was 0.64, 0.60, and 0.52 at depths of 10 cm, 20 cm, and 50 cm,
respectively. (3) CSMI-1 had good applicability to the evaluation of soil moisture under different
vegetation coverage. When the normalized difference vegetation index (NDVI)was 0–0.7, CSMI-1
was highly correlated with soil moisture at a significance level of 0.01. (4) The three-dimensional (3D)
CSMI model can be easily converted to a two-dimensional (2D) model to adapt to different surface
conditions (as long as the weight coefficient of one parameter is set to 0). Irrigation information
(if available) can be considered as artificial recharge precipitation added in the AP to improve the
accuracy of soil moisture inversion. This study provides a reference for soil moisture inversion using
optical remote sensing images by integrating soil, vegetation, and meteorological feature parameters.

Keywords: feature parameter; soil moisture; inversion; remote sensing

1. Introduction

Soil moisture is an important component of the water, energy, and biogeochemical cycle [1–3],
and is of great significance to related research on water resources management, agricultural production,
and climate change [4,5]. Soil moisture monitoring can be divided into three categories based on data
acquisition methods: site measurement, simulation and assimilation, and soil moisture inversions
based on remote sensing data [3]. Among them, the precision of soil moisture observed by stations is
high, but because of the discrete characteristics of observation stations, the soil moisture observed by
stations cannot reflect the temporal and spatial continuous variation characteristics of soil moisture at
a regional scale. The soil moisture data simulated by assimilation models have continuity in space and
time, but the accuracy of simulation largely depends on the selection of parameterization schemes and
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parameterization process. Besides, assimilation models require a large number of input parameters,
reducing their practicability. Remote sensing has the remarkable advantage of large-scale synchronous
observation and reflects the continuous change information of the earth’s surface in time and space [6],
which makes it an important data source for soil moisture inversion research.

Research into soil moisture retrieval based on remote sensing began in the 1960s [3,6]. In early
investigations of soil moisture inversions, researchers used single factors to establish inversion
models, such as optical reflectance [7–9], thermal infrared [10], and microwave-based methods [11–13].
Researchers directly established models of the relationship between a single factor (such as reflectance,
brightness temperature, thermal inertia, or backscattering coefficient) and soil moisture [14] or used
a single factor to construct an index to indirectly reflect soil moisture. For example, the normalized
difference vegetation index (NDVI) [15], vegetation condition index (VCI) [16–20], normalized difference
water index (NDWI) [21], global vegetation moisture index (GVMI) [22], land surface water index
(LSWI) [23], visible and shortwave infrared drought index (VSDI) [24], and normalized multi-band
drought index (NMDI) [25] are calculated using optical reflectance, while the land surface temperature
(LST) [26,27], normalized difference temperature index (NDTI) [28], and temperature condition index
(TCI) [16] are calculated using thermal infrared bands. The indices mentioned above are often used to
monitor surface drought and soil moisture.

