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Abstract: Western U.S. rangelands have been quantified as six fractional cover (0%–100%) components
over the Landsat archive (1985–2018) at a 30 m resolution, termed the “Back-in-Time” (BIT) dataset.
Robust validation through space and time is needed to quantify product accuracy. Here, we used
field data collected concurrently with high-resolution satellite (HRS) images over multiple locations
(n = 42) and years. Field observations were used to train regression tree models, predicting the
component cover across each HRS image. Our objectives were to evaluate the spatial and temporal
relationships between HRS and BIT component cover and compare spatio-temporal climate responses.
First, for each HRS site-year (n = 77) we averaged both the HRS and BIT predictions within each
site separately and regressed the averages to quantify the temporal accuracy. Next, we regressed
individual pixel values of corresponding HRS and BIT predictions to quantify the spatio-temporal
accuracy. Results showed strong temporal correlations with an average R2 of 0.63 and Root Mean
Square Error (RMSE) of 5.47% as well as strong spatio-temporal correlations with an average R2 of
0.52 and RMSE of 7.89% across components. Our approach increased the validation sample size
relative to direct comparison of field observations. Validation results showed robust spatio-temporal
relationships between HRS and BIT data, providing increased user confidence in the data.
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1. Introduction

Rangelands of the Western U.S. have recently been quantified as a series of fractional cover
components [1,2]. The products were developed using extensive field observations to model fractional
cover on high-resolution satellite (HRS) image (with a 2 m resolution) footprints. HRS predictions of
component cover were downscaled to serve as training for regional-scale predictions using Landsat
imagery. These regional maps have recently been completed for most rangelands in Western U.S.,
representing a nominal date of 2015.

Static maps of fractional vegetation cover are useful for a variety of applications however, they
cannot provide information on the temporal trends in rangeland condition or the nature of the
change processes [3–5]. We developed a method to produce fractional vegetation maps, similar to
the nominal 2015 product, over the Landsat 5–8 archive (1985–2018) across large spatial extents [4,5].
This “Back-In-Time” (BIT) product suite consists of annual fractional cover (0%–100%) maps of shrub,
sagebrush (Artemisia spp.), herbaceous, annual herbaceous, litter, and bare ground cover. These
products were found to have robust responses to climate drivers (precipitation and temperature) and
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disturbance in the Northern Great Basin [4,5]. While most change in fractional component cover was
small (<10% cover change over the study period), a large majority of pixels indicated at least some
change [5]. The BIT suite was designed to capture spatially discrete abrupt change and pervasive
gradual change [5] that is often ignored by the remote sensing community [6].

Validation of any remotely sensed mapping application is critical to increasing user confidence
in products, foster usage in management decisions, and determine the more robust estimate in cases
of competing datasets [7,8]. However, validation is often challenging [3,6,9–11], especially with
time-series maps [12]. Validation is often somewhat subjective, relying on manual image interpretation
on reference blocks [13], Google Earth time-series imagery [14,15], or case studies. Most validation
methods are designed for thematic classes (e.g., [10,15]) that typically employ confusion matrices to
understand accuracies [14]. An introduction of more mapping classes often results in weaker validation
results [15]. By extension, validation of fractional component time-series pose the most difficult
scenario, particularly in areas of subtle change. This is especially true in dryland ecosystems with
frequently sparse vegetation canopies that increase the influence of soils and senesced vegetation and
where only a scarce ground-based data network exists [16]. Major challenges to time-series validation
include (1) validation datasets that are not directly comparable to the remotely sensed data, (2) sample
size, spatial extent, or temporal extent of validation datasets, which are limited, (3) validation datasets
that are not independent, and (4) appropriate data do not exist as field sampling is highly resource
intensive [17,18]. Ideally, validation datasets should be one step closer to the ground truth (e.g., HRS
imagery) than evaluated broad-scale products [3,19].

We previously validated the BIT suite using a variety of methods. First, both Shi et al. and Rigge
et al. identified pseudo-invariant pixels where no cover change should occur due to high amounts of
bare ground cover [4,5]. These sites typically occurred in talus slopes, lava flows, or rock faces. Both
observed bare ground cover of ~100% and no significant trends in these pseudo-invariant sites. Second,
Shi et al. found that BIT products responded as expected to fire, with increasing component cover
change detected in more severe monitoring trends in ‘burn severity’ burns [4]. Individual components
responded as expected to fire; i.e., increased bare ground and litter cover and decreased shrub cover.
Third, Rigge et al. compared Assessment, Inventory, and Monitoring (AIM) plots collected by the
Bureau of Land Management (BLM) in 2011, 2013, 2014, and 2015 to the corresponding BIT pixels [5].
This work yielded weak-moderate relationships, with an average coefficient of determination (R2) of
0.24 across components.

