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Abstract: Turbidity, relating to underwater light attenuation, is an important optical parameter for
water quality evaluation. Satellite estimation of turbidity in alpine rivers is challenging for common
ocean color retrieval models due to the differences in optical properties of the water bodies. In this
study, we present a simple two-band semi-analytical turbidity (2BSAT) retrieval model for estimating
turbidity in five alpine rivers with varying turbidity from 1.01 to 284 NTU. The model was calibrated
and validated, respectively, while using one calibration dataset that was obtained from the Three
Parallel Rivers basin and two independent validation datasets that were obtained from the Kaidu
River basin and the Yarlung Zangbo River basin. The results show that the model has excellent
performance in deriving turbidity in alpine rivers. We verified the consistency of the simulated
reflectance and satellite-based reflectance and calibrated the 2BSAT model for the specified bands
of high spatial resolution satellites in order to achieve the goal of remote sensing monitoring. It is
concluded that the model can be used for the quantitative monitoring of turbidity in alpine rivers
using satellite images. Based on the model, we used the Sentinel-2 images from one year to identify
the seasonal patterns of turbidity of five alpine rivers and the Landsat series images from 1989 to
2018 to analyze the turbidity variation trends of these rivers. The results indicate that the turbidity of
these alpine rivers usually presents the highest level in summer, followed by spring and autumn,
and the lowest in winter. Meanwhile, the variation trends of turbidity over the past 30 years present
distinctly different characteristics in the five rivers.
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1. Introduction

Rapid and accurate remote retrieval of water quality parameters is essential for evaluating the
aquatic environment and water security in largescale inland waters. Turbidity (TU) is the most
intuitive expression of water quality, which directly affects the attenuation of light in the water,
thereby affecting photosynthetic activities and the primary productivity of phytoplankton in the
water [1–3]. Furthermore, turbidity is also an indicator of the concentration of the total suspended
matter (TSM), which is the main factor affecting the turbidity level in water. It is possible to interpret the
complex hydrological processes of TSM through identifying the lager-scale spatiotemporal dynamics
of turbidity, such as migration, sedimentation, and resuspension [4]. Thus, knowledge of the turbidity
patterns and dynamic characteristics is significant in aquatic environmental protection and water
resource management.
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Known as the “Asian Water Tower”, the Tibetan Plateau feeds many large rivers in Asia,
including the Yellow River, the Yangtze River, the Yarlung Zangbo River (YZR), the Tarim River, the
Lancang-Mekong River, the Salween River, the Indus River, and so on. The abundant reserve of water
resources provides access to more than 1.5 billion people in 10 countries [5]. However, the alpine
ecosystem of the Tibetan Plateau, especially the river ecosystem, is highly sensitive to climate change
and human activities [6]. Thus, the unique geographical and climatic conditions of the Tibetan Plateau
have made the water environment the focus of plateau ecology and environmental research. The YZR
is the highest river in the world being located in the south of the plateau. In addition, the YZR basin is
the most important economic zone in the Tibet Autonomous Region. The Three Parallel Rivers (TPR)
is composed of the Jinsha River (JSR), Lancang River (LCR), and Nujiang River (NJR), and it is on
the southeastern edge of the Tibetan Plateau. Under the impact of neotectonic movement, the three
rivers form a rare and spectacular natural landscape, the “Three Rivers Parallel” [7]. Abundant water
resources guarantee the biodiversity of the basin. In addition, the Kaidu River (KDR) is an important
plateau inland river in the Xinjiang Autonomous Region and it has always been the ecological source
for the southern Xinjiang oasis. The fragile ecological environment of these alpine rivers brings about
severe challenges for water quality monitoring and protection, especially in the context of intense
human activities. For example, agriculture production, hydropower projects, mineral excavation, and
tourism development impact the original ecology of river aquatic environment. Thus, the water quality
of these alpine rivers is considered to be a critical issue in ecological environmental protection.

River ecosystems have received relatively little attention in the monitoring of water turbidity
when compared with large, open waters, such as oceans and coastal areas, or relatively quiescent or
slow-flowing regional waters, such as estuaries, lakes, and reservoirs. This is because river systems have
more obvious dynamics characteristics over a short time, and the optical properties are more complex
under the influences of quick hydrodynamics, strong climate change events, and anthropogenic
activities. Therefore, identifying the turbidity pattern and spatiotemporal variations in complex river
environment requires non-traditional approaches. Remote sensing technology has been widely used
in the extraction of various water quality parameters, including turbidity in large areas by virtue of its
cyclical, large-scale, rapid synchronous monitoring [8]. However, it is still difficult to monitor river
turbidity, because the relatively narrow river channel leads to the existence of fewer image pixels in
the transverse direction of the river. Fortunately, the successful development of advanced high spatial
resolution and hyperspectral sensors expands the application of remote sensing technology in the
monitoring of the water quality in narrow rivers [9,10]. The combination of remote sensing imagery
and the river water spectrum can provide favorable conditions for comprehensively revealing turbidity
changes in a regional water environment from a more macroscopic perspective. Identifying landslide
origins and the spatial distribution of turbidity are very conducive for monitoring the affected range
and the extent of damage to water quality in real time, especially in some disaster-prone watersheds.

As of now, various turbidity models for ocean, coastal, and lake water quality monitoring have
been developed, including statistical, semi-analytical, and physical models, as well as some special
retrieval models, such as neural networks [11–14]. Based on these models, numerous water body
studies have estimated the turbidity of some oceans and large lakes [15–18]. However, it should be
mentioned that the hydrological characteristics of rivers, especially alpine rivers, are vastly different
from those of oceans and lakes [19]. Models that are based on optical properties of latter cannot be
directly applied to river systems. In addition, statistical models are mainly based on the statistical
regression relationship between Apparent Optical Properties (AOPs) and the measured turbidity.
Such models are only applicable to waters with a single optical property. Physical models that are
based on the radiation transfer theory aimed at solving the reflectance model with water constituents
are rather complex, and the detailed construction of its theory is still immature [20,21]. Moreover, it is
difficult to obtain the optical property information of rivers in the alpine environment. Semi-analytical
models aim to establish the relationship between the Inherent Optical Properties (IOPs) of water
and the measured turbidity by relating the AOPs to IOPs [22–25]. In practice, some approximate
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empirical hypotheses are always integrated into semi-analytic models to simplify the operation process.
Therefore, semi-analytic models are still the most effective method in current water quality monitoring.

In addition, it is proved that there is a strong linear correlation between turbidity and TSM [26–29].
An increase of the TSM concentration in the water enhances the attenuation effect of light, which
results in an increase in the turbidity of the water. Many studies quantify turbidity by retrieving the
concentration of TSM by means of the empirical relationship of TU and TSM [15,30]. This indirect
approach is easy to achieve, because the spectral characteristics of the latter are obvious. However,
the remote sensing reflectance might be saturation at certain levels of TSM [31]. Thus, it still remains
a challenge that directly using the relationship of remote sensing reflectance and TSM to estimate
turbidity in alpine rivers.

In this study, a two-band semi-analytical TU retrieval model (2BSAT) was proposed for retrieving
TU from satellite images in five alpine rivers in China. The main goals of the study are as follows: (a) to
verify the performance accuracy of four existing models for retrieving TU in river system and compare
the accuracy of the four models and 2BSAT; (b) to identify the spatial distribution characteristics
and the seasonal patterns of river turbidity while using Sentinel-2 images with high spatiotemporal
resolution and analyze the long-term changes of river turbidity using Landsat series images from 1990
to 2018; and, (c) to briefly discuss the factors affecting turbidity in rivers.

2. Materials and Methods

2.1. Study Area

The study area consisted of the Kaidu River basin, the Yarlung Zangbo River basin, and the Three
Parallel Rivers basin (JSR, LCR, and NJR). These rivers are located in western and southwestern China
(Figure 1).