Recently, researchers have used multiple factors, such as the combination of visible and thermal
infrared bands or visible and microwave bands, to establish inversion models [29,30] or construct
comprehensive indexes to monitor soil moisture [31]. For example, Goward et al. found that when
the vegetation coverage in the study area changed widely, the surface temperature and NDVI formed
triangular or trapezoidal shapes on the scatter plot; therefore, they put forward the concept of soil
moisture contours [32]. Gillies and Carlson constructed a universal triangle method for evaluation
of surface soil moisture content [33]. Satellite-derived surface radiant temperature and a vegetation
index were associated in an inverse modeling scheme and found to fit the observed data well.
Subsequently, Sandholt et al. constructed a temperature vegetation drought index (TVDI) based on the
characteristic space, which takes into account the thermal infrared characteristics on the basis of optical
characteristics and can better characterize the soil moisture status [9]. D. Zhang et al. proposed a new
soil moisture index, the temperature rising rate vegetation dryness index (TRRVDI) based on the surface
temperature-vegetation index triangle method, in which the instantaneous temperature was replaced
with the mid-morning land surface temperature rising rate [34]. This index had better coefficient of
determination at 19 meteorological stations in Spain than the one-time LST and vegetation index and
reduced the uncertainty associated with the data; however, it requires substantial ground data and is
complex to calculate [3]. Amani et al. synthesized vegetation and soil characteristics to construct a
temperature-vegetation-soil moisture dryness index (TVMDI) based on the perpendicular vegetation
index (PVI), LST, and soil moisture (SM) [35]. In this model, SM and PVI were calculated based on the
red-near infrared feature space, after which, the LST was added to construct the three-dimensional
(3D) feature space and the TVMDI was obtained according to the relationship of the body diagonals.
The correlation coefficient between the TVMDI and measured soil moisture was 0.65. In addition to the
combination of soil and vegetation features, there are soil moisture indices that have been proposed by
combining visible and microwave bands. For example, X. Zhang et al. presented a synthesis method
that divided soil moisture into a baseline and change value, in which the baseline was the lowest
state of soil moisture in the observation period and the change value depended on the influence of
meteorological elements, such as precipitation and evapotranspiration [36]. This model accurately
estimated the daily soil moisture content of 1 km resolution in the Xinjiang province with a mean
square error of the model inversion results and ground measured values of 3.99%, indicating it can be
used for high-precision soil moisture retrieval. It is important to note that the meteorological elements
in this study only participated in the construction of soil water model as auxiliary variables in the
form of rainfall correction factors, which means few studies have investigated the synthesis of soil,
vegetation, and meteorological conditions.
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Soil moisture content is influenced by many factors, including soil characteristics, vegetation
coverage, and meteorological conditions, which results in it having high spatial heterogeneity.
In the existing multi-factor soil moisture inversion research, two elements of vegetation, soil and
meteorological elements, are usually considered comprehensively, but three elements are not considered
at the same time. In theory, considering the meteorological, soil, and vegetation systems synthetically
can improve the accuracy of soil moisture inversion. Therefore, this study was conducted to build a
comprehensive inversion model of soil moisture by integrating meteorological, soil, and vegetation
systems to indicate the soil moisture status. Specifically, this research proposes a cuboid model for
soil moisture assessment, which is referred to as the cuboid soil moisture index (CSMI) in this paper.
The main purpose of this paper is to introduce the model and construction process of the CSMI.
Researchers can follow the methodology of this work to calculate the CSMI for their own study area
by customizing the parameters and the length coefficients of the three edges of the cuboid model
according to the meteorological, soil, and vegetation characteristics of their study area.

2. Materials and Methods

2.1. Study Areas

The Huang-Huai-Hai Plain is located between 32◦–40◦N and 114◦–121◦E, spanning seven provinces
(cities) including Beijing, Tianjin, Hebei, Shandong, Henan, Anhui, and Jiangsu (Figure 1). It is the
second largest plain and one of the most important agricultural production bases in China, with double
cropped wheat-maize rotations. Most of the Huang-Huai-Hai Plain has a warm temperate monsoon
climate, with obvious changes in four seasons. The plain is dry and cold in winter, while it is hot and
rainy in summer, and subject to drought and less rain in spring. The difference in annual precipitation
and the uneven distribution of soil moisture lead to frequent drought and flood disasters in this area,
among which, drought is the most prominent, with the highest frequency occurring in spring, early
summer, and autumn. In addition, the water resources in the Huang-Huai-Hai Plain are relatively
scarce, the per capita water resources are only 15% of those in the whole country, and groundwater
is seriously overexploited. Therefore, accurate monitoring of soil moisture in this region is of great
significance for agricultural production and water resources management.
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2.2. Data

The data used in this study include remote sensing data, site observation data, and auxiliary
data. Remote sensing data included surface reflectance products (MOD09A1) and surface temperature
products (MOD11A2) from the MODIS (Moderate-Resolution Imaging Spectroradiometer) satellite and
daily precipitation rate data sets from the TRMM (Tropical Rainfall Measuring Mission) satellite. Site
observation data included the daily dataset of surface climate data and soil moisture data. Both were
obtained from the China Meteorological Data Network (http://data.cma.cn), but the corresponding
observation stations were not the same. The former was from basic weather stations and included daily
air pressure, temperature, precipitation, evaporation, relative humidity, wind direction, wind speed,
sunshine hours, and 0 cm ground temperature data. The latter was from agrometeorological stations.
Strict quality checks and controls, including extreme value checks and time consistency checks, were
conducted on the basic weather station, after which, 90 meteorological stations in Huang-Huai-Hai
Plain that had complete and continuous data and covered nearly the whole study area were selected.
In addition, the nearest agrometeorological station to the basic meteorological station was selected.
Finally, we selected 58 agrometeorological stations that had both soil moisture data and daily climate
data. Two of these were in Beijing, 15 in Hebei, 14 in Henan, 16 in Jiangsu, and 11 in Anhui. Soil
moisture data mainly covered the growing season of winter wheat, including 10 cm, 20 cm, and 50 cm
soil moisture. The acquisition time of remote sensing data and site observation data was from March
to May 2010. Auxiliary data were the provincial administrative boundary and land use land cover
map of our study area in 2010. Table 1 describes the attributes, sources, and uses of the data employed
in this study.

