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Abstract: Hydropower dam information such as construction and completion timings is often
incomplete and missing in existing dam databases, and the hydropower dam’s adjacency impact
distance, which is important to the surrounding environment, is also lacking for many dams. In this
study, we developed a new remote sensing approach to specifically determine the timings and to
assess the influencing distance on land use and land cover at the above and below dam areas. We
established the new remote sensing method by identifying levels shifts in trajectories of Normalized
Difference Vegetation Index (NDVI) indicators and by identifying the change point in entropy
coefficient of variation (CV) variations to allow an auto-acquisition of the information above at the
water basin level. We used three geospatial datasets including 1) a 30-year Landsat time series, 2) an
annual Landsat Normalized Difference Vegetation Index (NDVI) composite, and 3) digital elevation
model (DEM) data. We applied the proposed method to the Mekong River Basin (MRB) in Southeast
Asia, where hydropower dam constructions have increased significantly since the 1990s. Results
suggested that we were able to obtain the desired information for 67 Mekong hydropower dams
successfully. Pearson correlation tests were used to validate timing results against official records,
and the correlation coefficients were found to be 0.96 and 0.90, respectively, for construction and
completion timing determination. We discovered that the buffer radius of a Mekong dam’s adjacency
impact on land use and land cover was usually 4.0-km and 2.5-km in the above and below dam
area. The data determined from this study may fill important information gaps in existing dam
databases, and the approach developed in this case may be generalized to the other watersheds of
the world, where hydropower dams exist. However, essential dam information is either incomplete
or unavailable.

Keywords: hydropower dams; long-term satellite data; break dates detection; land use and land
cover; Mekong River Basin

1. Introduction

The last century has witnessed a dramatic increase in hydropower dam constructions, especially
in regions where the population increases while economic development and climatic fluctuations grew
at an unprecedented rate [1,2]. However, even though hydropower dams’ information is critical in
effective dam management at the watershed level [3,4], the authors found that it is either lacking or
missing in existing dam databases. Unreliable dam information and apparent records insufficiency,
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as undependable input parameters, would reduce the outcome accuracy of models designed to uncover
hydropower dam’s impacts on hydrology, ecology, biodiversity, and the environment.

Three widely used global dam databases were taken as examples including Global georeferenced
database of dams (GOOD), Global reservoir and dam database (GRanD), and Global power plant
database. GOOD contains the most records (e.g., 38500), but it only has the dam geo-location
information [5]. Though the number of recorded dams in GRanD (e.g., 7250) and the Global power
plant database (e.g., 29910) is smaller than that of GOOD, these two have included more dam attributes
such as dam commission year, crest height, construction dimension, and more [6,7]. Sometimes,
records of the same dam from different databases were found to be inconsistent. For instance, the
Beaver dam in the United States of America was built in the 1960s. The specific commission year was
1963 in GRanD but was 1965 in the Global power plant database. The authors believed this kind of
record discrepancy needs to be solved for better data quality.

According to the technical documentation of different dam databases, the most common way
to receive hydropower dams’ attributes was to collect, compile, and validate them from resources
like public reports, project documentation, literature, media articles, and Google Earth [5–7]. Such
an arduous, manual procedure was labor-intensive, time-consuming, and could be problematic.
The uncertainty in database reliability was consequently increased, with the value of data reduced
unintentionally. It is necessary, therefore, to develop a new approach to obtain the essential information
of a hydropower dam with higher efficiency and accuracy. One of the most straightforward ways was
to take advantage of continuous and frequent dam observations.

Remote sensing allows large-scale consecutive land surface observations at different spatial
resolutions since the early 1970s [8]. Multi-spatial and temporal resolution satellite imageries and
remote sensing methods combined with techniques in Geographic Information Science (GIS) and spatial
data analysis fields have been applied in many studies to address questions regarding the hydropower
dam influence. They were mainly used to determine and quantify the landscape patterns shifts [9,10],
hydrological alterations [11,12], ecological responses [13,14], and geological deformations [15,16]
induced by dam constructions from small areas to large regions.

Taking advantage of remote sensing capabilities, we developed a new, satellite data-based
approach to (1) determine hydropower dam construction and completion timings, and (2) assess
the spatial extent of hydropower dam impact on land use and land cover at the above and below
dam areas. First, precise project timing information improves the data reliability, and the adjacency
impact distance of a dam enriches the database diversity. Second, knowing dam project timings can
help parameterize hydrology, ecology, biodiversity, and agriculture models for hydropower dam
impact assessments at different construction phases (e.g., before, during, and after construction), and
determining its spatial influencing distance will allow better understandings of the environmental and
ecological consequences of a hydropower dam at different subdivisions separated by the dam [17–20].
Furthermore, this method was proposed to return the desired information for dams within the same
large watershed simultaneously.

In this study, we chose the Mekong River Basin (MRB) as a case study site to demonstrate the
feasibility of the new remote sensing method. Since 1956, a total number of 320 hydro projects
have been implemented in this region [21–23] to mitigate frequent floods and droughts caused by
increasingly extreme climate variability [24–26] and uneven water resource distribution [27]. This river
basin covers an immense catchment area of 795,000 km2 [28] and breeds one of the most significant
regions of biodiversity worldwide [29–31]. However, large human-managed hydropower dams exert a
significant threat on the basin’s biodiversity [32–34] and hydrology [35,36]. An efficient and reliable
approach to derive hydropower dam timing information and its impact distance becomes even more
necessary for the MRB, from the perspectives of both water resources management and environmental
and ecological sustainable conservations.
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2. Materials and Methods

2.1. Data Used

In this study, we mainly used Landsat imagery and digital elevation model (DEM) data to help
estimate the hydropower dam’s construction and completion timings, and to assess the consequent
spatial extent of the dam’s impact on land use and land cover at the above and below dam areas.
We downloaded an MRB boundary shapefile from the OpenDevelopmentMekong website (https:
//opendevelopmentmekong.net/). Official construction of the start year information was collected from
the United Nations Climate Change website and completion year records were obtained from the
Water, Land, and Ecosystems (WLE) Greater Mekong Dam database, which was updated in September
2017 [21]. We double-checked the records using the available information from resources such as
open-source project documentation and articles in the local news. These data were prepared for
result validation.