The Kaidu River basin is located in the hinterland of the Xinjiang Autonomous Region (Figure 1a).
The KDR flows through the Bayanbulak Wetland at an altitude of over 2500 m. The water bodies in the
core area of the wetland present the original water quality state, which is because the marsh area has
been isolated from the influence of human activities, while some small lakes and tributaries located on
the edge of the wetland have been seriously disturbed by animal husbandry and tourism.

The Yarlung Zangbo River basin is located in the southern part of the Tibetan Plateau (Figure 1b).
The YZR is the highest river in the world and flows through China, India, and Bangladesh. In addition,
it is the main freshwater source and water-vapor channel for the Tibetan Plateau. Our study area in the
basin is located in the middle reaches of the YZR, with an average elevation of over 3000 m, including
two major tributaries of the Lhasa River and the Niyang River. The region is densely populated
with active industrial and agricultural production and convenient transportation. It is also the most
prosperous region of the political, economic, and multiethnic culture of the Tibet Autonomous Region.

The Three Parallel Rivers basin is located at the southeast edge of Tibetan Plateau (Figure 1c).
The elevation gradually decreases from the Tibetan Plateau in the northwest to the Yunnan-Guizhou
Plateau in the southeast. Active neotectonic movements make mountains and rivers interphase
distribution in the area. The three rivers of the JSR, LCR, and NJR, which originate from the Tibetan
Plateau, flow parallelly more than 170 km from north to south in Yunnan Province. In recent years, the
construction of the Yunnan-Tibet and Sichuan-Tibet roads, railways, and factories along rivers has
severely affected the water quality of these rivers.
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Figure 1. Location of the three study areas. (a) The Kaidu River basin; (b) The Yarlung Zangbo River
basin; and, (c) The Three Parallel Rivers basin.

2.2. Data Collection

In the above three watersheds, we conducted three field investigations and then collected 40
samples (Figure 1b) in YZR during 21–26 September 2016, 38 samples (Figure 1a) in KDR during
16–20 July 2018, and 70 samples (Figure 1c) in TPR (30 in JSR, 28 in LCR, and 12 in NJR) during
3–12 November 2018.

2.2.1. In Situ Measurements

At each sampling site, the HORIBA multi-parameter water quality meter U-50 (Figure 2a) was
deployed to measure the hydrochemistry parameters of water, including turbidity, temperature,
PH, chemical oxygen demand, and water depth, and so on. These parameters were measured in
quintuplicates and they were averaged as effective measurements.
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Figure 2. Measuring instrument and Spectrometric method. (a) HORIBA multi-parameter water
quality meter U-50; (b) ASD FieldSpec Spectroradiometer; (c) Above-surface observation method [32],
where θv is the angle between the observing plane and water surface, and the range of θv is 30–150◦;
ϕv is the angle between the observing plane and the plane of the incident radiation away from the sun,
and the range of ϕv is 90–135◦.

The water remote sensing reflectance (Rrs(λ)) between 350 and 2500nm was synchronously
measured with the ASD Field Spectroradiometer (Figure 2b) when collecting water samples.
The spectrometer has a spectral resolution of 1nm in the measurement range. We adopted the
above-surface observation method (Figure 2c), and the method that was designed by the scientific
measurement angle can effectively avoid the effects of direct sunlight, surrounding objects, and
measurement environment.

Field spectrum measurements were performed under consistently bright sunny weather conditions.
The optimization of ASD required taking a reference while using a standard reflecting reference
plate before each measurement. The following three optical physical parameters were measured:
downwelling irradiance above the water surface (Ed(0+)), total upwelling radiance from water (L(λ)),
and downwelling sky radiance (Lp(λ)), where Ed(0+) was obtained by measuring the reflected radiance
LG(λ) of the standard reference plate. All of these optical physical parameters were measured 10
times in succession at each sampling site and then averaged as effective values to calculate Rrs(λ) after
removing the outliers.

Rrs(λ) =
Lw(λ)

Ed(0+)
=

L(λ) − ρ× LP(λ)

LG(λ) ×π/ρb
× 100% (1)

where Lw(λ) represents the water-leaving radiance calculated from L(λ) by means of atmospheric
correction procedure; ρ represents the reflection coefficient of the air-water interface to the sky light,
which is related to the solar zenith angle, wind speed, observation geometry, and the surface roughness,
and so on; and, ρb represents the corrected reflection coefficient of the standard reference plate.

2.2.2. Water Sampling and Laboratory Analysis

In the middle reaches of the YZR and the parallel reaches of the TPR, we collected water samples
every 10 km along the mainstream and added samples at the entrances of some major tributaries.
In the Bayanbulak Wetland, we not only sampled the mainstream of the Kaidu River, but also water
samples from calm, small lakes in the wetlands. The location and elevation of these sample sites were
recorded while using a handheld GPS.

The water samples were collected from optically deep-water areas to avoid the effects of
water-bottom reflectance. We measured Chlorophyll-a (Chl-a), Total Organic Carbon (TOC), Dissolved
organic carbon (DOC), and TU in the laboratory after the field campaign. One liter of river water was
required for each sample and was stored in a dark, refrigerated environment. Chl-a was extracted
while using methanol at 4°C for 24h in a dark environment, and the concentrations were determined
by fluorometric analysis [33]. The TOC and DOC concentrations were measured while using a Total
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Organic Carbon analyzer (Siever 900) that was equipped with an autosampler. The TU of sample water
was determined by spectrophotometry method.

2.2.3. Satellite Observation

As a part of the ESA Copernicus Earth Environment Monitoring Project, Sentinel-2 is a system
that is composed of two polar-orbiting satellites, 2A and 2B, which were launched on 23 June 2015
and 7 March 2017, respectively. Each of the two satellites is equipped with a Multispectral Instrument
(MSI) with 13 spectral bands that range from the visible and near-infrared (NIR) to the short-wave
infrared [34]. The MSI has three types of spatial resolutions (10, 20, and 60 m), depending on different
spectral bands (Table 1). The swath of Sentinel-2 images is 290km, and the revisit time of a single
satellite is 10 days, which can reduce to five days when the two satellites observe the same area.
Therefore, Sentinel-2 images are decent data sources for river water quality monitoring.

The Sentinel-2 data for this study were downloaded from the ESA Copernicus Open Access HUB
(https://scihub.copernicus.eu/), and images atmospheric correction were implemented by while using
the specialized Sen2Cor (version 2.8) plugin released by the ESA. We used Sentinel-2 images that
were ingested from the autumn of 2018 to the summer of 2019 to analyze the spatial distributions and
seasonal patterns of turbidity in each alpine river.

Landsat series data is one of the earliest data sources for water environmental monitoring.
Although the terrestrial satellite channel setup is not for marine applications, it has been the most
widely used data source for water body remote sensing. This study used the Landsat series data
to prolong the time series of water turbidity monitoring, including Landsat TM, ETM+, and OLI,
because of the good consistency between the Sentinel-2 series and the Landsat series data [17] (Table 2).
The number of satellite images used in this study is showed in Table 3.

Table 1. Channel’s parameters of the Sentinal-2 Multispectral Instrument (MSI) sensor.

Band Central Wavelength (nm) Band Range (nm) GSD 1 (m)

B1-Coastal aerosol 443 430–457 60
B2-Blue 490 440–538 10

B3-Green 560 537–582 10
B4-Red 665 646–684 10

B5-Vegetation Red Edge 705 694–713 20
B6-Vegetation Red Edge 740 731–749 20
B7-Vegetation Red Edge 783 769–797 20

B8-NIR 842 760–908 10
B8A-Narrow NIR 865 848–881 20
B9-Water Vapor 945 932–958 60

B10-SWIR-Cirrus 1375 1337–1412 60
B11-SWIR 1610 1539–1682 20
B12-SWIR 2190 2078–2320 20

1 GSD is Ground Sample Distance, also called spatial resolution.

Table 2. Channel’s parameters of Landsat series sensors.