The most robust validation conducted to date occurred in southwest Wyoming at two long-term
monitoring sites [20]. At these sites, fractional component cover was observed in the field at
126 plots for 10 years during the period of 2006–2018. Field observations and BIT data responded
similarly to interannual variation in precipitation, and the field and BIT data had robust temporal and
spatio-temporal correlations, with an average R2 of 0.46 across components [20].

Here, we leverage field data observed concurrently with HRS imagery over multiple years and
locations in Western U.S. to dramatically expand the spatial extent and sample size of validation
analysis relative to a direct comparison to field observations and to previous work. We compare HRS
and BIT data in the corresponding space and time. Our objectives were to evaluate the temporal
and spatio-temporal relationships between HRS and BIT data, and to compare their response to
spatio-temporal variation in climate. We hypothesize that strong temporal and spatio-temporal
relationships will exist between HRS and BIT data and that they will exhibit similar climate response.

2. Materials and Methods

2.1. Method Overview

We evaluated a total of 42 HRS sites across the Western U.S. with 32 sites in Wyoming, and 5 sites
each in Nevada and Montana. HRS sites span a broad range of vegetation, biophysical, climatic,
and disturbance regimes (Figure 1). Our HRS sites were strategically located to collectively capture
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the range of biophysical conditions within a region [2]. A total of 5 U.S. Environmental Protection
Agency (EPA) Level III ecoregions were included in the study area: the Central Basin and Range,
Northern Basin and Range, Northwestern Great Plains, Southern Rockies, and Wyoming Basin. Water
year (defined as 1 October to 30 September of the following year) precipitation totals at HRS sites in
measured years ranged from 149 to 681 mm, water year maximum temperature averages ranged from
9.6 to 17.3 ◦C, and water year minimum temperature averages ranged from −6.5 to 2.2 ◦C.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 20 
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Figure 1. Overview of high-resolution satellite (HRS) site locations within the western United States:
(A), Nevada sites (B), and Wyoming and Montana sites (C). HRS site symbology in panels B and C is
reflective of the number of years of data at the site.

Field data were used to train 2 m predictions of fractional component cover at each HRS site and
year. The 2-m predictions were degraded to 30 m, and some were used to train regional Landsat-scale,
30 m, “base” maps of fractional component cover representing circa 2016 conditions. A Landsat-imagery
time-series spanning 1985–2018, excluding 2012, was analyzed for change through time. Pixels and
times identified as changed from the base were trained using the base fractional component cover from
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the pixels identified as unchanged. Changed pixels were labeled with the updated predictions, while
the base was maintained in the unchanged pixels. The resulting BIT suite includes the fractional cover
of the 6 components described above for 1985–2018. We compared the two datasets, HRS and BIT, in
space and time.

2.2. Field Observations

Field data were collected at HRS sites for each evaluated year (Table 1). We recorded an ocular
estimate of each targeted component cover from an overhead perspective and noted the dominant
species within each plot. The fractional cover of shrub, sagebrush (Artemisia spp.), herbaceous,
annual herbaceous, litter, and bare ground was measured. The sum of the primary components
(shrub, herbaceous, litter, and bare ground) equaled 100% in all plots. Data collection occurred
within the growing season of May–September and at HRS sites with multiple years we conducted
repeat measurement(s) on approximately the same date(s). We used two plot designs over the study
period [1,2]. Field data from all sites in 2006–2014, site WY01 in 2015–2017, and WY03 in 2015 were
collected at predetermined monitored locations. Plots were selected based on segmentation of HRS
imagery to represent the variability of the entire site [21,22]. Segmentation was used to classify each
HRS image separately as 30 unsupervised clusters to identify spectrally similar polygon patches for
ground sampling [22]. Plots were measured using two 30-m plot transects that each contained seven
1-m2 quadrats spaced every 5 m, for 14 quadrats in total for the plot (Figure 2). At each plot, the
observations were averaged across all 14 quadrats. The polygon bounding the transects was converted
to raster format with 2-m resolution (Figure 2A). Each 2-m pixel within the polygon was assigned the
average value for each component. These rasterized data served as training for HRS predictions. At
each HRS site, a total of ~60 plots were measured.