2.1.1. Remote Sensing Data

Two Landsat datasets were used in this study. The first is the 30-m Landsat 5/7/8 TM/ETM+/OLI
annual greenest-pixel Top of Atmosphere (TOA) reflectance product from 1988 to 2017, which was
acquired from the Google Earth Engine (GEE) [37,38] data repository. 1988 is the earliest year available
when this Landsat product covers the entire basin while 2017 is the last year of the product. Each image
contains original Landsat bands and a ‘greenness’ band. The latter is composed of pixels of the highest
Normalized Difference Vegetation Index (NDVI) value calculated from all available United States
Geological Survey (USGS) Landsat scenes throughout the whole year. First, we chose red/near-infrared
(NIR) bands and produced an annual maximum NDVI images from 1988 to 2017. Then, we validated
the chronologically-stacked NDVI dataset using the greenness band and clipped this time series into
the MRB boundary.

The second dataset is the 2017 Landsat 8 annual NDVI composite, which comprises the most
recent NDVI pixels from all available Landsat images of 2017. We used this image to help extract above
and below dam areas to assess its spatial impact extent on land use and land cover. A key piece of
information in this case is the elevation. We used the “ALOS World 3D-30m” (AW3D30) product by
the Japan Aerospace Exploration Agency (JAXA), published in May 2016, and downloaded this data
from the official project website (http://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm) [39,40].

2.1.2. MRB Hydropower Dam Data

According to the WLE Greater Mekong Dam database [21], 102 hydropower dams have been
completed and committed to working in this river basin by 2017. Forty-one hydropower dams are
being built, which mainly distribute in two countries (China and Lao People’s Democratic Republic).
Five of them are very large hydropower projects with installed capacity over or close to 1000 Megawatt
(MW). Ninety-three hydropower dams have been planned and proposed to finish by 2030 in China,
Lao People’s Democratic Republic, Myanmar, Vietnam, and Cambodia (see Figure 1 and Table 1).

Table 1. Quantity and status of hydropower dams in the Mekong River Basin (MRB) region. Information
was retrieved from the Water, Land, and Ecosystems (WLE) Greater Mekong Dam database.

Status Total Number of Hydropower Dams

Commissioned 102
Planned 78

Proposed 15
Under construction 41

https://opendevelopmentmekong.net/
https://opendevelopmentmekong.net/
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm
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Figure 1. Spatial distribution of hydropower dams (planned/commissioned/proposed/under
construction) in the Mekong River Basin region according to the Water, Land, and Ecosystems
Greater Mekong Dam database.

Many hydropower dam characteristics have been recorded in the WLE Greater Mekong Dam
database [21], project name, country, river, latitude, longitude, function, status, commission year,
installed capacity, and mean annual-generated energy. However, due to nondisclosure agreements,
research staff of the Greater Mekong CGIAR Research Program who produced the WLE Greater
Mekong Dam database [21] had no means to acquire complete dam information. Only columns of
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geolocation, function, and current status have full records. The construction start year information is
lacking. The dam completion year is recorded in the column named commission year and is available
for 82 out of the total 102 hydropower dams.

Given the fact that the applied Landsat dataset started from 1988, we removed 15 hydropower
dams committed before 1988. Therefore, the total number of eligible working hydropower dams with
solid completion year records was 67 dams. We collected construction start year information in the
project design documents from the clean development mechanism sub-page (https://cdm.unfccc.int/
about/index.html) of the United Nations Climate Change website (https://unfccc.int/). Five of them
were found to have no construction start year information. Lastly, a full list of Mekong hydropower
dams with official timing records and assigned dam IDs were produced (see Table 2).

Table 2. A full list of Mekong hydropower dams with construction and completion timings.

Project Name ID Construction
Start Year

Completion
Year Project Name ID Construction

Start Year
Completion

Year

A Luoi 0 2007 2012 Nam Ngeip 3A 34 2011 2014
Buôn Kốp 1 2003 2009 Nam Ngiep 2 35 2011 2015

Buon Tua Srah 2 2004 2009 Nam Ngum 2 36 2005 2011
Dachaoshan 3 1997 2003 Nam Ngum 5 37 2008 2012

Dak Doa 4 2008 2011 Nam Ou 2 38 2012 2016
Dak Ne 5 NR * 2009 Nam Ou 5 39 2012 2016

Dak N’Teng 6 2009 2011 Nam Ou 6 40 2012 2016
Dak Po 7 NR * 2015 Nam San 3A 41 2012 2015

Dak Psi 3 8 2008 2012 Nam San 3B 42 2012 2015
Dak Psi 4 9 NR * 2007 Nam Song Diversion 43 1995 1996
Dak Psi 5 10 2008 2010 Nam Theun 2 44 2005 2009
Dak Ro Sa 11 2003 2007 Nan Rong Tian 45 2014 2015

Dak Ru 12 2006 2008 Nanhe 1 46 2006 2009
Dray Hinh 2 13 2003 2007 Nuozadu 47 2004 2014

Gongguoqiao 14 2009 2012 Pak Mun 48 1990 1994
GuaLanZi 15 2013 2016 Plei Krong 49 2003 2009
GuoDuo 16 2012 2015 Sesan 3 50 2002 2006

Houay Ho 17 1993 1999 Sesan 3A 51 2003 2007
Houay Lamphan Gnai 18 2010 2015 Sesan 4 52 2004 2009

Hua Na 19 1992 1995 Sesan 4A 53 2007 2013
Jinfeng 20 1997 1998 Sre Pok 3 54 2005 2009

Jinghong 21 2003 2009 Sre Pok 4 55 2008 2010
Jinhe 22 2001 2004 Theun-Hinboun 56 1994 1998

Longdi 23 NR * 2007 Theun-Hinboun exp. 57 2008 2013
Longqingxia 24 NR * 2006 Upper Kontum 58 2010 2014

Lower Sesan 2 25 2014 2017 Xe Kaman 1 59 2011 2016
Miaowei 26 2009 2016 Xe Kaman 3 60 2006 2011

Nam Beng 27 2010 2016 Xekaman-Sanxay 61 2011 2017
Nam Khan 2 28 2011 2015 Xeset 2 62 2005 2009
Nam Khan 3 29 2012 2016 Xiangda 63 2006 2007
Nam Leuk 30 1996 2000 Xiaowan 64 2002 2010

Nam Lik 1-2 31 2007 2011 XunCun 65 1996 1999
Nam Mang 1 32 2013 2016 Yali 66 1993 2000
Nam Mang 3 33 2002 2004

*: short for no record.