Table 1. Data description.

Name Spatial
Resolution

Temporal
Resolution Source Utility

Surface reflectance
(MOD09A1) 500 m 8-day United States Geological

Survey (USGS) Model input

Land surface temperature
(MOD11A2) 1000 m 8-day USGS Model input

Daily precipitation rate
(TRMM3B42) 0.25◦ 1-day

National Aeronautics and
Space Administration

(NASA)
Model input

Daily Data Set of Surface
Climate Data (temperature,
evaporation, precipitation)

− 1-day China meteorological
information center (CMIC) Model input

Soil Moisture − 10-day CMIC Accuracy
verification

Land use land cover map 1000 m yearly

Resource and environment
data cloud platform,

institute of geographic
science and natural
resources research

Extracting the
distribution of
cultivated land

Provincial boundary − −

National fundamental
geographic information

system in national
geomatics center of China

Obtaining the
boundary of the

research area

Data preprocessing included: (1) using MODIS Reprojection Tools (MRT) software to re-projected
MOD09A1 and MOD11A2 data as a WGS84 coordinate system and saved them as tiff format. (2) Using
the ENVI (Environment for Visualizing Images) software to re-project TRMM3B42 data as a WGS84
coordinate system and re-sample it to 1 km spatial resolution. (3) Based on the QC (quality control) file
of MOD11A2 and MOD09A1, surface reflectance and temperature data that were not affected by cloud

http://data.cma.cn
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and aerosol in Huang-Huai-Hai Plain were extracted. (4) The ten-day average temperature (Tave),
average evaporation (Eave), and accumulated precipitation (AP) were calculated by using the daily
average temperature, evaporation, and precipitation data.

2.3. Method

2.3.1. Cuboid Soil Moisture Index (CSMI)

Considering the meteorological, soil system, and vegetation system, three parameters related
to soil moisture were placed in a three-dimensional space to construct a cuboid soil moisture index
(CSMI), in which the X-axis was used to represent the soil system, the Y-axis was used to represent the
vegetation system, and the Z-axis was used to represent the meteorological system. The parameters
represented by the three coordinate axes are positively correlated with soil moisture, and they are
unified into dimensionless parameters in the range of 0–1. The edge length coefficient was then
determined according to the contribution rate of each coordinate axis to soil moisture. Figure 2 shows
the schematic diagram of CSMI and Equation (1) shows the formula of the model.

CSMI =

√
aX2 + bY2 + cZ2

a2 + b2 + c2 (1)

where X, Y, and Z represent the three axes of the cuboid and a, b, and c are edge length coefficients
determined according to the contribution rate of each coordinate axis to soil moisture. Pixels near
point O have the lowest moisture values (0), while those at the other end of the OS (point S) have the
maximum moisture values.
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Figure 2. The model of CSMI.

2.3.2. Cuboid Soil Moisture Index Calculation

Our technological flowchart is shown in Figure 3. There are mainly three steps: Firstly, building
the candidate soil, vegetation and meteorological feature parameters set and a feature parameter
which have the highest correlation with soil moisture for each axis of the cuboid is selected. Secondly,
normalizing the selected feature parameters to 0–1 and making them positively correlated with soil
moisture, and lastly, determining the edge length coefficient based on the analytic hierarchy process
(AHP) and calculating CSMI according to Formula 1.
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Model Parameter Selection