Landasat-8 OLI Landasat-7 ETM+ Landasat-5 TM

Band Range (nm) GSD (m) Band Range (nm) GSD (m) Band Range (nm) GSD (m)

B1-Coastal 433–453 30
B2-Blue 450–515 30 B1-Blue 450–525 30 B1-Blue 450–520 30

B3-Green 525–660 30 B2-Green 525–605 30 B2-Green 520–600 30
B4-Red 630–680 30 B3-Red 630–690 30 B3-Red 630–690 30
B5-NIR 845–885 30 B4-NIR 750–900 30 B4-NIR 760–900 30

B6-SWIR1 1560–1660 30 B5-SWIR 1550–1750 30 B5-SWIR 1550–1750 30
B7-SWIR2 2100–2300 30 B6-LWIR 10,400–12,500 60 B6-LWIR 10,400–12,500 120

B8-Pan 500–680 15 B7-SWIR 2090–2350 30 B7-SWIR 2080–2350 30
B9-Cirrus 1360–1390 30 B8-Pan 520–900 15

https://scihub.copernicus.eu/
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Table 3. Statistical description of satellite images used for retrieving Turbidity (TU).

TPR KDR YZR

Path/Row Number Path/Row Number Path/Row Number

Sentinel-2A/B
(2018.9–2019.8)

T47/RMM, T47/RNM,
T47/RML, T47/RNL,
T47/RMK, T47/RNK,
T47/RMJ, T47/RNJ

106 T44/TQN 45 T46/RBT,
T46/RCT 64

Landsat-5/7/8
(1989–2018) 132/41, 132/42 418 144/30,

145/30 372 138/40 335

Rrs(λ)weighted by the sensor channel response function (Figure 3) was simulated to the equivalent
integral band Req(λ) by using relation (2) in order to ensure that the field-measured spectrum is
comparable to the reflectance obtained by the Sentinel-2 MSI sensor. Equivalent multispectral bands
were applied for further analysis.

Req(λ) =

∫ λmax

λmin
F0(λ)Rrs(λ) f (λ)dλ∫ λmax

λmin
F0(λ) f (λ)dλ

(2)

where λmin and λmax are the bands at the beginning and end of the integration, respectively,
corresponding to the shortest and longest wavelengths of each multispectral band. f (λ) represents the
spectral response function of a certain band of the sensor. F0(λ) represents the solar irradiance outside
the atmosphere at a certain band.
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2.3. Turbidity Model Development

In Section 2.2.1, Rrs(λ) is defined as the ratio of the water-leaving radiance Lw(λ) to the
downwelling irradiance above the water surface Ed(0+). The two optical physical parameters
are both AOPs. Actually, in a homogeneous water body, Rrs(λ) can also be described while using the
IOP parameters, namely total absorption and backscattering coefficients, in terms of the subsurface
remote sensing reflectance rrs(λ) [22,36,37], as relation (3).

Rrs(λ) ∝ rrs(λ) =
f

Q
bbt(λ)

at(λ) + bbt(λ)
(3)
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where f /Q is a factor dependent on the Sun, the viewing geometry, and the volume scattering function
of water. at(λ) is the total absorption coefficient of all the material components in the water, as
relation (4), where aw(λ), aph(λ), aNAP(λ), and aCDOM(λ) are the absorption coefficients for pure water,
phytoplankton, NAP, and colored dissolved organic matter (CDOM), respectively. bbt(λ) is the total
backscattering coefficient that is composed of bbw(λ), bb,ph(λ), and bb,NAP(λ), which correspond with
the above water components, as relation (5). In the study, bb,ph(λ) and bb,NAP(λ) are merged into the
particle backscattering coefficient bb,p(λ). The purpose of this model is to estimate bb,p(λ) because of
its tight relationship with water turbidity [38].

at(λ) = aph(λ) + aNAP(λ) + aCDOM(λ) + aw(λ) (4)

bbt(λ) = bb,ph(λ) + bb,NAP(λ) + bb,w(λ) = bb,p(λ) + bb,w(λ) (5)

We used the difference of the reciprocal of Rrs(λ) at two neighboring bands to isolate bb,p(λ) from
Rrs(λ) while referring to the structure of some two-band water quality parameter retrieval models in
existing literature [32,39–41], as relations (6) and (7).

Rrs
−1(λ) ∝

Q
f

aph(λ) + aNAP(λ) + aCDOM(λ) + aw(λ) + bbt(λ)

bbt(λ)
(6)

Rrs
−1(λ1) −Rrs

−1(λ2) ∝
Q
f

aw(λ1) − aw(λ2)

bbt(λ1)
(7)

Firstly, f /Q is assumed to be spectrally invariant in a narrow band range when the in-water
zenith and azimuth viewing angles have not changed significantly. At longer wavelengths, like the
NIR band, the absorption coefficients of NAP and CDOM appear to exponentially decrease to a low
level [41–44]. aph(λ) is negligible in comparison with aNAP(λ) in a water body with suspended particles
as the main constituent [45]. In addition, the total spectral backscattering coefficient bbt(λ) can be
assumed invariant at longer wavelengths (650~900nm) [37,46]. Thereby, based on the above several
assumptions, aph(λ), aNAP(λ), aCDOM(λ), and bbt(λ) at λ1 and λ2 can be removed from the numerator
in relation (6) by the difference of the reciprocal. When the absorption coefficient and backscattering
coefficient of pure water are known [47], we finally obtain

TU ∝ bb,p(λ1) ∝
[
Rrs
−1(λ1) −Rrs

−1(λ2)
]−1

(8)

By selecting two appropriate spectral bands, λ1 and λ2, it appears to isolate the bbt(λ1) from the
Rrs(λ). In this study, we adopted a stepwise ergodic technique that was based on linear regressions
from least-squares method to determine the approximate positions of λ1 and λ2 [37].

2.4. Accuracy Assessment

In this study, the accuracy of the turbidity model was evaluated by comparing the predicted and
measured turbidity. The comparison was expressed in terms of root mean square error (RMSE), mean
absolute error (MAE), mean relative error (MRE), and coefficient of determination (R2). The above
evaluation indexes are computed, as follows:

R2 = 1−

∑n
i=1

(
xobs,i − xmod,i

)2

∑n
i=1

(
xobs,i − xobs,i

)2 (9)

RMSE =

√∑n
i=1

(
xmod,i − xobs,i

)2

n
(10)
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MAE =
1
n

n∑
i=1

(
∣∣∣xmod,i − xobs,i

∣∣∣) (11)

MRE =
1
n

n∑
i=1

(

∣∣∣∣∣∣xmod,i − xobs,i

xobs,i

∣∣∣∣∣∣) × 100% (12)

where n is the number of observations, xobs,i is the observed value of TU, xobs,i is the average of the
observed values, and xmod,i is the predicted value of TU.

3. Results

3.1. Bio-optical Properties of the River Waters

The statistical values of water quality parameters of the five inland rivers, including TU, Chl-a,
TOC, and DOC, are shown in Table 4. Turbidity was measured at 148 sample sites in the five rivers
and varied over two orders of magnitude from 1.01 NTU up to an extreme 284 NTU. Among the five
rivers, the average turbidity of the JSR was the highest, peaking at 208.19 NTU, followed by YZR, NJR,
LCR, and the lowest in KDR. These rivers contain extremely turbid water, like JSR, and freshwater, like
KDR. We found that there was a good consistency between the two data sources by comparing the
turbidity values that were measured by field water quality U-50 m and laboratory analysis. Then, the
average of the two data sources was accepted for the following analysis in order to more accurately
reflect the actual turbidity of the five rivers.

The concentration of Chl-a in the river water of the both basins was so low that it exceeded the
minimum detection limit of the instrument, which indicated a low biomass of phytoplankton in these
rivers, because of the alpine climate and geomorphological features of YZR and TPR. In addition, the
average concentration of the two parameters of TOC and DOC was also relatively low, according to the
Chinese Standards for Drinking Water Quality [48]. Moreover, the two parameters can represent the
concentration of dissolved organic matter to a certain extent [49]. Thence, it is reasonable to consider
that TSM dominated the optical properties of the water in YZR and TPR. It should be noted that a small
amount of Chl-a was present in some small ponds in the Bayanbulak Wetland, but the concentration
was lower than 10 mg m−3.