Geo-coordinates of these 67 hydropower dams were extracted from the WLE Greater Mekong
Dam database [21] and verified using the Google Earth Pro. The geo-information was compiled and
converted in ArcMap 10.2 and exported as a Zipped Keyhole Markup Language (KMZ) file for further
spatial computation and analysis in GEE.

2.2. The New Remote Sensing Approach

The newly proposed remote sensing method (see Figure 2) was established based on the three
principles: (1) land cover change differed at areas separated by a hydropower dam body during the
entire construction phase, (2) the hydropower dam’s influence on surrounding land use diminished the
land cover changes as the distance to the dam enlarged and differed at the above and below dam areas,
and (3) the land cover change caused by the construction activity only occurred within a relatively
small area while the dam’s adjacency impact took place over a larger space.

https://cdm.unfccc.int/about/index.html
https://cdm.unfccc.int/about/index.html
https://unfccc.int/
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Figure 2. A new remote sensing approach to determine hydropower dams’ construction and completion
timings and to assess their influencing distance on land use and land cover at the above and below
dam areas. This approach was first applied to the Mekong hydropower dams over the entire Mekong
River Basin.

First, we separated land surrounding a hydropower dam into three subdivisions: buffer, above
dam area, and below dam area. The buffer area is the circle centered at the dam site centroid. The
above dam area is located at the subregion where the river water has not flown through the dam, and,
usually, water is accumulated in this area. The below dam area is the subregion where river water
flows through the dam. It includes the river channel and vegetation on the river banks. We believed
that the construction work caused different land cover changes between the above dam area and the
below dam area. In addition, these changes would be reflected through the level shifts in the long-term
trajectories of some indicators, which could be generated from the remote sensing imagery.

Second, applied NDVI-based indicators included NDVI mean, standard deviation (SD), and a
coefficient of variation (CV). CV, which is also known as the coefficient of dispersion, is of significant
importance in geoscience since it allows comparisons among variates regardless of scale effects [41].
Time-serial statistics of these three indicators were generated and applied to determine the timings of
construction and completion. Results were compared with the year’s information in Table 2 to assess
the capability of this remote sensing approach.

Third, the impact distance of a hydropower dam on adjacent land use and land cover was
estimated using spatial and temporal entropy CV differences for Mekong hydropower dams at the
above and below dam areas. We assumed that the influence caused by an operating hydropower dam
might be different in these areas. In this study, we did not focus on the specific land cover transitions
because each dam and its influenced surrounding lands had their unique pattern and story. We were
interested in the maximum impact extent of a dam.

2.2.1. Differentiated Above Dam Area and Below Dam Area

We assumed that there was an optimal distance threshold at which the change points in
NDVI-based indicators’ trajectory could best determine the construction and completion timings.
Thus, we performed spatial calculations above the dam area, below the dam area, and buffers using
increasing distances: the buffers’ radii rose from 200-m to 700-m in 100-m increments. The reasons we
chose these buffer sizes were that (1) as discussed in the first paragraph of Section 2.2, the land cover
changes caused by constructional activity were limited within the project site, of which the size was
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usually no larger than 700-m by visually checking dam construction sites using Google Earth Pro, (2)
the omitted 100-m buffer radius was too short showing enough land surface variations for change
detection, and (3) the 100-m interval was adequate to capture the changes gradually. A radius length
smaller/larger than this might cause unnecessary computational redundancy/insufficiency.

In this case, we defined different combinations of the indicator, area, and radius as different
scenarios. For example, we performed a time-serial NDVI mean calculation at the area above the
dam using a buffer radius size of 500 m for a selected dam. Then we named this case as “Above
area_500m_Mean” and counted it as one scenario. For every dam, the number of calculations was
determined by the product of three indicators (e.g., NDVI mean, SD, and CV), six different lengths of
buffer radius (e.g., 200-m, 300-m, . . . , 700-m), and three different extraction areas (e.g., above dam
area, below dam area, and buffer), which equaled 54 (3 × 6 × 3) calculations. Since the number of
studied hydropower dams was 67 dams, the total number of analyzed scenarios for all dams’ timing
determination was 3618 (54 × 67).

To separate the above and below dam areas, first, we created a buffer centered at a hydropower
dam and then extracted river catchments by dichotomizing elevation within this buffer. Specifically,
pixels of the first 70% elevation data were aggregated as catchment because water always flows from
a high altitude to a low altitude. Then, we used the NDVI percentage to determine the above and
below dam areas within the catchment. The spatial NDVI mean value of the above dam area should
be smaller due to the emergence of the affiliated water storage reservoir. Therefore, we produced
NDVI-based subregions using the 2017 Landsat 8 annual composite, which represented the most recent
land use and land cover pattern after all 67 hydropower dams began to function. We merged pixels
of the first 40% NDVI values to be above the dam area and grouped the left 60% as below the dam
area. After that, we refined the results by eliminating small patches with fewer than 40 pixels. Lastly,
all raster images were converted into vector masks for future computations.