There are three parameters in the model corresponding to soil, vegetation, and meteorological
systems. The candidate soil system parameters considered in this study included the surface
temperature of observation stations during the day (LSTday) and at night (LSTnight) and the difference
in land surface temperature between day and night (∆LST). The candidate vegetation system
parameters included the normalized difference vegetation index (NDVI) [15], the visible and shortwave
infrared drought index (VSDI) [24], the normalized multi-band drought index (NMDI) [25], and the
land surface water index (LSWI) [23], while the meteorological system parameters included Tave,
Eave, and AP. The correlation coefficients between soil moisture data at different depths (10 cm, 20 cm,
and 50 cm) and candidate parameters were calculated, after which, candidate parameters with the
highest correlation in soil, vegetation, and meteorological systems with measured soil moisture were
selected to participate in modeling. The main influence factors of soil moisture at different depths are
different [37–39]. For example, with the increase of soil depth, the influence of surface climatic factors
on soil moisture is weakened. We calculated the relationship between soil moisture at different depths
and candidate feature variables and selected the feature parameters with the highest correlation with
soil moisture at different depths to participate in the calculation of CSMI. So that CSMI can better
reflect soil moisture at different depths.

∆LST = LSTday − LSTnight (2)
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where, LSTday and LSTnight represent the land surface temperature during the day and night respectively,
from the MODIS LST products (MOD11A2). ∆LST represents the change of day and night temperature.

NDVI =
(Rnir −Rred)

(Rnir + Rred)
(3)

VSDI = 1− [(Rswir −Rblue) − (Rred −Rblue)] (4)

NMDI =
[R860nm − (R1640nm −R2130nm)]

[R860nm + (R1640nm −R2130nm)]
(5)

LSWI =
(Rnir −Rswir)

(Rnir + Rswir)
(6)

where, Rred, Rnir, Rswir, and Rblue are the spectral reflectance values of surface red, near infrared,
shortwave infrared, and blue bands respectively, and R860nm, R1640nm, and R2130nm represent the
spectral reflectance at 860, 1640, and 2130 nm, respectively. The value of NDVI is between −1 and 1.
If soil moisture is suitable for vegetation growth, better vegetation growth is associated with a greater
corresponding NDVI value. Conversely, if the soil moisture is low, the vegetation will grow poorly
under the influence of water stress, and the corresponding NDVI value will be smaller. The VSDI
(LSWI) is positively correlated with soil moisture, with a larger VSDI (LSWI) indicating higher soil
water content. NMDI is inversely proportional to soil moisture, with a higher NMDI value being
associated with smaller soil moisture and vice versa.

Parametric Standardization

The three selected parameters had different units, so it was necessary to standardize them.
To accomplish this, the maximum-minimum standardization method (Equation (7)) was used for
dimensionless processing, and the range of values was between 0 and 1 after standardization.

P =
pi −min(p)

max(p) −min(p)
(7)

where, p is one of the three selected parameters, P is the value of the ith data after standardization, pi is
the original value of the ith data, and max(p) and min(p) are the maximum and minimum values of
parameter p, respectively.

Edge Length Coefficient Determination

The edge length coefficient was determined based on the analytic hierarchy process (AHP) [40]. It is
one of multi criteria decision-making methods and is widely used in many fields, such as groundwater
potential mapping [41], and crop growth condition monitoring [42], etc. The basic principle of this
method, which quantifies the process of qualitative analysis, is to divide the complex problems to
be solved into several simple problems. Different problems and corresponding solutions can form a
hierarchical structure, after which, the relative importance of all indicators can be judged layer by layer
and a judgment matrix can be constructed. The eigenvector of the judgment matrix is then calculated,
and the component of the eigenvector is the weight of the corresponding elements in single order.
The ranking of the importance weight of the lowest index to the highest overall objective can finally
be obtained.

In this study, the five-level scale method was used to determine the relative importance (Table 2).
Referring to the correlation between feature parameters and soil moisture, we constructed three sets of
judgment matrices to further improve the credibility of the final results (Table 3) and used a consistency
test to judge whether there were contradictions among the weights of each index [40,43]. In the
consistency test, the maximum eigenvalue of the judgment matrix was first calculated and recorded
as λmax, after which the consistency index (CI) was calculated according to CI = (λmax − n)/(n− 1),
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where n is the number of indicators in the hierarchical subsystem. Finally, the random consistency
ratio (CR) was calculated according to CR = CI/RI, where RI is the random consistency index. When
the CR is less than 0.10, the judgment matrix has satisfactory consistency and it is acceptable when the
CR is less than 1 [44]. Otherwise, the judgment matrix needs to be reconstructed.

Table 2. Five-Level Scaling Method and Its Meaning.