Table 4. Descriptive statistics of water quality parameters in the five rivers. Minimum, Maximum,
Mean, Standard Deviation (Std), Coefficient of Variation (CV), and sample number are indicated.

River Parameter Min Max Mean Std CV Number

YZR
TU(NTU) 2.00 205.00 73.48 54.06 0.74 40

TOC(mg L−1) 0.61 3.82 1.33 0.55 0.41 40

KDR
Chl-a(mg m−3) 2.53 8.72 4.29 1.65 0.39 38

TU(NTU) 1.01 75.28 25.77 24.84 0.96 38
TOC(mg L−1) 0.80 30.13 8.63 7.63 0.88 38

JSR
TU(NTU) 9.59 284.00 208.19 49.90 0.24 30

TOC(mg L−1) 2.01 4.28 3.84 0.44 0.11 30
DOC(mg L−1) 1.97 4.08 3.59 0.35 0.10 30

LCR
TU(NTU) 1.64 161.50 51.32 39.04 0.76 28

TOC(mg L−1) 3.67 4.34 3.97 0.17 0.04 28
DOC(mg L−1) 2.82 3.95 3.57 0.22 0.06 28

NJR
TU(NTU) 59.00 86.20 67.15 7.09 0.11 12

TOC(mg L−1) 3.37 4.07 3.61 0.22 0.06 12
DOC(mg L−1) 2.79 3.13 2.96 0.09 0.03 12
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3.2. Spectral Reflectance Properties

The spectra curves of the five rivers were obviously different in shape from those of the ocean water
bodies [10,50], but they were similar to the those of inland waters, as shown in Figure 4 [32,40,51–53].
In general, the Rrs(λ) in the visible band was higher than in the NIR band. In the blue band, the
Rrs(λ) was very low because of the combined absorption by all optically active constituents, like
phytoplankton and CDOM. The Rrs(λ) increased in the green band and reached a maximum between
550–580 nm, where the absorption by phytoplankton was minimal and CDOM and TSM mainly
affected backscattering. Nonetheless, the reflection peak at the green band was not distinct in YZR,
except for a few samples. The Rrs(λ) gradually decreased and several characteristics existed in the
red band. The second reflection peak presented at around 700 nm. The cause for the peak varied and
it mainly depended on the optical characteristics of constituents in water. In the water bodies that
were dominated by phytoplankton and its degradation products, the reflection peak was the result of
fluorescence induced by phytoplankton photosynthesis. In the water bodies dominated by suspended
sediment, the peak was mainly caused by high backscattering of NAP [54,55]. At approximately 675 nm
in the red band, some reflection spectra corresponding to KDR samples with high Chl-a concentration
had a tough reflection, because the absorption coefficient of Chl-a reached the maximum in the narrow
band. The depth of reflection tough was often used to manifest the concentration of Chl-a [40,56].
The absence of the absorption characteristic at 675 nm in all the remaining spectra indicated a lower
Chl-a concentration in the study waters, which was consistent with the laboratory analysis results.
When the wavelength was longer than 700 nm, the Rrs(λ) spectra were less than 0.04sr−1, overall
because of the stronger absorption of water molecules in the long-wavelength bands. However, there
was a feeble peak at approximately 800 nm that usually resulted from the backscattering of suspended
sediment particles.

The magnitude and shape of Rrs(λ) exhibited large variability in the five datasets, which indicated
that they represent water bodies with different optical properties, from lowly turbid water (e.g., KDR)
to highly turbid water (e.g., JSR). Figure 4c shows typical spectra curves corresponding to different
turbidity levels of each river. The response of Rrs(λ) to increasing turbidity at the five datasets was
wavelength-dependent and the two variables showed a positive correlation. Nevertheless, the same
Rrs(λ) values cannot simply reflect equal turbidity in different rivers. For example, in YZR, the Rrs(λ)

values corresponding to 77 NTU did not exceed 0.025sr−1, while it was much higher than 0.025sr−1

in KDR and NJR at the nearly equal turbidity levels of 75.28 and 74.7 NTU, respectively. This shows
that the relationship between Rrs(λ) and turbidity is not a simple linear positive correlation, and the
former obviously depends on the unique optical properties of river water bodies. We found that the
main suspended particles in KDR came from decayed aquatic grasses and livestock animal excrement,
based on field investigation. In YZR, the suspended particles came from soil erosion and pollution
discharge of human production and living. In TPR, the suspended particles are sediment caused by
fluvial abrasion, soil erosion, and garbage discharge from domestic and construction sources.
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Figure 4. Remote sensing reflectance field measurements and photos of river bodies. (a) 

Hyperspectral remote sensing reflectance 𝑅𝑟𝑠(𝜆); (b) The site photos of the five river water bodies; 

and, (c) Typical 𝑅𝑟𝑠(𝜆) spectra corresponding to different turbidity. 

3.3. Model Calibration and Validation Using in Situ Data 

3.3.1 2BSAT Model Calibration  

The 2BSAT model was calibrated using the field data obtained from TPR and validated while 

using the field data that were obtained from KDR and YZR. The optimal position of the two bands 

used by the model was determined via stepwise ergodic bands to focus on the minimum RMSE 

between the measured values and estimated values. We extended the available band range from 350 

to 900 nm during the stepwise traversal operation in order to verify the possibility that the optimal 

position of 𝜆1  and 𝜆2  fell in the visible light band range. For instance, we firstly set the initial 

position of 𝜆1 = 842 nm, corresponding to the NIR band of the sentinel-2A, and linearly regressed 

Figure 4. Remote sensing reflectance field measurements and photos of river bodies. (a) Hyperspectral
remote sensing reflectance Rrs(λ); (b) The site photos of the five river water bodies; and, (c) Typical
Rrs(λ) spectra corresponding to different turbidity.

3.3. Model Calibration and Validation Using in Situ Data

3.3.1. 2BSAT Model Calibration

The 2BSAT model was calibrated using the field data obtained from TPR and validated while
using the field data that were obtained from KDR and YZR. The optimal position of the two bands used
by the model was determined via stepwise ergodic bands to focus on the minimum RMSE between the
measured values and estimated values. We extended the available band range from 350 to 900 nm
during the stepwise traversal operation in order to verify the possibility that the optimal position
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of λ1 and λ2 fell in the visible light band range. For instance, we firstly set the initial position of
λ1 = 842 nm, corresponding to the NIR band of the sentinel-2A, and linearly regressed measured
turbidity values versus Rrs

−1(842)−Rrs
−1(λ2) at each single band in the range 350–900 nm. Afterwards,

the RMSE of the estimated turbidity values was figured out for locating the optimal position of λ2,
which corresponded to the minimum RMSE. The position of λ2 was confirmed at 584 nm after the
first loop computation (Figure 5a). Once λ2 = 584 nm was selected, the same process above was
performed to regress Rrs

−1(λ1) − Rrs
−1(584) versus the measured turbidity values for each band in

the range 350–900 nm. The RMSE for the second loop computation arrived at a minimum value at
758 nm (Figure 5c). Subsequently, we reset λ1 = 758 nm and regressed Rrs

−1(758) −Rrs
−1(λ2) versus

the measured turbidity values in the same range. The minimal RMSE was found at 627 nm (Figure 5e).
Similarly, the second λ2 was set at 627 nm to determine the optimal band of λ1 by assessing the
minimum RMSE, and the results showed that the third λ1 was still 758 nm. Consequently, the 2BSAT
model had the optimal accuracy in the case of λ1 = 758 nm and λ2 = 627 nm. Each round stepwise
calculation above reduced the minimum RMSE and increased the fitting degree of Rrs

−1(λ1)−Rrs
−1(λ2)

and the in situ turbidity (Figure 5b,d,f). Finally, the optimal bands of the 2BSAT model were determined
based on the 70 field samples that were collected from TPR (Figure 5f). As can be seen from Figure 6,
the fitted line (dashed line) of measured and predicted TU values was very close to the 1:1 solid line,
and the determination coefficient was 0.91.
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Figure 5. Optimal band selection of 2BSAT. (a) First round of stepwise calculation to confirm 𝜆2; (c) 

Second round of stepwise calculation to confirm 𝜆1 ; (e) Third round of stepwise calculation to 

confirm new 𝜆2; (b), (d), and (f): correlation the 2BSAT model of each round of stepwise calculation 

and the in situ turbidity. 