2.2.2. Construction Start and Completion Timing Determination

The trajectory of each indicator was expected to exhibit structural level shifts, either upward
or downward, in response to the hydropower dam impacts on water redistribution and vegetation
coverage. The first level shift should show up right after the construction started and continued as the
work went on. The second level shift would emerge when the construction was finished and the new
land pattern close to the dam site was formed. Such a level shift is usually endogenous and can be
recognized by checking and assessing abrupt deviations in the stability of a linear regression model.
Generally, the last observation in a segment consequence is called a breakpoint. Let us assume that
there are n breakpoints that interrupt the consistency of a linear regression. Then, the total number of
segments should be n + 1, and the model can be defined by the equation below.

yi = xi × b j + ui
(
i = i j−1+1, . . . , i j, j = 1, . . . , n + 1) (1)

where j stands for the segment index. In the 1990s, Bai et al. [42–45] proposed and established the
foundation of time-serial breakpoints detection, which can be simplified as the minimization of the
residual sum of squares (RSS) for Equation (1). The time node where a breakpoint emerges is interpreted
as a break date.

Statistics and finance are two major fields where a majority of research regarding structural change
detection has been carried out [46–51]. To the best of the authors’ knowledge, few studies have been
made in geoscience. Our study adopted and applied this algorithm to reveal significant structural
breaks with a deterministic trend in the 30-year trajectories of NDVI-based indicators. In this scenario,
we considered identified breakpoints as possible construction and completion timings.

Specifically, time-serial NDVI mean, SD, and CV statistics for all 3618 scenarios were generated
by applying a reducer method to the 30-year Landsat greenest-pixel products using vector masks
produced in Section 2.2.1. The reducer method is an Earth Engine JavaScript-based function that allows
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image aggregations over space, time, bands, arrays, and other data structures, and can be called using
the “ee.Reducer()” command at the GEE platform [37,38]. Final numeric outcomes were exported
from GEE in a comma-separated values (CSV) file format. The R-based code was developed to detect
breakpoints and break dates. We first created a time-serial object in R using the GEE-exported statistics
for every scenario. Then we called both breakpoints and break dates detection functions from the
“strucchange” package [52] within for-loops and exported possible timings in terms of calendar years
for the 67 Mekong hydropower dams. Several large hydropower dams were observed to have more
than two break date results, which was mainly because the construction activity had been in abeyance
for a while during the entire project period.

2.2.3. Entropy-Based Hydropower Dam Influencing Distance Above and Below the Dam Areas

To identify the extent of a hydropower dam’s spatial impact on land use and land cover above
and below the dam areas, we computed time-serial entropies using NDVI to investigate the potential
maximum influencing distance in terms of a buffer radius. The radius size ranged from 500-m to
6-km and equally increased using a 500-m increment. Both the radius size and increment size were
larger than those used for timing determinations in Section 2.2.1. This was because, as mentioned in
the first paragraph of Section 2.2, the dam’s adjacency impact on land use and land cover changes
was more significant and prolonged than what happened during the construction phase. According
to the work of Zhao et al., the maximum threshold distance of the Manwan hydropower dam was
5000 to 6000 m [53]. Thus, we adopted 6000 m as the upper limit. Similar to the selection of a 100-m
interval for timing detection, the 500-m interval was an optimal one that prevented unnecessary
computational redundancy and insufficiency.

In this study, the indicator we used to evaluate the change extent was the image entropy in
terms of NDVI. Entropy is the randomness measurement of a region and can be expressed by the
equation below.

Entropy =
∑Ng−1

i=0
P(i) × ln P(i) (2)

where Ng denotes the number of distinct gray levels in the quantized image and P(i) represents the
probability of each pixel value. This metric has been applied in many remote sensing studies for image
classification [54–56]. In this case, we used it to evaluate land use and land cover change dynamics
caused by a functioning hydropower dam. We hypothesized that such change dynamics would
diminish at a certain distance, and the difference between entropy CV values at different distances
could represent the magnitude of hydropower dam influence over space. We assumed a higher value
indicated a more dramatic land use and land cover change given the increasing complexity of land
cover and more specialized land use.

First, we produced buffers centered at a hydropower dam body with radii equally increasing from
500-m to 6-km in 500-m increments. Second, we separated the buffers into two subdivisions above
and below the dam areas. To include as much as land surface, we enlarged the areas into semicircles.
Third, we rescaled NDVI values from [−1–1] to [0–255] for the 30-year Landsat greenest-pixel collection
to meet the discrete-valued input requirement for entropy computation. After that, we calculated
time-serial CVs of entropy (kernel size = 3) and averaged the statistics within the separated areas.
Then, we produced CV differences between every two adjacent semicircles (e.g., CV1000-CV500,
CV1500-CV1000, . . . , CV5500-CV5000, CV6000-CV5500). Lastly, we calculated the interannual amplitude
(maximum-minimum) of CV difference after a hydropower dam started to work. These steps were
repeated for 65 hydropower dams in the GEE platform because the Lower Sesan 2 and Xekaman-Sanxay
hydropower dam were both finished in 2017, which was the last year of available datasets.
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3. Results

3.1. Timing Determination

Figure 3 gives an example of the above/below dam area separation for the Nam Lik 1-2 hydropower
dam in Lao People’s Democratic Republic. This dam (18.793782◦N, 102.116714◦E) lies on the Nam Lik
River, northwest of Vientiane city. Project construction started on 15 August 2007, and was finished
in April 2011. The installed power station has a capacity of 100 MW with an annual gross power
generation of 435 Gigawatt hours (Gwh) [21]. According to this figure, we were able to conclude
that, after a hydropower project was finished, the above dam area mainly comprised part of the
water storage reservoir and vegetation, while the area below a hydropower dam was a mosaic of the
watercourse, construction body, and some riverine vegetation. Similar boundary files were created
for the other 66 hydropower dams. According to Figure 3, the shape of the above/below dam area
was irregular and does not have a smooth boundary. This was because the authors used the elevation
and NDVI-based subareas to separate the buffer. These subareas were decided using the assigned
elevation/NDVI percentage.
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overlapped together, as shown in the above area_500m_Mean, below area_500m_SD, and 
Buffer_500m_CV charts because of the failure of some combinations to generate the level shifts 
caused by the construction. According to Figure 4, two-thirds of the scenarios successfully captured 
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Figure 3. Above dam area, below dam area, and buffer of the Nam Lik 1-2 hydropower dam, in Lao
People’s Democratic Republic, with the buffer radius size increasing from 200-m to 700-m at a 100-m
interval. The blue, red, and black lines depict the boundary of the above dam area, the below dam area,
and the buffer at different distances.