Table 1. List of imagery dates (month-day) used for each HRS site and year. Red text indicates a
QuickBird image, purple a RapidEye image, black a WorldView 2/3 image, and blue text a Pleiades
image. No HRS images from 2012 or 2014 were included in the analysis.

Site 2006 2007 2008 2009 2010 2011 2013 2015 2016 2017

WY01 8-11 7-14 7-12 8-21 6-21 7-12 7-23 8-22

WY02 7-27 7-29

WY03 8-29 7-19 6-29 8-14 6-21 7-07

WY04 6-13 9-03 7-01 6-18

WY05 7-22 8-12

WY06 6-21

WY07 7-28

WY08 8-09 7-31

WY09 6-16

WY10 6-06

WY11 6-06 6-29

WY12 6-06 6-29

WY13 6-16 6-23

WY14 9-22

WY15 10-07 6-16

WY16 6-24

WY17 9-22
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Table 1. Cont.

Site 2006 2007 2008 2009 2010 2011 2013 2015 2016 2017

WY18 6-29 7-31

WY19 9-27

WY20 7-22

WY21 8-27 8-01

WY22 7-27 9-21 6-09 9-27

WY23 7-22

WY24 7-12

WY25 7-22

WY26 8-04 7-31

WY27 7-02 6-26

WY28 10-10

WY29 7-25

WY30 7-16 9-26 7-27 9-27 8-24 7-19

WY33 7-10 6-15

WY51 8-10 10-11

NV01 6-09

NV02 6-09

NV03 8-22

NV04 7-16

NV05 7-12

MT01 9-16 6-18

MT02 9-11 6-30

MT03 8-29

MT04 8-16

MT05 8-16

In 2015, plots were selected ad hoc by field crews to represent the range of vegetation, topography,
disturbance, and soil color within each HRS site (Figure 2B). The 2015 data in WY01 and WY03 were
collected using the previously described method. Field plots at all other sites in 2015 were drawn
in the field on a tablet displaying high-resolution imagery to identify patches of ground cover. We
again measured the cover of shrub, sagebrush, herbaceous, annual herbaceous, litter, and bare ground
cover from an overhead perspective, using ocular estimation. Plots were at minimum 4-m2 in size,
and averaged 32-m2, with an average of ~70 plots collected per HRS site (Figure 2C). At each site, we
rasterized the plot data to a 2-m resolution to serve as training for HRS predictions.
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Figure 2. (A) Transect design, after [22], of field plots on sites in 2006–2014, site WY01 in 2015–2017,
and WY03. Transects (thick black lines) were typically oriented on opposing magnetic bearings (0/180
or 90/270 degrees) perpendicular to a random direction. The bounding extent of the transects were used
to create a polygon defining the training area. (B) Example of field training plots on a 2-m resolution
WorldView 2 image as implemented in 2015 sites, with the exception of WY01 and WY03. Plots were
selected to cover the range of ground features and spectral properties. (C) Field training plots were
drawn using a tablet to correspond with patches of ground cover, designed to cover the range of values
of each component within a site.
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2.3. HRS Prediction

HRS sites were typically ~8 km by 8 km in size but varied based on the imagery source. All sites
had at least one high-resolution image, and some had up to eight. In sites with repeat imagery, we
used only the intersecting area among all images, resulting in discrepancies from the typical 8 by 8 km
size. We used four sources of high-resolution satellite imagery: QuickBird, RapidEye, Pleiades, and
WorldView 2/3 (Tables 1 and 2). HRS imagery was obtained in several spatial resolutions (Table 2), but
all were resampled to 2-m resolution using the nearest neighbor approach. Imagery was ordered for a
date corresponding with field data collection, mostly in June and July (Table 1). Satellite scheduling
conflicts sometimes resulted in imagery acquisition later than our desired window. HRS images were
orthorectified using ERDAS functionality and topographically checked and if needed registered using
National Agriculture Imagery (NAIP) orthoimagery.

Table 2. Spectral characteristics and spatial resolutions of high-resolution satellites (HRS) used to
produce fractional component maps.