1λ

Figure 5. Optimal band selection of 2BSAT. (a) First round of stepwise calculation to confirm λ2;
(c) Second round of stepwise calculation to confirm λ1; (e) Third round of stepwise calculation to
confirm new λ2; (b,d,f): correlation the 2BSAT model of each round of stepwise calculation and the in
situ turbidity.
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Figure 6. Comparison of modelled turbidity with in situ turbidity while using the Three Parallel Rivers
(TPR) data.

3.3.2. 2BSAT Model Validation

Model validation using an independent observation dataset provides a way to evaluate the
reliability of retrieval accuracy and characterize the model uncertainty [21]. We used the water spectra
and measured turbidity datasets of YZR (N=36) and KDR (N=36) for model validation in order to
accurately evaluate the retrieval accuracy of the 2BSAT model and its applicability to various water
bodies in different regions.

Figure 7 shows the comparison between the estimated TU by the 2BSAT model and in situ
measured TU in YZR and KDR. The results indicated good agreement between the two values, and the
determination coefficients (R2) were 0.67 and 0.73 in the two rivers, respectively. The RMSE, MAE,
and MRE were 30.7 NTU, 23.6 NTU, and 33.6% in YZR and 13.9 NTU, 11.3 NTU, and 27.5% in KDR,
respectively. Although 2BSAT was only calibrated using TPR data, it could still explain 67% and 73%
of turbidity variability for YZR and KDR, respectively, which demonstrates that the 2BSAT model was
reliable and stable. Therefore, 2BSAT is an effective approach for deriving TU from hyperspectral data
in inland alpine river waters.
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Figure 7. Model validation: comparison of modelled turbidity with in situ turbidity using field data
from the YZR (a,b) and Kaidu River (KDR) (c,d).
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It should be noted that the retrieval accuracy in KDR was slightly higher than that in YZR,
which could be due to the spectra of KDR being more like the spectra of TPR in terms of curve
shape. In addition, MRE in KDR and YZR were both lower than the MRE of 25.2% in TPR. It is not
surprising that the development of 2BSAT using only using one geographical region might limit its
spatial transportability.

3.4. Model Calibration and Validation Using Simulated Sentinel-2 Bands

The above calibration and validation of the 2BSAT model used a field-measured hyperspectral
dataset with 1 nm wavelength increments. However, most of the current Earth observation satellite
sensors only have limited multi-spectral bands whose spectral resolution is far wider than 1 nm.
In addition, the optimal bands that are determined by in situ hyperspectral optimization (e.g., 758 nm)
are not available from the Sentinel-2 MSI sensor. Even some bands may not be available for satellite
sensors, because they are not in the atmospheric transmission window [10]. Therefore, it is desirable to
tune models spectrally targeted to the Sentinel-2 MSI. Detailed calculations can be found in Section 2.2.3.
The adjusted model replaced 758 nm with the MSI red edge band and 627 nm with red band in order
to evaluate the 2BSAT performance with Sentinel-2A bands. The central wavelengths at the two
bands are 782 nm and 665nm, respectively. Figure 8 shows a strong positive correlation between(
R−1

eq (782) −R−1
eq (665)

)−1
and in situ TU of TPR (R2 = 0.89), with RMSE = 27.7 NTU, MAE = 20.0 NTU,

and MRE = 26.3% in the modelled TU.
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Figure 8. Calibration of 2BSAT using simulated Sentinel-2A datasets in TPR. (a) Correlation between
the 2BSAT model and in situ turbidity; and, (b) Modelled turbidity versus in situ turbidity.

Two independent simulated multispectral band datasets from in situ Rrs(λ) data of KDR and
YZR were used to verify the model’s predictive ability and transferability in other geographic regions.
The accuracy of the model degraded a little in KDR and YZR when compared with the relationship

between
(
R−1

eq (782) −R−1
eq (665)

)−1
and in situ turbidity from TPR (Figure 9), but a significant correlation

still existed between
(
R−1

eq (782) −R−1
eq (665)

)−1
and in situ TU, with R2 = 0.73 and 0.68, respectively.

The result suggests that the 2BSAT has the potential to derive TU while using Sentinel-2 in alpine
river waters.
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Figure 9. Validation of 2BSAT using simulated Sentinel-2A datasets in KDR (a,b) and Yarlung Zangbo 

River (YZR) (c,d). 
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River (YZR) (c,d).

3.5. Turbidity Retrieval

3.5.1. Satellite-based Rrs(λ) Versus Simulated Req(λ)

The above calibration and validation of 2BSAT were based on in situ hyperspectral Rrs(λ) and
simulated equivalent multispectral bands Req(λ) that corresponded to Sentinel-2 MSI. However, the
consistency of satellite reflectance and simulated reflectance needs to be further addressed before
applying the 2BSAT model to retrieve the turbidity from river water. This is because the different
observational geometries and environments between the field experiment and the satellite may
result in different remote sensing reflectance of the same water bodies, even if they both have been
atmospherically corrected. Matching data between satellite and in situ data were generated by
extracting the pixel values of the satellite images based on the sample position in order to evaluate the
reliability of 2BSAT with real satellite data. In some studies regarding ocean color remote sensing, the
time interval window between the satellite overpass and field measurement on the same sample site
should ideally be within ±3 h [16,57]. However, the time interval window can be extended to ±3 days
in lake waters under stable hydrologic and atmospheric conditions [17]. In this study, it is reasonable
to choose satellite images with the same date of sampling to match measured data when considering
the local climate and hydrological characteristics of the study area and the available overpass satellites.
Although we conducted three field campaigns, only two clear Sentinel-2 images in KDR on 21 July
2018 and in TPR on 9 November 2018 were in line with the sampling time. Seven and 10 matchup sites
were finalized on the two rivers, respectively. We used a 3×3 pixel box centered on each sample site
to extract satellite-based Rrs(λ) because of the relatively narrow width of the river. After removing
extreme outliers and mixed pixels, the average Rrs(λ) value of the remaining pixels was regarded as
the effective satellite-based Rrs(λ) of the sample site. Figure 10a,c show a comparison of satellite-based
Rrs(λ) and simulated Req(λ). The results indicated that the MRE of the remote sensing reflectance at
the red band between the two datasets was 8.85% in TPR and 8.35% in KDR, and the MRE at the red
edge band was 9.56% in TPR and 15.21% in KDR. Figure 10b,d show a comparison of in situ TU and
modelled TU that was based on satellite Rrs(λ) and simulated Req(λ), respectively, which indicated
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that the determination coefficients (R2) were about 0.7, and a good consistency existed between the
two datasets. The above results indicate that satellite-based Rrs(λ) and simulated Req(λ) can both be
used to accurately derive TU in TPR and KDR.
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Figure 10. Satellite-based remote sensing reflectance versus simulated remote sensing reflectance in
TPR (a) and KDR (c) and modelled turbidity versus in situ turbidity in TPR (b) and KDR (d).

3.5.2. Turbidity Mapping Using Sentinel-2 Images

It can be determined that the 2BSAT model has excellent performance in retrieving TU in alpine
rivers based on the above comprehensive analysis. Therefore, this study applied the model to map the
temporal–spatial distribution of turbidity and analyzed the seasonal turbidity patterns in TPR, KDR,
and YZR, respectively. The season division was defined by month, as follows: spring included March,
April, and May; summer included June, July, and August; autumn included September, October,
and November; and, winter included December of the current year and January and February of the
following year. The average of retrieval turbidity from all the images during each season represents
the turbidity level of the season. Thus, all available Sentinel–2 images with no or few clouds from the
autumn of 2018 to the summer of 2019 were processed to recognize the seasonal turbidity patterns of
the five rivers.