Figure 4 illustrates the 30-year NDVI mean/SD/CV curves of the Nam Lik 1-2 hydropower dam at
the above dam area, below dam area, and buffer using the 500-m radius. Similar long-term trajectories
were also generated using 200-m, 300-m, 400-m, 600-m, and 700-m radii. Usually, the break dates’
detection method returned two breakpoint estimations. Occasionally, the results overlapped together,
as shown in the above area_500m_Mean, below area_500m_SD, and Buffer_500m_CV charts because
of the failure of some combinations to generate the level shifts caused by the construction. According
to Figure 4, two-thirds of the scenarios successfully captured the exact construction start year of the
Nam Lik 1-2 project, while two out of nine gave the correct completion year. These ratios varied
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among different hydropower dam cases. In addition, we noticed that the year lag between an approach
determination and the relevant official record was frequently between 0 and 2.
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Figure 4. Thirty-year Landsat NDVI mean, standard deviation (SD), and coefficient of variation (CV)
trajectories, and the approach determined project construction and completion timings of the Nam Lik
1-2 hydropower dam. The light green vertical line marks approach determined the construction start
year, and the red, dotted line highlights the completion year. The above area, below area, and buffer
each represents the area where water accumulates, the area where water flows out from the dam, and
the circle centered at the dam site.

3.2. Correlation Analyses and Accuracy Assessment for Timing Determination

Tables 3 and 4 gives the Pearson correlation test results between the approach determined timings
of construction and completion and relevant records for all scenarios. All p-values were smaller than
0.01. For the above/below dam areas and buffer, we highlighted the highest correlation value in red.
For determining the construction start year, the below area_400m_mean scenario shows the highest
correlation value, which is as high as 0.96. For determining the completion year, the highest one equals
0.90, which occurs in the above area_500m_SD scenario.

From Tables 3 and 4, we also noticed that the buffer radii at which the highest correlation
value occurred were no larger than 500 m. This was because the dimension of constructional work,
which contributed most to the level shifts in NDVI indicators’ trajectories, was approximately 500 m in
length. We suggest that researchers who are interested in applying our approach to the other water
basins initially start with this number in preliminary experimental trials.

Besides the conventional Pearson correlation tests, we also performed accuracy assessments for
timing determinations using the 500-m radius. We calculated year lags between the remote sensing
approach derived construction and completion timings and corresponding records. If the value equals
0, then it is a 100% accurate determination. We counted the outcome numbers of 0-year, 1-year, and
2-year lags and divided these numbers by the total number of hydropower dams used for timing
determination. Then we got the percentage of different year lags in different scenarios, as displayed in
Figure 5.
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Table 3. Pearson correlation results between the remote sensing approach determined the construction
start year and the construction start year records in Table 2.

Radius Length (m) Above Area Below Area Buffer

200 0.83 0.81 0.82
300 0.75 0.71 0.69

Mean 400 0.76 0.96 0.67
500 0.73 0.94 0.72
600 0.70 0.68 0.69
700 0.70 0.61 0.67

200 0.88 0.88 0.77
300 0.87 0.66 0.94

Standard Deviation (SD) 400 0.86 0.84 0.89
500 0.93 0.89 0.89
600 0.64 0.83 0.87
700 0.69 0.76 0.93

200 0.57 0.89 0.85
300 0.66 0.87 0.84

Coefficient of variation (CV) 400 0.89 0.82 0.86
500 0.58 0.85 0.88
600 0.49 0.72 0.75
700 0.78 0.73 0.78

Table 4. Pearson correlation results between the remote sensing approach determined the completion
year and the completion year records in Table 2.

Radius Length (m) Above Area Below Area Buffer

200 0.66 0.67 0.71
300 0.71 0.55 0.55

Mean 400 0.71 0.81 0.51
500 0.69 0.78 0.56
600 0.66 0.53 0.57
700 0.63 0.47 0.54

200 0.80 0.76 0.69
300 0.83 0.55 0.86

Standard Deviation (SD) 400 0.78 0.74 0.84
500 0.90 0.75 0.85
600 0.71 0.71 0.81
700 0.70 0.61 0.85

200 0.51 0.77 0.76
300 0.63 0.79 0.78

Coefficient of variation (CV) 400 0.88 0.64 0.79
500 0.61 0.57 0.81
600 0.61 0.59 0.77
700 0.77 0.54 0.73
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Figure 5. Percentage of year lags between the remote sensing approach determined construction and
completion timings and relevant records at the above/below dam areas and a buffer 500 m away from
every hydropower dam. The bars represent consecutive percentage values. The green bar represents
the accuracy of the construction’s start timing estimations, while the red one shows the accuracy of
completion timing estimations.

3.3. Hydropower Dam’s Impact Extent Above and Below the Dam Areas

Figure 6 exhibits the distance-based entropy CV differences above the dam semicircles of the Nam
Lik 1-2 hydropower dam after its operation in 2011 and the temporal amplitude of a CV difference
from 2011 to 2017 (black line). The X-axis label refers to the radial difference category. For example, if
x = 1500, the paring y value means the spatial entropy CV differences between buffers with a radius
of 1500 m and 1000 m. There is an evident declining trend in Figure 6 as the distance increases. We
also discovered similar patterns in spatial entropy CV differences for the other 64 hydropower dams.
These supported our hypothesis that the spatial influence of a hydropower dam on land use and land
cover change gradually diminished as it came further away from the water infrastructure.
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Figure 6. Entropy coefficient of variation (CV) differences and temporal amplitude between every two
adjacent semicircles (e.g., CV1000-CV500, . . . , CV6000-CV5500) after the Nam Lik 1-2 hydropower dam
functioned in 2011. Calculations were performed for the above dam area. The y-axis shows the entropy
CV difference in terms of percentage, and the x-axis represents the distance to the centroid of the Nam
Lik 1-2 hydropower dam site.