Scale Value Compare Factors i and j

1 Factor i is as important as j, and the scale value is 1.
3 Factor i is obviously more important than j, and the scale value is 3
5 Factor i is much more important than j, and the scale value is 5.

2, 4 The median value of the above two adjacent judgments

Reciprocal of 1–5 The scale value of factor i compared with factor j is equal to the reciprocal of the
scale value of factor j compared with factor i.

Table 3. Judgment matrix.

CSMI X Y Z

CSMI-1
X 1 2 1
Y 1/2 1 1/2
Z 1 1/2 1

CSMI-2
X 1 2 1/2
Y 1/2 1 1/3
Z 2 3 1

CSMI-3
X 1 3 1/2
Y 1/3 1 1/4
Z 2 4 1

Note: CSMI refers to Cuboid Soil Moisture Index. X, Y, and Z correspond to the soil system, vegetation system, and
meteorological system, respectively.

3. Results

3.1. Model Parameters and Edge Length Coefficient

The correlation coefficients between candidate parameters and measured soil moisture at different
depths is shown in Figure 4. From the figure, we can see that (1) from March to May in the
Huang-Huai-Hai region, the parameters of the soil system were best correlated with the 10 cm
soil moisture in most cases, followed by the 20 cm soil moisture, and finally the 50 cm soil moisture.
These findings indicate that the accuracy of monitoring soil moisture by surface temperature decreases
with increased depth. The surface temperature in daytime is negatively correlated with soil moisture,
while the surface temperature at night is positively correlated with soil moisture. The ∆LST had the
highest correlation with the measured soil moisture, followed by the LSTday. (2) The vegetation
system parameters were best correlated with 50 cm soil moisture in most cases, followed by 20 cm
soil moisture, and finally, 10 cm soil moisture. Among them, LSWI had the best correlation with
soil moisture at different depths as a whole. The relationship between vegetation parameters and
soil moisture was best in May, followed by April and March. (3) In terms of meteorological system
parameters, the correlation between AP and soil moisture at different depths was best, followed by
Eave and Tave. The correlation coefficient between AP and soil moisture was highest in April, followed
by May. The correlation between AP and soil moisture at 10 cm was highest, followed by 20 cm
and 50 cm. These findings indicate that the correlation between AP and soil moisture in each month
decreased with increased soil depth. Therefore, ∆LST, LSWI, and AP were selected as soil, vegetation,
and meteorological system parameters to participate in CSMI calculation, respectively. To ensure that
the three parameters were positively correlated with soil moisture, the three parameters of the final
cuboid model were calculated by Equations (8)–(10).
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X = 1− ∆LSTs = 1−
∆LSTi − ∆LSTmin

∆LSTmax − ∆LSTmin
(8)

Y = LSWIs =
LSWIi − LSWImin

LSWImax − LSWImin
(9)

Z = APs =
APi −APmin

APmax −APmin
(10)

where ∆LSTs, LSWIs, and APs are new standardized values of ∆LSTi, LSWIi, and APi respectively,
∆LSTi, LSWIi, and APi denote the original values of each parameter, ∆LSTmax, LSWImax, and APmax

are the maximum values of the three selected parameters, and ∆LSTmin, LSWImin, and APmin represent
the minimum values of the three selected parameters.
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Figure 4. The correlation coefficients between soil feature candidate parameters (a), vegetation feature
candidate parameters (b), meteorological feature candidate parameters (c) and measured soil moisture
at different depths

The coefficients of the three selected parameters determined by the analytic hierarchy process are
shown in Table 4. Based on these three sets of judgment matrices, we obtained three sets of coefficients
and their consistency test results. The results of three tests showed that CR was less than 0.10 and
passed the consistency test. Therefore, the three combinations of the a/b/c edge length coefficients were
finally determined to be 2/1/2, 3/2/5, and 3/1/6, respectively.

Table 4. Edge length coefficients determined by the Analytic Hierarchy Process (AHP) method.

CSMI a b c CR

CSMI-1 0.4 0.2 0.4 0.0032
CSMI-2 0.3 0.2 0.5 0.0088
CSMI-3 0.3 0.1 0.6 0.0176
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3.2. CSMI of Study Area

The correlation coefficients between CSMI calculated based on different edge length coefficients and
measured soil moisture are shown in Table 5. During the crop growing season in the Huang-Huai-Hai
region, the correlation coefficients between CSMI-1 and soil moisture at different depths were largest,
followed by CSMI-2 and CSMI-3. The correlation coefficients between CSMI-1 and soil moisture at
different depths were above 0.51. These findings indicated that the edge length coefficient of the model
2/1/2 was the optimal edge length coefficient in our study area.