Figure 11 shows the spatial distribution and seasonal variation of turbidity in the NJR, LCR,
and JSR in the same latitude interval of the TPR area. It was observed that the turbidity of the three
rivers was quite varied in different seasons, but they all had one thing in common: the three rivers
presented the highest turbidity in summer, followed by spring and autumn, and the lowest in winter.
The average turbidity for each season in the three rivers is shown in Table 5. The results also indicate
that the average turbidity in all seasons in JSR was higher than that in NJR and LCR. In addition, the
average turbidity in autumn in NJR and JSR was higher than in spring, but the situation was just
the opposite in LCR. It should be noted that such seasonal turbidity differences also have different
performances in different reaches of the same river, like in LCR.
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Table 5. The average turbidity (unit: NTU) for each season in the Nujiang River (NJR), Lancang River
(LCR), and Jinsha River (JSR).

Spring Summer Autumn Winter

NJR 124.8 548.7 196.3 83.5
LCR 234.1 524.8 174.4 56.7
JSR 265.2 779.5 292.3 182.4
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Figure 11. Typical temporal-spatial distribution of turbidity in TPR.

Figure 12 shows the spatial distribution of turbidity in each season in KDR. Similar to the TPR,
the turbidity of the river was the highest in summer and the lowest in winter. However, the difference
was that the turbidity of lakes presented the highest in autumn. We also note that the amount of water
in the Bayanbulak Wetland significantly increased during the summer, and the number and area of
small lakes and ponds increased simultaneously. At the same time, it is obvious that the turbidity of
calm lake waters in summer was lower than that of the dynamically flowing river mainstream waters.
In addition, the decreasing velocity of turbidity of lake waters from autumn to winter was not as fast
as that of rivers, because the turbidity of lake waters in winter was significantly higher than that of
rivers. The different hydrodynamic conditions between rivers and lakes may account for the seasonal
turbidity differences. The quantitative calculation results showed that the average turbidity in each
season in KDR was as follows: 42.6 NTU in spring, 106.7 NTU in summer, 37.5 NTU in autumn, and
12.3 NTU in winter.
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Figure 12. Typical temporal-spatial distribution of turbidity in KDR.

Figure 13 shows the spatial distribution and seasonal variation of turbidity in the intersection
reach of the YZR and the Lhasa River. The turbidity of the mainstream of YZR reached its maximum
in the summer, similar to the other two basins, which corresponds to the wet season of this basin.
However, the turbidity in the Lhasa River reached its maximum in the autumn. The range of turbidity
variations in Lhasa River was relatively small when compared with the large amplitude of turbidity
variation of the YZR mainstream between seasons. We also noticed that the influx of the tributary led
to a decrease in the turbidity of the water body on the north side of the YZR mainstream during the
summer. The average turbidity of YZR was as follows: 16.4 NTU in spring, 160.6 NTU in summer, 61.9
NTU in autumn, and 22.3 NTU in winter. The average turbidity of the Lhasa River inlet was as follows:
11.5 NTU in spring, 13.2 NTU in summer, 54.1 NTU in autumn, and 8.6 NTU in winter.
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3.5.3. Long-term Seasonal Turbidity Change from 1989 to 2018

From the analysis in Section 3.5.2, it was observed that obvious seasonal variation characterized
the turbidity of river waters. We used the Landsat series images from 1989 to 2018 to derive turbidity
in the five rivers for further analysis of the long-term seasonal characteristics and variation tendency of
river turbidity. Not only can Landsat series images provide long-term series data, but the data also
have a good consistency with the Sentinel-2 product [17,58]. We adopted the red band and the NIR
band that were closest to the bands adopted from Sentinel-2 MSI to build the 2BSAT model since the
Landsat series images have few bands. The calibration procedure of the 2BSAT model parameters
while using the Landsat data was the same with the Sentinel-2 data.

Figure 14 shows the long-term seasonal change of turbidity in the five inland rivers over the past
30 years. The dashed lines in the graphics represent the variation tendency of turbidity. The statistical
results showed that the variation ranges of turbidity in the TPR were higher than that of KDR and
YZR (Table 6 and Figure 14). It can be determined that the turbidity of the five rivers usually reached
a maximum in summer, while reaching a minimum in winter, which is consistent with the results
presented in Table 5. In addition, the 30-year variation tendency of turbidity in the five rivers differed
from one another. In the JSR, the turbidity in autumn showed an uptrend before 2010 and then
decreased, but, overall, it showed an uptrend in winter. In the LCJ, 2006 seems to be a time sub-node of
turbidity trend change. For a long time before 2006, the turbidity showed an increase in spring, summer,
and winter, and it then it decreased. In the autumn, the time node was postponed to 2007. In the NJR,
the turbidity gradually increased in spring from 2001 to 2013, and it then decreased. However, there
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was no significant change trend in other seasons. In the KDR, Turbidity showed a downward trend in
spring, summer (after 1999), and autumn. In the YZR, the downward trend of turbidity was present in
all four seasons, and the trend was more obvious than other rivers, overall, over the past 30 years.

It is easy to see that the variations of river turbidity in the TPR basin do not have obvious regularity
by comparing the seasonal changes of turbidity in the long-term series of five rivers. The possible
explanation is that natural disasters, such as landslides and mudslides in the area, had a sudden impact
on seasonal average turbidity. While the geological conditions of the KDR and YZR are relatively stable,
the turbidity changes of the two rivers were smaller and showed a long-term dynamic variation trend.

Table 6. The seasonal average turbidity (unit: NTU) in the five rivers from 1989 to 2018.

Spring Summer Autumn Winter

JSR 293.3 677.2 329.3 169.7
LCR 224.3 520.6 110.5 76.7
NJR 199.2 558.0 128.1 102.1
KDR 77.5 106.9 56.3 37.1
YZR 61.3 317.9 97.1 61.8
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4. Discussion

4.1. Performance of the Four Existing Turbidity Models

In existing research on water quality monitoring, the diversity of water optical properties in
different regions often requires an adjustment of model parameters to improve its regional adaptability.
Therefore, the specific parameters of the four existing models—Lathrop, Chen, Nechad, and Doxaren
(Table 7)—were tuned according to the bio-optical information that was sampled from the five rivers
in this study.

The Chen model is a semi-analytical model that uses a combination of three bands in the visible
range to estimate the backscattering coefficients at 660 nm of the water bodies. Subsequently, the best
fit function between TU and s(660)/(s(560) − ε ∗ s(485)) is calculated based on least-squares regression
analysis. The Nechad model that is based on the IOPs of water bodies establishes the quantitative
relationship between the water-leaving reflectance and TU by defining turbidity-specific particulate
absorption and turbidity-specific backscattering. In this study, we replaced water-leaving reflectance
with remote sensing reflectance. The Lathrop and Doxaren model used the band ratio as the variable
factor to estimate the turbidity by the exponential and the linear function, respectively. Table 7 shows
the optimal formulas of the above four models tuned while using the TPR data. The performance
evaluation of the four models was based on the comparison of the predicted TU with in situ TU.

By comparison, it was found that the Doxaren model produced a superior performance to the
other three models, and using the model could account for 75% variation in TU in the TPR (Figure 15).
However, when the turbidity in waters was <70 NTU, the predicted TU values by the model were
significantly higher than the measured TU. It is worth noting that the Nechad model only has practical
feasibility in water bodies less than 70 NTU, while the predicted TU is much lower than the measured
TU in higher turbidity waters. The predicted TU of the Chen and Lathrop model were too discrete
when compared to the measured TU, which resulted in them only accounting for about 30% variation
in TU. These findings imply that the Doxaren model is a more viable model for estimating the turbidity
of TPR waters when compared to the other three models. However, another study has shown that the
Lathrop model produces good performance in deriving the TSM concentration from turbid coastal
waters [16]. This might result from the differences in optical properties of coastal waters and inland
river waters.