To find the maximum spatial extent of a hydropower dam’s impact on adjacent land use and
land cover, we applied two criteria including 1) identifying the change points where amplitude of
the CV difference went down first and then rose up, and 2) the amplitude value was no larger than
1%, which had been commonly accepted for statistical significance determination [57]. For the Nam
Lik 1-2 hydropower dam, the change point occurred at (4000, 0.736), which indicated a maximum
influencing distance of 4000 m. Within this 4000-m semicircle, the amplitude line continuously reduced,
which implied the CV difference became less clear further away from the Nam Lik 1-2 dam after 2011.
Assume there is a piece of grassland, 3600 m away from the dam, which was converted into agriculture
land given a greater water supply in 2014. Such a change would increase both spatial and temporal CV
differences. If there were no land use or land cover changes outside the 3600-m boundary after 2014,
CV differences would become much larger first and then gradually reduce to about 0.

According to Table 5, Table 6, Table 7, and Table 8, we can conclude that (1) the maximum spatial
influencing the distance of a Mekong hydropower dam on nearby land use and land cover is no larger
than 5.5 km, (2) the common impact extent at the above dam area is 4.0 km while the one below the
dam is 2.5 km, and (3) a Mekong hydropower dam usually has a larger influencing distance at the
above dam area than below the dam area. Additionally, 45% of the checked dams showed this rule. To
the best of the authors’ knowledge, few studies have been performed to identify the spatial impact
extent of a Mekong hydropower dam. One relevant study performed by Zhao et al. claimed they
found 5.0 km and 3.0 km as land use and land cover impact distances above and below the dam areas
for the Manwan hydropower dam, which is located in the Upper Mekong River Basin [53]. This work
can help verify our estimations.
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Table 5. Summarized Mekong hydropower dam influencing distances on nearby land use and land
cover at the above dam area.

Influencing Distance at the Above Dam Area (km) Number of Hydropower Dams

2.0 2
2.5 10
3 11

3.5 6
4.0 17
4.5 3
5.0 10
5.5 6

Table 6. Summarized Mekong hydropower dam influencing distances on nearby land use and land
cover below the dam area.

Influencing Distance Below the Dam Area (km) Number of Hydropower Dams

1.5 3
2.0 4
2.5 13
3 7

3.5 11
4.0 9
4.5 5
5.0 10
5.5 3

Table 7. A Mekong hydropower dam list with assigned ID, installed capacity, and estimated influencing
distance on nearby land use and land cover above the dam area.

Project Name ID Installed
Capacity (MW)

Influencing Distance
Above the Dam Area

(km)
Project Name ID

Installed
Capacity

(MW)

Influencing Distance
Above the Dam Area

(km)

A Luoi 0 170 4.0 Nam Ngeip 3A 34 44 3.0
Buôn Kốp 1 280 4.0 Nam Ngiep 2 35 180 5.5

Buon Tua Srah 2 86 2.5 Nam Ngum 2 36 615 5.0
Dachaoshan 3 1350 5.0 Nam Ngum 5 37 120 4.0

Dak Doa 4 14 3.0 Nam Ou 2 38 120 4.0
Dak Ne 5 13 4.0 Nam Ou 5 39 240 5.5

Dak N’Teng 6 15 2.5 Nam Ou 6 40 180 5.0
Dak Po 7 45 2.5 Nam San 3A 41 69 3.0

Dak Psi 3 8 10 3.0 Nam San 3B 42 45 5.5
Dak Psi 4 9 7.5 3.0 Nam Song Diversion 43 6 2.5
Dak Psi 5 10 12 3.5 Nam Theun 2 44 1075 3.0
Dak Ro Sa 11 16 3.0 Nan Rong Tian 45 8 2.5

Dak Ru 12 4.8 2.0 Nanhe 1 46 40 3.0
Dray Hinh 2 13 900 5.0 Nuozadu 47 5850 5.5

Gongguoqiao 14 4.8 2.5 Pak Mun 48 136 3.5
GuaLanZi 15 160 5.0 Plei Krong 49 100 3.0
GuoDuo 16 152.1 4.0 Sesan 3 50 260 5.0

Houay Ho 17 88 3.0 Sesan 3A 51 96 4.0
Houay Lamphan Gnai 18 NR * 4.0 Sesan 4 52 360 4.0

Hua Na 19 16 2.5 Sesan 4A 53 63 4.0
Jinfeng 20 1750 4.5 Sre Pok 3 54 220 3.5

Jinghong 21 60 3.5 Sre Pok 4 55 600 3.0
Jinhe 22 10.08 2.5 Theun-Hinboun 56 220 4.5

Longdi 23 16 2.5 Theun-Hinboun exp. 57 222 5.0
Longqingxia 24 1670 5.0 Upper Kontum 58 250 5.0

Lower Sesan 2 25 1400 NA ** Xe Kaman 1 59 290 4.0
Miaowei 26 36 2.0 Xe Kaman 3 60 250 5.5

Nam Beng 27 130 5.5 Xekaman-Sanxay 61 45 NA **
Nam Khan 2 28 60 3.5 Xeset 2 62 76 2.5
Nam Khan 3 29 1.5 4.0 Xiangda 63 0.8 4.5
Nam Leuk 30 60 4.0 Xiaowan 64 4200 4.0

Nam Lik 1-2 31 100 4.0 XunCun 65 78 3.5
Nam Mang 1 32 64 4.0 Yali 66 720 4.0
Nam Mang 3 33 40 5.0

*: short for no record. **: short for no applicability.
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Table 8. A Mekong hydropower dam list with assigned ID, installed capacity, and estimated influencing
distance on nearby land use and land cover below the dam area.