Sensor QuickBird RapidEye Pleiades WorldView 2/3

Spatial Resolution (m) 2.4 6.5 2.0 2.0

Coastal 400–450
Blue 450–520 440–510 430–550 450–510
Green 520–600 520–690 490–610 510–580
Red 630–690 630–690 600–720 630–690
Red-edge 690–730 705–745
Near-infrared 1 760–900 760–880 750–950 770–895
Near-infrared 2 860–1040
Yellow 585–625

Rasterized field data were used to train Cubist Regression Tree (RT) [23] algorithms to predict the
cover of nine components on HRS images at 2-m resolution [1,2]. Our default settings in Cubist develop
models based on a committee of 10 members, with a maximum of 500 rules and 10% extrapolation of
the training data’s range of values. For each HRS imagery source, we used all available bands as the
independent variable in the Cubist models. Classification of field observations at a 2 m resolution
was robust, with cross-validation values typically > R2 = 0.80, often > R2 = 0.90 for bare ground.
Next, we identified and excluded non-rangeland areas from HRS predictions including urban areas,
agriculture, water, and forest. Cloud, cloud shadows, and snow cover present on HRS imagery were
also identified and excluded. All 2-m predictions were resampled to 30-m using cubic convolution,
giving the mean value for each 30-m pixel, ignoring excluded non-rangeland areas. While scaling up
field observations to a 30-m resolution can introduce noise [24], misregistration of HRS imagery is
also a potential problem [8,17], which is partly remedied by upscaling. Our approach has been well
vetted [1,2], and dramatically increases the statistical power of validation analyses. In this analysis,
we only include the components of shrub, sagebrush, herbaceous, litter, and bare ground, as these
components were universally predicted at all HRS sites.

2.4. Base Map

Upscaled HRS predictions were used to train regional Cubist RT models predicting fractional
component cover. Independent variables in these models included three seasons of Landsat imagery,
representing pre-peak greenness, peak-greenness, and leaf-off phenological stages. We also included
topographical variables: Slope, aspect, position index, and several spectral indices (normalized
difference built-up index (NDBI, Equation (1)), soil-adjusted vegetation index (SAVI, Equation (2)), and
normalized difference water index (NDWI, Equation (3)) developed from each seasonal image. The
position index represents the hydrological position of the pixel within the local landscape, with low
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values for pixels primarily receiving an inflow of surface runoff and high values for pixels primarily
with outflow.

NDBI =
Shortwave infrared−Near infrared
Shortwave infrared + Near infrared

(1)

SAVI =
Near infrared−Red

Near infrared + Red + 1.5
× (1.5) (2)

NDWI =
Near infrared− Shortwave infrared
Near infrared + Shortwave infrared

(3)

Similar to the high-resolution scale, we identified non-rangeland areas on the Landsat imagery,
and excluded them for our predictions. Regional predictions were validated using both independent
and cross-validation methods and mosaicked across the Western U.S. [1,2] to produce the “base” map
for each component. The HRS sites analyzed in the current manuscript are located in the Wyoming,
Black Hills, and Montana regions that were mapped in 2015, and the Northern Great Basin region that
was mapped in 2014. Only HRS predictions from these years were included as training in regional
base predictions. HRS sites mapped only in 2014 or 2015 constituted most of the training data for base
maps and are not included in our validation analysis.

2.5. BIT Predictions

We used BIT fractional component data developed from a Landsat imagery time-series produced
using an improved method of Shi et al. and Rigge et al. [4,5]. Briefly, BIT data were developed by
obtaining a summer and fall image from each year in the Landsat 5–8 archive (1985–2018). The year
2012 was excluded due to the lack of quality Landsat data, with only Scan Line Corrector (SLC) off