Table 7. Four existing TU quantitative retrieval models.

Model Simplified Description

Chen [16,29]

rrs(λ) =
Rrs(λ)

0.52+1.7Rrs(λ)

s(λ) = bbt(λ)
at(λ)

=
−g0+[(g0)

2+4g1rrs(λ)]
0.5

2g1+g0−[(g0)
2+4g1rrs(λ)]

0.5 , g0 = 0.0364, g1 = 0.348

bb(660) ∝ s(660)
s(560)−ε∗s(485) , ε = 0.7155

TU = 159.21 ∗ ln(bb(660)) + 67.07

Nechad [12,15]

at(λ) = ap(λ) + anp(λ), bbt(λ) = bb,p(λ) + bb,np(λ)

apT(λ) =
ap(λ)
TU , bpT(λ) =

bb,p(λ)
TU

C = γ
bpT(λ)

apT(λ)+bpT(λ)
, A =

anp(λ)
γbpT(λ)

TU =
A∗Rrs(681)

1−Rrs(681)/C + B, A = 931.61, B = 0.11, C = 1.53

Lathrop [59] TU = a ∗ exp(b Rrs(660)
Rrs(560) ), a = 1.775, b = 5.4676

Doxaran [60] TU = a(Rrs(850)
Rrs(550) ) + b, a = 559.98, b = 0.9117
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Figure 15. In situ turbidity versus modelled turbidity by Lathrop (a), Chen (b), Nechad (c), and Doxaren
(d) models.

4.2. Turbidity Model Evaluation and Comparison

The relative error results showed that the 2BSAT model (MRE = 25.2%) had superior accuracy
performance in comparison to the Lathrop (MRE = 41.3%), Chen (MRE = 43.8%), Nechad (MRE = 50.9%),
and Doxaren (MRE = 28.2%) models. Figure 16 shows that the scatter plot of the relative error of
the 2BSAT model was more concentrated than the other four models. Moreover, the 2BSAT model
accounted for approximately 91% turbidity variation in TPR, which was >50% higher than the Lathrop,
Chen, and Nechad models, and 16% higher than the Doxaren model (Figures 6 and 15). In addition,
the 2BSAT only needed the red and NIR bands to build the relationship between TU and water optical
properties in turbid rivers. These results imply that the 2BSTA model is more efficient than the above
four models and it can be used to accurately estimate TU in alpine rivers.
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The main principle of the Chen model is based on the assumption that the absorption and the
backscattering coefficient of water between two neighboring wavelengths vary linearly [29]. The linear
slope of backscattering depends on all particulate matter, and the linear slope of absorption depends on
phytoplankton, suspended particles, and CDOM in waters. Based on the assumption, the backscattering
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coefficient can be isolated from remote sensing reflectance. Moreover, local bio-optical characteristics
of river estuaries and coastal waters determine the slope coefficients [29]. This is to say that these
parameters are generally appropriate for waters with similar optical properties as these types of water.
However, the optical properties of inland water bodies are significantly different from those of coastal
water. We used the original parameters of the Chen model to estimate the backscattering coefficient at
660 nm, which was further used to estimate turbidity by least-squares regression, because of the lack
of measured values of the absorption and backscattering coefficients of various substances in the five
rivers in this study. It is not surprising that the accuracy of the Chen model was not very satisfactory
(Figure 15b). Therefore, it is necessary to re-optimize the model parameters according to the optical
properties of the specific water bodies for guaranteeing the retrieval accuracy, but this undoubtedly
limits the universality of the model.

The Nechad model that is based on the IOPs model builds the quantitative relationship between
turbidity and water-leaving reflectance [12]. The model assumes that non-particulate backscattering
can be negligible when compared to particulate backscattering in highly turbid waters and defines the
turbidity-specific particulate absorption apT(λ) and bpT(λ) turbidity-specific backscattering (Table 7).
Without considering the error coefficient B, A and C are the main parameters that need to be calibrated,
which are derived from above turbidity-specific bio-optical variables. In Nechad’s study, C was
calibrated while using “Standard” IOP data, and A was calibrated by non-linear regression analysis
between in situ hyperspectral reflectance and TU [15]. Based on in situ data obtained from TPR, we
re-optimized the parameters applicable to the water quality characteristics of the inland alpine rivers.
However, the results (Figure 15c) showed that the Nechad model could only account for 31% variation
in deriving turbidity from the TPR. Furthermore, the model significantly underestimated TU when
the TU was higher than 70 NTU. This poor accuracy indicated that the reflectance at 681 nm was not
applicable to derive turbidity in inland rivers. In addition, the optical effect of pigments and CDOM in
water makes an important contribution to the spectrum, which seriously interferes with the extraction
of backscattering signals from the single-band reflectance. Therefore, the optical effect of non-particles
in the water, especially in optically complex waters, affected the output of the single band model.

The Lathrop model and Doxaran model use a two-band ratio as the independent variable to
retrieve water turbidity. The difference is that the former adopts the Red-Green band ratio and the
latter adopts the NIR-Green band ratio. The Lathrop model adopts an exponential function while the
Doxaran model adopts a linear function for typifying the turbidity best because of the difference in
sensitivity of different bands to turbidity (Table 7). The Lathrop model might produce poor performance
in the turbid productive waters since it relies strongly on remote sensing reflectance in the green and
red bands. This is because Chl-a has a significant effect on the shape and magnitude of spectra in
the band range. Thus, the Doxaran model replaced the red band in the Lathrop model with a NIR
band for reducing the effect of absorption from Chl-a. The performance of the Doxaran model was
better than the Lathrop model when comparing the predicted turbidity with the measured turbidity
(Figure 15a,d). The determination coefficient of the former was 0.75, which was 127% higher than the
latter. However, the strong absorption of water molecules in the NIR region reduced the signal-to-noise
ratio and enhanced the interference of inherent noise [61]. Such inherent noise cannot be eliminated by
the band ratio and then still affect the output of the model.

Fortunately, the 2BSAT Model could minimize the above negative effects in the Lathrop, Chen,
Nechad, and Doxaran models. The model used the difference of the reciprocal of remote sensing
reflectance at two neighboring bands to isolate the backscattering. Using the division factor is
beneficial in reducing the effect of non-particles and measurement errors on remote sensing reflectance.
The results indicated that the 2BSAT model worked better than the other four models in TPR (Figure 16).
However, some aspects of the model still need further improvement. Firstly, turbidity is an optical
parameter. Not only does the TSM concentration affect the turbidity of the water, but the physical
properties of the particles, such as size distribution, shape, and surface roughness, also affect it [62].
This means that the turbidity of water bodies with the same concentration of TSM might not be the
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same. Moreover, turbidity in the five rivers presents significant seasonal characteristics in different
seasons (Figures 11–13). Nevertheless, the in situ data that were used in this study were only obtained
from the single–field observation campaign for each river and lacked sequenced measurements over
a long time. These data are insufficient in validating the accuracy of the 2BSAT model in different
seasons that have different bio-optical properties. Therefore, it will be beneficial to improve the model’s
applicability by using multi-temporal and various bio-optical conditions water data. It is worth noting
that the original assumption of the 2BSAT model is valid in the water bodies dominated by suspended
particles, ignoring the effects of other components, such as chlorophyll-a. However, when applied to
the low Chl-a concentration of water, like the KDR, the 2BSAT model can also guarantee a high accuracy
(Figures 7d and 9b). In addition, the specific parameters of the 2BSAT model in TPR, KDR, and YZR
are different from each other, because the main causes of turbidity in these basins are dissimilar. This
indirectly illustrates the dependence of the 2BSAT model on the optical properties of river water.