Project Name ID Installed
Capacity (MW)

Influencing Distance
Below the Dam Area

(km)
Project Name ID

Installed
Capacity

(MW)

Influencing Distance
Below the Dam Area

(km)

A Luoi 0 170 4.0 Nam Ngeip 3A 34 44 3.5
Buôn Kốp 1 280 3.5 Nam Ngiep 2 35 180 4.5

Buon Tua Srah 2 86 2.5 Nam Ngum 2 36 615 5.5
Dachaoshan 3 1350 3.5 Nam Ngum 5 37 120 4.5

Dak Doa 4 14 3.0 Nam Ou 2 38 120 4.0
Dak Ne 5 13 4.0 Nam Ou 5 39 240 5.0

Dak N’Teng 6 15 3.0 Nam Ou 6 40 180 5.0
Dak Po 7 45 2.5 Nam San 3A 41 69 2.5

Dak Psi 3 8 10 3.5 Nam San 3B 42 45 5.0
Dak Psi 4 9 7.5 2.0 Nam Song Diversion 43 6 1.5
Dak Psi 5 10 12 2.5 Nam Theun 2 44 1075 4.0
Dak Ro Sa 11 16 2.5 Nan Rong Tian 45 8 2.5

Dak Ru 12 4.8 2.0 Nanhe 1 46 40 3.0
Dray Hinh 2 13 900 5.5 Nuozadu 47 5850 2.0

Gongguoqiao 14 4.8 2.5 Pak Mun 48 136 1.5
GuaLanZi 15 160 5.5 Plei Krong 49 100 3.5
GuoDuo 16 152.1 5.0 Sesan 3 50 260 2.5

Houay Ho 17 88 2.5 Sesan 3A 51 96 3.5
Houay Lamphan Gnai 18 NR * 4.0 Sesan 4 52 360 3.0

Hua Na 19 16 2.0 Sesan 4A 53 63 3.5
Jinfeng 20 1750 5.0 Sre Pok 3 54 220 4.0

Jinghong 21 60 2.5 Sre Pok 4 55 600 3.5
Jinhe 22 10.08 3.0 Theun-Hinboun 56 220 4.0

Longdi 23 16 2.5 Theun-Hinboun exp. 57 222 5.0
Longqingxia 24 1670 5.0 Upper Kontum 58 250 4.5

Lower Sesan 2 25 1400 NA ** Xe Kaman 1 59 290 4.5
Miaowei 26 36 1.5 Xe Kaman 3 60 250 5.0

Nam Beng 27 130 5.0 Xekaman-Sanxay 61 45 NA**
Nam Khan 2 28 60 3.5 Xeset 2 62 76 2.5
Nam Khan 3 29 1.5 3.5 Xiangda 63 0.8 3.0
Nam Leuk 30 60 4.0 Xiaowan 64 4200 5.0

Nam Lik 1-2 31 100 3.5 XunCun 65 78 2.5
Nam Mang 1 32 64 4.5 Yali 66 720 4.0
Nam Mang 3 33 40 3.0

*: short for no record. **: short for not applicable.

3.4. Dam Capacity and Dam Influencing Distance

Conventionally, it is believed that a hydropower dam with a larger capacity shall have a more
far-reaching spatial impact on neighboring land use and land cover, but this is not always true,
according to our estimations. Sometimes a hydropower dam of a larger installed capacity has less
influence on surrounding lands. In this study, there were cases that a hydropower dam of a larger
installed capacity was found to have a shorter influencing radius than the one of a smaller capacity in
a certain region. For instance, the capacity of the Nam Theun 2 and the Sesan 4 hydropower dam is
1075 MW and 360 MW [21], while the approach estimated dam influencing distance above the dam
area is 3.0 km and 4.0 km, respectively. To examine any potential relationship between installed dam
capacity and the dam’s spatial influencing distance on the adjacent land use and land cover change,
we tested the Pearson correlation between these two characteristics of all 65 Mekong hydropower
dams. The correlation value was 0.31 with a p-value equal to 0.0095 (≤ 0.01) for the above dam area,
and 0.12 for the below dam area, which implied that the spatial influencing distance of a hydropower
dam on land use and land cover could be partially related to its capacity. However, this was not the
only factor that determined its adjacency impact extent. Future studies can be performed to reveal
what contributes to a hydropower dam’s influencing distance.

4. Discussion

4.1. Possible Factors Causing Differentiated Impacts at Different Stages

Before the construction started, there was little difference between land use and land cover
above/below the dam areas such as a similar open river surface size and vegetation robustness. During
the construction phase, the mainstream was closed and diverted, and a cofferdam was built. Both areas
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had experienced a dramatic land use and land cover change, which could result in apparent variations
in the time-serial NDVI curves. Theoretically, land pattern alterations during the construction process
could be reflected through the first level shift in trajectories of NDVI mean, SD, and the CV indicator.
These land cover changes usually occurred at the construction site. After the hydroelectric infrastructure
was completed, water accumulated in the water storage reservoir above the dam, the open water
surface expanded, and vegetation coverage consequently reduced within a certain distance. These
changes would presumably lead to another level shift in the trajectories. Overall, there was more water
in the above dam area. Therefore, corresponding spatial NDVI mean should significantly decrease.
NDVI SD/CV values above/below dam areas and buffer would first increase due to construction activity
and then decrease as the water-land-vegetation mosaic becomes more stable since the completion year.
In addition, such changes would take place over a much larger space because the regional hydrology
had been altered and this influenced the land use and ecology ultimately. Local residents could obtain
more water for irrigation agriculture and this boosted more converted cropland and increased the
regional population density. Given the fact that the water storage reservoir is located above the dam
area, this region was believed and proved to receive more impact than below the dam area.

4.2. Optimal Area, Indicator, and Buffer Radius Size Combination for Timing Determination

In Figure 4, several subplots of the Nam Lik 1-2 hydropower dam only returned one break date
detection result instead of two, which implied that, for some combination of indicator, area, and radius
size, they were not able to reflect the expected level shifts in the time-serial trajectories that occurred
at different construction stages. Using the “Above area_500m_Mean” subplot as an example, it only
returned the year 2008 because there was only one apparent and detectable level shift in its trajectory.
The same situations happened in the subplots of “Below area_500m_SD” and “Buffer_500m_SD.” They
indicated that not all combinations could generate satisfying outcomes.