Table 5. Pearson correlation coefficients between CSMI and soil moisture at different depths.

CSMI
Soil Moisture

10 cm 20 cm 50 cm

CSMI-1 0.647 ** 0.600 ** 0.518 **
CSMI-2 0.630 ** 0.585 ** 0.507 **
CSMI-3 0.593 ** 0.554 ** 0.482 **

Note: ** indicates a significant correlation at the 0.01 level (bilateral).

The cultivated land area was extracted from the land use land cover map of the Huang-Huai-Hai
Plain, and CSMI-1 of cultivated land in Huang-Huai-Hai Plain was calculated using precipitation
rate data sets from the TRMM satellite and land surface reflectance and temperature data from the
MODIS satellite. The results are shown in Figure 5. Soil moisture in the south Huang-Huai-Hai region
was higher than in the north, with Anhui and Jiangsu provinces having the highest soil moisture,
followed by Henan and Shandong provinces, and Beijing-Tianjin-Hebei provinces having the lowest
soil moisture. In early March, Anhui Province had the highest soil moisture value, followed by Jiangsu
Province and Shandong Province. The soil moisture in Shandong Province decreased in mid-March
and early April, while it increased in the southeastern Henan Province. In late March and late April,
soil moisture in Anhui, Jiangsu, and Henan provinces was higher, while it was lower in Shandong,
Beijing, Tianjin, and Hebei. In mid-April and mid-May, soil moisture in Anhui and Jiangsu provinces
was highest, followed by Henan and Shandong provinces, while it was still low in Beijing, Tianjin,
and Hebei. In early May and late May, soil moisture in Beijing, Tianjin, and Hebei showed an upward
trend, especially in northern Hebei.
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4. Discussion

4.1. Impacts of Edge Length Coefficient on CSMI

The absolution values of correlation coefficients between three CSMIs and soil moisture at a
depth of 10 cm with those of the three selected parameters and soil moisture at a depth of 10 cm were
compared (Figure 6). Overall, the correlation between CSMI and soil moisture was higher than that
between single parameter and soil moisture. The correlation between CSMI and soil moisture was
highest in April followed by May, while it was lowest in March. The edge length coefficients of CSMI-1,
CSMI-2, and CSMI-3 were 2/1/2, 3/2/5, and 3/1/6, respectively; therefore, the ranking of the edge length
coefficients of the three individual parameters was AP = ∆LST > LSWI in CSMI-1 and AP > ∆LST
> LSWI in both CSMI-2 and CSMI-3. The ranking of correlation coefficients of the three individual
parameters and soil moisture was ∆LST > AP > LSWI in March, AP ≈ ∆LST > LSWI in April, and AP >
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∆LST ≈ LSWI in May, respectively. In CSMI-1, the ranking of the edge length coefficient of the three
individual parameters was highly consistent with the ranking of correlation coefficients of the three
individual parameters and soil moisture. Moreover, the ranking of correlation coefficients of the three
individual parameters and soil moisture in CSMI-1 was the same as the ranking of the edge length
coefficient of the three individual parameters in April. These findings explain why CSMI-1 was more
closely related to soil moisture than CSMI-2 and CSMI-3 and why CSMI-1 had best relationship with
soil moisture in April.
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soil moisture at 10 cm (all are significantly correlated at the level of 0.01). CSMI is cuboid soil moisture
index, ∆LST is land surface temperature between day and night, LSWI is land surface water index and
AP is accumulated precipitation.

Based on the above analyses, the three edge length coefficients in the model had a great influence
on the results of the CSMI calculation. In this study, the three edge length coefficients from March
to May were the same, but the effects of climate, soil, and vegetation on soil moisture varied among
different months. According to the influence of climate, soil, and vegetation on soil moisture in different
months, the accuracy of CSMI can be improved by dynamically adjusting the coefficients of the three
parameters monthly.