4.3. Factors Affecting River Turbidity

In this section, we discussed the influencing factors of river turbidity and briefly analyzed the
seasonal patterns of some river reaches. There are too many factors causing the turbidity of river
water, including natural factors, such as heavy rainfall, mudslides, and landslides, as well as human
factors, such as engineering construction, pollution discharge, and so on. Here, we only selected a few
factors according to local characteristics of basins, including cascade hydropower stations, sewage
discharge and road construction, and precipitation. The factors affecting turbidity did not act in the
same manner over the three study basins, and they may present different levels of importance in
each river. The integrated spatial–temporal approach was very useful in understanding the seasonal
turbidity patterns of these factors in inland rivers.

4.3.1. Cascade Hydropower Stations

15 hydropower stations were constructed along the mainstream of the river in Yunnan Province
because of the abundant waterpower resources and favorable geographical conditions of the LCR.
The development of hydropower resources has greatly affected eco-hydrological processes in the upper
reaches of the river [63]. We analyzed the spatial distribution of seasonal turbidity in the upstream
and downstream of Tuoba, Huangdeng, Dahuaqiao, and Miaowei hydropower stations in order to
monitor the effect of hydropower stations on river turbidity (Figure 17). The four hydropower stations
are located in the upper reaches of the LCR with an average distance of 56km. They are part of the
hydropower base of the Lancang River trunk stream. The cascading development of hydropower
has changed the original continuity of rivers, which results in changes in the physical, chemical, and
biological factors of river waters [64]. Moreover, changes to hydrodynamics provide the conditions
for large amounts of sediment and nutrients to subside in the reservoir, which greatly reduces the
sediment concentration in the discharge water. However, Figure 17 shows that the turbidity of the
downstream waters of these hydropower stations was usually higher than that of the reservoir waters.
This is because the strong physical disturbances that are caused by the discharge of water and faster
flow velocity prevent sediment from sedimentation downstream. The seasonal patterns of turbidity in
the waters near these hydropower stations agreed with that in other river reaches, which shows that
the turbidity was higher in spring and summer and lower in autumn and winter. This indicates that
seasonal factors have a greater impact on river turbidity than hydropower stations.
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4.3.2. Sewage Discharge and Road Construction

The land use patterns along these rivers have undergone rapid changes with the development
of township leisure tourism and modern agriculture and the growth of the population, including
deforestation, urban expansion, and shrinking farmland, which result in more pressure on water
resource protection. In recent years, township domestic sewage discharge along the river has attracted
more and more attention [65]. Centralized collection of rural sewage is relatively difficult because of
the low emissions and scattered location. Meanwhile, sewage treatment lacks funds for operation and
maintenance of facilities and routine supervision and administration. As a result, township domestic
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sewage cannot be effectively treated and it has become a major constraint for river environmental
improvement. Especially for the densely populated TPR and YZR basin, it is an urgent problem to
regulate sewage discharge.

The construction of various projects along the river also has a negative impact on river water
quality. Construction activities, such as foundation leveling and road and bridge construction, need to
shift large amounts of soil and rock, but this may cause damage to vegetation, geomorphology, and
water systems. The excavation surface along the river in road construction usually forms a steep slope
that is generally larger than the slope of the original natural surface. Due to its low stability, once
external forces, such as rainfall, runoff, wind, mechanical vibration, and so on, stimulate the excavation
surface, it often induces collapse and causes a lot of soil erosion. This is also one of the causes of the
frequent landslides in the TPR basin.

In this section, we took a small reach upstream of the NJR as an example (Figure 18). In the true
color image of Figure 18, on the west bank of the river is a small town, and on the east bank in the
red oval mark is a road construction site, which corresponds to the leftmost field photo. The result of
the field investigation showed that a large amount of domestic garbage from the town and sewage
from cultivation farms close to the river were directly discharged into rivers without any treatment.
In addition, road construction also discharged a large amount of soil and stone into the river, which
raised the riverbed and reduced the width of the river. The rushing river water hits the raised rock at the
bottom of the river, which causes sediment resuspension. Therefore, the discharge and hydrodynamics
led to the turbidity of this reach being higher than other reaches. This phenomenon manifested in
every season during construction, even in winter at low turbidity levels. However, it is necessary to
take measures to eliminate the influence of these factors because of the effects of ripples and whitecaps
of river water on image reflectance.
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4.3.3. Precipitation

Precipitation causes the soil and pollutants on the underlying surface to drain into the river
through runoff, thereby increasing the turbidity of the river. Summer is the rainy season in the five
rivers in this study, which is one of the reasons why these rivers usually present the highest turbidity
in this season. In addition, heavy rainfall in geologically unstable regions, like the TPR, usually results
in landslides and mudslides. The large amount of viscous mud and solid debris flowing into the river
will significantly increase the turbidity of the river in a short time. Therefore, precipitation is one of
the important factors that affect the turbidity of water bodies. We collected precipitation data from
the Lhasa meteorological stations near the Lhasa River inlet reach in the YZR basin and analyzed the
relationship between precipitation and river turbidity in order to analyze the impact of precipitation.
The precipitation data are the total precipitation in each season from 1989 to 2012, and the turbidity
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is the average in each season from 1989 to 2012. The results showed that turbidity changed with
precipitation and it usually reached the highest level when the precipitation was maximum (Figure 19).
Thus, there is a clear correlation between precipitation and river turbidity and the correlation coefficient
between the two reaches 0.74 (Figure 20), which indicates that precipitation indeed has an effect on the
turbidity of river water.
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5. Conclusions

We proposed a reliable 2BSAT model using red and NIR bands to retrieve turbidity in inland alpine
rivers based on the characteristics of optical properties of alpine river waters and bio-optical theory.
We initially used in situ hyperspectral data to determine the optimal bands by stepwise traversal
technology. Afterwards, the simulated multispectral remote sensing reflectance data were calculated
and compared with the synchronous satellite-based remote sensing reflectance in order to verify the
applicability of the 2BSAT to high spatial resolution Seninel-2 images. The results indicated a good
consistency between the two reflectance data (MRE<16%), and the determination coefficient of the
2BSAT model based on the satellite-based remote sensing reflectance was >0.65 in retrieving turbidity
from the TPR and KDR. Finally, based on the 2BSAT model, we used the Sentinel-2 images to analyze
the spatial distribution and the seasonal patterns of turbidity and Landsat images to analyze the
long-term sequenced turbidity variation from 1989 to 2018. The findings of the study are summarized,
as follows.

(1) The 2BSAT model was calibrated and validated while using one calibration dataset from the TPR
and two independent validation datasets that were obtained from the KDR and YZR, respectively.
The study results indicate that the 2BSAT model is reliable and robust in retrieving turbidity in
alpine rivers from clear to highly turbid water bodies. Moreover, there is no need to reselect
the bands, even though parameter optimization is required for improving the accuracy of the
retrieval results.
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(2) Based on in situ hyperspectral data, the 2BSAT model produced a superior performance in
deriving the TU from alpine rivers in comparison to the Lathrop, Chen, Nechad, and Doxaren
models. It was confirmed that the 2BSAT model, in estimating the TU, decreased the uncertainty
by 36%, 40%, 48%, and 6% of the MRE values, respectively, from the above 4 models in the TPR.

(3) The 2BSAT model was used to analyze the temporal–spatial variation of TU based on the Sentinel-2
and Landsat series images. In the spatial variations, the five rivers showed different spatial
distribution characteristics and the distribution difference of turbidity also existed upstream and
downstream of the same river. In the temporal variations, it proved to be a general rule that the
highest turbidity in these alpine rivers usually appeared in summer, while the lowest appeared
in winter. In addition, the study found that the turbidity of KDR and YZR showed downward
trends overall over the past 30 years.

(4) Human activities, such as engineering construction and sewage discharge, have severely affected
the water quality of alpine rivers. However, seasonal factors still dominate river turbidity
changes from the perspective of long river reaches. For instance, precipitation and turbidity had a
consistent seasonal dynamic regularity from 1989 to 2012 and the correlation coefficient between
the two reached 0.74.
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