data from Landsat 7 available. Next, we used a change vector and change fraction approach [5] to
identify spectral change between each summer image with the base year (2014/2015) summer image
and between each fall image with the base year fall image. Only change identified in both seasons was
maintained. We randomly selected 120,000 points within the non-changed areas identified in each
year to serve as training for predicting the fractional component cover in changed areas. We pooled
training data in non-changed areas across all years in the time-series and used a series of procedures to
remove the most spatially and temporally common values. Doing so resulted in improved predictions
by expanding the histograms of the training data and independent variables. The pooled training data
were used to develop a spatio-temporal Cubist RT model for each component. Independent variables
in each model included the summer and fall Landsat imagery, and the same suite of topographic
variables and spectral indices used in base mapping. RT models were developed spatio-temporally but
were separately applied to single years of imagery. Fractional component outputs of the RT models
were maintained in the area detected as changed in each respective year while the base map was
maintained in the unchanged area. We used a series of post-processing models to ensure accurate
post-burn trajectories, eliminate noise and illogical change in the predictions, and to remove pixels that
were inundated by water at any point in the time-series. All BIT processing occurred on individual
Landsat path-rows, which were subsequently mosaicked to a regional level. The final BIT product
suite consists of annual maps of shrub, sagebrush, herbaceous, annual herbaceous, litter, and bare
ground from 1985–2018, mosaicked to a regional level.

2.6. Data Analysis

Though we geometrically corrected each image, spatial registration of HRS data may vary
among years, and when compared to BIT data. To account for this potential variation, the HRS
and BIT datasets were compared temporally and spatio-temporally. The temporal analysis removed
essentially all impacts of spatial mis-registration by analyzing means across large HRS sites. While
the spatio-temporal analysis could be impacted by registration issues, it is made more robust through
a direct comparison of a very large number of individual HRS and BIT pixel values. Moreover, the
spatio-temporal analysis is not subject to the inflation of regression statistics that can occur when
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regressing means against means in the temporal analysis. HRS predictions have high, but not perfect
accuracy, but still provide an invaluable validation reference [3].

First, for each HRS site-year (n = 77) we averaged both the HRS and BIT prediction based on a
sample of 10,000 random points within each site. We excluded areas identified as non-rangeland in
either the HRS or BIT dataset and areas identified as cloud/cloud shadow/snow in the HRS dataset. We
then plotted the site average HRS and BIT component covers against each other to quantify temporal
accuracy. Regression (n = 77) statistics of R2, root-mean square error (RMSE), and p-value were
calculated for each component. Some (n = 17) HRS site-years were used to train the base map, which
itself is a major input to the BIT process. To test for the influence of potential circularity, we also plotted
regression statistics for 2015 used to train base predictions separately from all other data (Table 3).

Table 3. Summary of temporal correlations (R2) (n = 77 each) between HRS and BIT Landsat-based
predictions. Correlations are from 2015 data only (n = 17) and all other years (n = 60).

Time Period Bare Ground Herbaceous Litter Sagebrush Shrub

All other years 0.82 0.74 0.42 0.57 0.63
2015 0.95 0.90 0.97 0.81 0.88

Next for the spatio-temporal analysis, we plotted individual pixel values of corresponding HRS
and BIT predictions against each other, aggregated across space and time at 770,000 points. Data from
all HRS sites and years were included. Again, we calculated regression statistics: R2, root-mean square
error (RMSE) given in units of percent cover, and p-value were calculated for each component. Finally,
we compared the spatio-temporal response of both datasets to Daymet climate variables [25] resampled
to 30 m. We evaluated four climate variables: Water year total precipitation (WYPRCP), water year
mean maximum temperature (WYTMAX), water year mean minimum temperature (WYTMIN), and
growing season (April–September) total precipitation (GSPRCP). Temporal analysis was performed
using Microsoft Excel and spatio-temporal analyses in R.

3. Results

3.1. Temporal Correlations

Temporal correlations between HRS and BIT were all robust and significant (p < 0.05), with BIT
data accurately representing temporal variation in ground cover as observed by HRS imagery (Figure 3).
Bare ground was the top performer (R2 = 0.82, RMSE = 6.78%), while shrub (R2 = 0.63, RMSE = 4.20%)
and herbaceous (R2 = 0.74, RMSE = 6.71%) were also strongly related. Across components, the mean
temporal correlation was a R2 of 0.63 and RMSE of 5.47%. A total of 17 site-years of HRS data from
2015 in the Wyoming and Montana sites (Figure 1B) was used as training for the base mapping, which
in turn was used to train the BIT predictions. Temporal correlations including data from only 2015 sites
were somewhat stronger than for data pooled from all other years (Table 3), though all correlations
were significant in both pools of data.
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A) Bare Ground: R2 = 0.82, RMSE = 6.78% B) Herbaceous: R2 = 0.74, RMSE = 6.71% 

C) Litter: R2 = 0.42, RMSE = 5.90% D) Sagebrush: R2 = 0.57, RMSE = 3.74% 

E) Shrub: R2 = 0.63, RMSE = 4.20% 

Figure 3. Temporal correlations between high-resolution satellite (HRS) and Back-in-Time (BIT)
Landsat-based predictions for A) bare ground, B) herbaceous, C) litter, D) sagebrush, and E) shrub
cover. Correlations (n = 77 each) reflect the mean HRS prediction at a given site and year versus the
mean of corresponding BIT data based on a sample (n = 10,000) of random points per site per year. The
ordinary-least squares line of best fit and the 1:1 line are plotted as black and red lines respectively.
Note the difference in data range plotted among panels. All correlations are significant (p < 0.05).