4.2. Impacts of Surface Temperature Difference, Crop Growth, and Accumulated Precipitation on CSMI

To analyze the effects of surface temperature differences, crop growth, and accumulated
precipitation on the accuracy of the CSMI model, we divided the ∆LST into five grades with 5 ◦C, 10 ◦C,
15 ◦C, and 20 ◦C as break points, NDVI into five grades with 0.1, 0.3, 0.5, and 0.7 as break points, and AP
into four grades with 10, 25, and 50 cm/ten days as break points. The correlation coefficients between
CSMI-1 and soil moisture at different levels of ∆LST, NDVI, and AP were then calculated. As shown in
Figure 7, the correlation coefficients between CSMI-1 and soil moisture varied among different levels
of ∆LST, NDVI, and AP. Under most cases, CSMI-1 had the best correlation with soil moisture at 10 cm,
followed by 20 cm and 50 cm. In other words, the correlation coefficient between CSMI-1 and soil
moisture generally decreased as soil depth increased, which is consistent with the findings in Table 5.
The correlation coefficients of CSMI-1 and soil moisture showed no obvious trend with the change of
∆LST (Figure 7a). Regardless of the NDVI and AP levels, the correlation between CSMI-1 and soil
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moisture at different depths was greatest when ∆LST was 10–15 ◦C. When NDVI was lower than
0.7, CSMI-1 was highly correlated with soil moisture at a significance of 0.01, which indicated that
CSMI had good applicability to the evaluation of soil moisture under different vegetation coverage
(Figure 7b). When NDVI was larger than 0.7, the correlation coefficients between CSMI-1 and soil
moisture at different depths were below 0.4 and did not pass the significance test. One possible reason
for this was that the stations we used in this study were agrometeorological stations, and there were
few observation data for stations with NDVI values higher than 0.7. AP and soil moisture at different
depths were highly correlated at a statistical significance level of α = 0.05 (Figure 7c). Regardless of
the NDVI and ∆LST levels, the correlation between CSMI-1 and soil moisture at different depths was
greatest when AP was 25–50 cm.
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Figure 7. Correlation coefficients between CSMI-1 and soil moisture at depths of 10 cm, 20 cm, and
30 cm under different levels of ∆LST (a), NDVI (b), and AP (c). * indicates significant correlation at 0.05
level; ** indicates significant correlation at 0.01 level.

4.3. Limitations and Potential Improvement of This Study

Firstly, in this paper, for selection of feature parameters of the CSMI model, only the correlation
between candidate characteristic parameters and soil moisture was considered, and the correlation
between parameters was not considered. We found that correlation among the three parameters
varied with time (Figure 8). The three parameters had the highest correlation in April, followed by
March, and finally, May. The correlation between ∆LST and AP was the highest in April and May,
and the correlation between LSWI and ∆LST was the highest in June. It may affect the setting of
weights to some extent. In future studies, we will consider selecting characteristic parameters with
high correlation with soil moisture and low correlation among variables to calculate CSMI index.
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Second, this study is limited in that the spatial and temporal heterogeneity of soil moisture is
not considered when determining the edge length coefficients of the three axes of the CSMI model.
However, different land cover types, such as bare soil and vegetation, may have different soil moisture.
The same type of land use, such as vegetation, also differs in soil moisture at different growth stages.
When determining the edge length coefficient, the condition of the underlying surface can be fully
considered, and the edge length coefficient can be adjusted dynamically, according to changes in
the underlying surface to ensure that the coordinate axes of the cuboid model can play an effective
role and further improve the accuracy of the model. If the edge length coefficient of any of the three
parameters in the cuboid model is set to 0, the three-dimensional cuboid model will be transformed
into a two-dimensional model. For example, when the coefficient of crop parameter is set to 0, the effect
of vegetation cover on soil moisture is not considered, and the model is suitable for soil moisture
inversion in bare soil. When the coefficient of soil parameter is set to 0, the effect of bare surface on soil
moisture is not considered, and the model is suitable for the inversion of surface moisture in the case
of dense vegetation coverage.

Another limitation is that, although precipitation can indicate soil water recharge, the changes
in soil moisture caused by factors such as irrigation by human activities are not considered in this
study. If irrigation information can be considered as artificial recharge precipitation added in the
Z axis of CSMI, the accuracy of the model can be further improved. However, detailed irrigation
information (such as irrigation location, time, and intensity) is very scarce, especially in large-scale
research areas [45]. Therefore, in theory, the current CSMI model without considering irrigation
information has better applicability in rain-fed areas.