In Table 3, a combination of “Below area_400m_Mean” returned the highest correlation value of
0.96 because this area had experienced a more dramatic land use and land cover change at the early
stage of civil work. Specifically, a barrage or a diversion dam was built to alter the natural waterway,
and excavation of spillways took place to discharge surplus water, which resulted in less water in
the original river channel. According to the area separation criteria in Section 2.2.1, the construction
site was spatially assigned below the dam area, which leads to an increased land use and land cover
complexity by enlarging concrete or bare land occupation. All these reduced the open river surface and
vegetation coverage below the dam area and, thus, lessened its spatial NDVI mean, and the decreasing
magnitude was more significant than that above the dam area and buffer.

For the completion year determination, it was another story. The “Above area_500m_SD” exhibited
a higher sensitivity (see Table 4). We believed this was a major consequence of the water impoundment
in the water storage reservoir of this area. As shown in Figure 3, the water surface above the dam
area dramatically expanded at the end of the construction stage since a reservoir began to emerge.
Meanwhile, land use and the land cover pattern below the dam area gradually became similar to what
it used to be before the project was initiated. Therefore, the spatial SD value of the area above the dam
increased first and then sharply dropped down. Such a sudden decrease did not occur in the SD curve
below the dam area and was averaged to be ignored over the buffer. The spatial SD value below the
dam area slightly increased when construction activity began, but it was hard to tell whether it would
increase or decrease at the end-stage. Overall, spatial SD above the dam area had experienced the most
significant changes over the entire construction period.

4.3. Approach Improvement

From Figure 5, we can tell that (1) the accuracy of determining the construction start year is
generally higher than determining the completion year, (2) calculations performed in scenarios below
the dam area give more precise results than those above the dam area and buffer scenarios, and (3)
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nearly 80% of construction start year determinations have no more than a two-year deviation compared
to official records while this ratio is much smaller for determining the completion year.

First, the higher accuracy of determining the construction start year is in accordance with the
higher correlation value in Table 3. We believed this was because land use and land cover change
occurred immediately when a project started and such a change continued along with the civil work,
while the impacts from a hydropower dam on nearby land use and land cover did not take effect as
soon as a project was finished. Actually, it usually took several years for an accumulated adjacency
impact to become recognizable after the close project date. The year lag between the determined
completion year and the official record was, therefore, larger than the construction start year, which
resulted in lower accuracy of the completion year determination. Second, as discussed above, the dam
area below had gone through a more dramatic land use and land cover change during the construction
period. Such a phenomenon provided more clues for break date detection, which contributed to higher
accuracies of determining the construction start year. Lastly, for part of the one-year deviations, it was
usually because the civil work started late in the second half of the construction year, which leads to
insignificant within-year land use and land cover change close to the construction site. Since it had
passed the peak season of vegetation, the annual maximum NDVI value would not change significantly.
In this case, the first level shift in long-term NDVI based on trajectories was postponed by one year.

The authors believed that many of the one-year deviations could be eliminated by taking advantage
of new remote sensing datasets with a finer temporal resolution, such as the Landsat 32-day NDVI
composite product, which provides more frequent spatial observations at a 30-m resolution. Using
relatively-high temporal resolution datasets would help avoid such a deviation, especially for those
started or finished in the second half of the year. For those two-year deviations, the previously
mentioned measure would help to primarily reduce a part of them by converting a two-year deviation
to a one-year deviation. A further step can be carried out by using enhanced vegetation index (EVI) [58]
or a wide dynamic range vegetation index (WDRVI) [59,60] that alleviate the NDVI saturation problem
in tropical regions covered by a dense vegetation canopy.

4.4. Applications in Change Detection, Ecology, and Hydrology

The current results had already filled the blanks in the WLE Greater Mekong Dam database, such
as construction and completion timing as well as dams’ adjacency impact extent above and below the
dam areas. The authors would like to continue applying it to fill similar blanks in any of the sizeable
global dam databases such as GOOD, GRanD, and the Global power plant database, as illustrated in
the introduction. This novel remote sensing method established on data-intensive computations is also
believed to be further applicable in (1) the precise detection of land use and land cover change caused
by sudden events with prolonged impacts such as dam constructions, continuous flooding/droughts,
and urban (re)developments, (2) the extraction of characteristics that cannot be easily measured and
acquired such as for influences of artificial infrastructures and extreme climate events in nature, and
(3) the evaluation of how man-made buildings have altered certain ecosystem services. It allows the
user to know (1) the exact time when the sudden events occur and disappear, and (2) the extent of
influence of the events. Moreover, it generates specific statistical information for the outcomes that can
be adopted by researchers and practitioners who run simulation and evaluation models for hydrology
and ecology studies [61–63]. It provides more accurate and innovative attributes to help reduce the
model workload and to increase the reliability of the model outputs. For example, our work might
help to figure out the hot spot regions where the most changes occurred.

5. Conclusions

In this study, we developed a new remote sensing approach to determine hydropower dam
construction and completion timings and to assess its influencing distance on nearby land use
and land cover using elevation data, an annual Landsat composite, and long-term Landsat imagery.
This approach has been successfully applied to the large MRB using 3618 scenarios with high correlation
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outcomes (e.g., 0.96 and 0.90) for timing determination, which confirms the feasibility and capability of
this approach to enhance the existing dam database by filling the blanks in records. Adjacency impact
distances of Mekong hydropower dams above the dam area and below the dam area were generated
and provided for the first time. We proved that entropy-based statistics were valuable for dam impact
detection, and a large hydropower project with the installed capacity value might not have a more
prolonged impact on surrounding land use and land cover change than the one with a lower installed
capacity. Moreover, the above dam area usually experiences more land use and land cover changes
than below the dam area.

Information on hydropower dam construction and completion timings as well as the spatial
adjacency impact distance is essential, since it can benefit other research work, especially in the
environment, ecology, biodiversity, and hydrology fields by using more accurate and reliable
hydropower dam statistics. Furthermore, this remote sensing method provides the possibility
to allow sudden events detection and to characterize new attributes of these events. This approach can
be extended to other vital watersheds that have experienced similar issues with intensified hydropower
dam constructions such as Congo and Amazon basins [2,19] for better water resource management.
As the first study to characterize hydropower dams at the river basin level, it is also believed to be of
great value to decision-makers and to a much wider audience engaged in a more strategic hydropower
dam development that requires sufficient statistical supports.
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