3.2. Spatio-Temporal Correlations

To be of value to users, BIT data must be accurate in both the spatial and temporal dimensions. We
found strong spatio-temporal correlations between HRS and BIT data (Figure 4). Across components,
the average R2 and RMSE was 0.52% and 7.89%, respectively, and all relationships were significant
(p < 0.05). As with the temporal correlations, bare ground was the best performer (R2 = 0.69,
RMSE = 11.38%). Bias did exist in the spatio-temporal relationships, where BIT components tended to
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over-predict the low end of each component range and under-predict the high-end relative to HRS
data (see 1:1 line relative to line-of-best fit in Figure 4).Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 20 
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Figure 4. Spatio-temporal correlations between HRS predictions plotted on x-axes and BIT
Landsat-based predictions on y-axes for A) bare ground, B) herbaceous, C) litter, D) sagebrush,
and E) shrub cover.. Correlations (n = 770,000 each) reflect component predictions at individual pixels
from HRS and BIT datasets plotted against each other. Point density is represented as light blue (low
density) to bright green (high density). The ordinary-least squares line of best fit and the 1:1 line are
plotted as black and red lines, respectively. Note the difference in data range plotted among panels. All
correlations are significant (p < 0.05).
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3.3. Climate Relationships

Climate relationships were similar between the HRS and BIT data and the direction of relationships
was as expected (Figure 5). Bare ground was negatively related to WYPRCP in both the HRS data
(r = −0.42) and BIT data (r = −0.41) (Figure 5A). The HRS data tended to have slightly higher overall
mean absolute relationship with climate (r = 0.23) than BIT data (r = 0.22), but in comparison to
WYPRCP alone, BIT data had stronger relationships (r = 0.32) than HRS data (r = 0.29). Litter
withstanding, the directions of climate relationships in all components followed expectations in both
datasets. While some climate relationships were quite weak (e.g., bare ground with WYTMAX), all
were significant (p < 0.05) because of the large sample size.
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4. Discussion

The temporal relationships between HRS and BIT data were strong across a broad range of
vegetation types, disturbance histories, and management practices in the study area. The strength of
the correlations, combined with low RMSE values, indicate that the BIT process accurately captured the
vegetation characteristics of a site as both a snapshot in time and with regard to its temporal dynamics.
However, some HRS site-years occurred as outliers in the correlations. These can be explained in large
part by the less-than-ideal dates of high-resolution imagery acquisition. For example, the image for
site WY28 in 2007 was acquired on 10 October (Table 1), far past the period of peak greenness targeted.
This date of acquisition likely resulted in a low mean predicted herbaceous cover in the HRS data
(6.02%) compared to the BIT data (16.98%). The BIT mean component cover values were likely closer
to the true value than the HRS data in this case.

Bare ground was the overall top performer in both the temporal (Figure 3) and spatio-temporal
(Figure 4) correlations, similar to that observed in previous generations of BIT mapping [5] and base
mapping [1]. Bare ground is a key indicator of degradation in rangelands and critical to interpreting
ecosystem response to grazing, climate change, and fire [26–28]. We considered bare ground to be the
most important of our fractional components, and the current analysis demonstrates that practitioners
could implement it with a high degree of confidence. Litter cover had the weakest correlations
(Figures 3 and 4), similar to previous work [1,2,5], and tended to be more erratic in the climate analysis
(Figure 5). Litter cover may have been more difficult to map with only one season of HRS imagery,
due to its temporally dynamic nature [24] ostensibly leading to confusion in distinguishing between
herbaceous and litter cover.