Finally, in this study, we constructed and validated the CSMI model based on the data of
58 agrometeorological stations in the Huang-Huai-Hai Plain in 2010. Larger regional validations,
as well as those for other vegetation types (such as forests and grasslands) in other years have not yet
been conducted. Among the many remote sensing parameters that have been developed to describe
soil moisture, there are no accepted optimal parameters [3]. The performance of the same parameter
differs among regions [46]. The main purpose of this article is to propose a model and construction
process of the CSMI. Researchers can follow the methodology of this work, select the parameters of the
three edges of the cuboid model suitable for their study area, and determine the length coefficients of
the three edges according to the meteorological, soil and vegetation characteristics of their study area.
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4.4. Significance of This Study

The importance of this study lies in two aspects:
Firstly, our study results indicate that integrating soil, vegetation, and meteorological feature

parameters can improve the accuracy of soil moisture inversion. The relationship between feature
parameters (such as AP, ∆LST, and LSWI) and soil moisture varies with time and soil depth. It may be
a development direction in the future to build an adaptive soil moisture inversion model in which
the weights of the three axes in CSMI varies with time. In general, the correlation coefficient between
CSMI with soil moisture decreases with the increase of soil depth. Thus, it is more difficult to improve
the precision of deep soil moisture inversion than to improve the precision of shallow soil moisture
inversion by using the optical remote sensing data. It is a better choice to use radar image to retrieve
deep soil moisture.

Second, the calculation steps of the CSMI model are clear and simple. Firstly, building the
alternative soil, vegetation, and meteorological feature parameters set, secondly, selecting a soil feature
parameter, a vegetation feature parameter, and a meteorological feature parameter which have the
highest correlation with soil moisture from a parameter set. Thirdly, normalizing the selected feature
parameters to 0–1 and making them positively correlated with soil moisture, fourthly, determining
weight (the cuboid length coefficient) of each parameter based on the correlation between parameters
and soil moisture, and lastly, calculating CSMI according to Formula 1. Following the above steps,
researchers can select the weights of the feature parameters and parameters involved in the calculation
and construct a CSMI model suitable for their own study area. Moreover, the three-dimensional CSMI
model can be easily converted to a two-dimensional model to adapt to different surface conditions
(as long as the weight coefficient of one parameter is set to 0). For example, one can set the weight of
the vegetation feature parameter to 0 for the bare soil surface.

Overall, on the one hand, this study has some implications for the future research direction, on the
other hand, it provides a reference method for soil moisture inversion using optical remote sensing
images by integrating soil, vegetation, and meteorological feature parameters.

5. Conclusions

In this study, a cuboid model of soil moisture inversion was constructed. Three parameters related
to soil moisture in the soil-vegetation-meteorological system were placed in the three-dimensional
space. The X axis represents the soil system, the Y axis represents the vegetation system, and the Z axis
represents the meteorological system. All parameters were positively correlated with soil moisture.
The length of the cuboid diagonal reflects the soil moisture level and is named the cuboid soil moisture
index (CSMI).

Taking the Huang-Huai-Hai Plain as the experimental area and the soil moisture data obtained
from the agrometeorological stations as the reference, we screened ∆LST, LSWI, and AP as soil,
vegetation, and meteorological system parameters respectively, for use in the CSMI calculation.
The three edge length coefficients in the model had a great influence on the results of the CSMI
calculation. Three sets of weight coefficients (2/1/2, 3/2/5, and 3/1/6) were considered, and the results
showed that CSMI-1, with a cuboid length coefficient of 2/1/2, had the best correlation with observed
soil moisture. The correlation of CSMI-1 with observed soil moisture was 0.64, 0.60, and 0.52 for depths
of 10 cm, 20 cm, and 50 cm, respectively. When the NDVI was lower than 0.7, CSMI-1 was highly
correlated with soil moisture at a significance of 0.01. Testing results successfully indicated that CSMI
had a certain potential for assessing soil moisture.

The calculation steps of the CSMI model are clear and simple, researchers can follow our study to
construct a CSMI model suitable for their own study area. Besides, our results indicate that building
an adaptive soil moisture inversion model may be a development direction in the future since the
relationship between feature parameters (such as AP, ∆LST, and LSWI) and soil moisture varies with
time. The correlation coefficient between feature parameters derived from optical remote sensing
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images and soil depth decreases with the increase of soil depth. Radar image might be helpful to
improve the retrieval accuracy of deep soil moisture.
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