Spatio-temporal climate relationships were consistent between the HRS and BIT datasets, except
for litter (Figure 5). This finding underscores the ability of the BIT dataset to accurately represent site
conditions as observed by high-resolution imagery and the tight coupling of vegetation growth and
soil moisture in drylands [16]. We found component relationships with WYPRCP similar in direction,
but weaker in strength relative to previous BIT analysis in the northwest Great Basin by Shi et al. [4].
However, component responses to WYTMIN and WYTMAX differed somewhat. For example, it was
found that there were weak negative relationships between WYTMIN and shrub and sagebrush cover,
while Shi et al. found strong negative relationships [4]. Shi et al. evaluated only the temporal aspect of
climate relationships [4], while we evaluated the relationship spatio-temporally. Our differing results
highlight the influence of the spatial dimension, through which component response to climate varies
among sites.

The spatio-temporal correlations found in the current work (Figure 4) were stronger than previously
independent validation results of base fractional component mapping [1,2]. Across the five components
analyzed, the mean R2 was 0.52 and RMSE was 7.89%, relative to a mean R2 of 0.50 and RMSE of
11.89% observed at independent validation points (n = 1,860) across the Western U.S. [1]. Similar
to independent validation of the base fractional component maps [1,2] we found bias in the BIT
component predictions. Component cover tended to be over-predicted at the low end of the component
range and under-predicted at the high end, resulting in a slope less than 1 (Figure 4). These biases are
a known constraint of RT modeling, which by their nature lead to a regression of predicted values
toward the mean [29,30].

4.1. Methodological Concerns

Some HRS data from 2015 were included in development of the base map, which itself was used to
train BIT predictions. Though we found somewhat stronger correlations of BIT data to 2015 HRS data
relative to other years, HRS data from 2015 composed less than 25% of our total data and are several
processing steps removed from the BIT data. While the stronger correlations between HRS and BIT
data in 2015 are partly due to their use in training, there were other factors contributing to this pattern.
First, the 2015 HRS data were produced using WorldView 3 satellite imagery which has improved
spectral performance relative to imagery used in other years (Table 2). Second, we implemented
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improved field data collection methods in 2015 with a greater number of field observations and more
dynamic plot selection relative to previous years [2].

Impacts of potential misregistration or geometric displacement of HRS imagery [8,17,31], were
shown to be limited due to our focus on orthorectification. In our study, misregistration would result
in a weakening of the HRS component relationship with BIT data, particularly in the spatio-temporal
analysis. While the spatio-temporal relationships (Figure 4) were somewhat weaker than the temporal
relationships (Figure 3), they were still robust. Averaging of HRS and BIT data across HRS sites in the
temporal analysis would be expected to remove all impacts of misregistration and suppress the spatial
variance within a site, resulting in stronger correlations.

4.2. Application

Validation of time-series fractional remote sensing products has received little attention in the
literature. Jones et al. used out-of-bag (i.e., withheld from training pool) samples to validate fractional
rangeland cover [32]. Li and Gong validated a fractional coastline map in Florida using a series of
10 sites classified with aerial orthoimagery [31]. Our HRS dataset is uncommon, and possibly unique,
in the scope of field data collected contemporaneously with imagery acquisition. The value of the HRS
data as validation for BIT or other time-series data is the breadth of space and time in which field
observations occurred, which were purposely designed to be scaled up to Landsat-scale data. The
breadth of space included is important to obtaining valid error estimates as mapping error is often
spatially auto-correlated [14].

BIT have been proven useful in management and research applications. Barker et al. for example,
successfully related BIT products to BLM field vegetation observations in burned areas finding that
BIT data helped to extrapolate field data [33]. Monroe et al. used BIT data to monitor and model the
recovery of oil and gas wells in Wyoming following the end of their productive lives [34]. Our goal
in this analysis was to instill greater confidence in the veracity of BIT data to bolster usage in both
the management and research communities. Data generated during this study are available as a U.S.
Geological Survey data release [35].

5. Conclusions

Robust correlations between HRS and BIT data were found through time and through space
and time. Moreover, similar spatio-temporal climate relationships existed in the HRS and BIT
datasets. Temporal correlations between HRS and BIT data averaged a R2 of 0.63 and RMSE of
5.47% across components. Spatio-temporal correlations were slightly weaker, averaging a R2 of 0.52
and RMSE of 7.89% across components. The high-resolution imagery-based approach dramatically
increased the validation sample size relative to direct comparison to the field data, with millions of
potential observations.

All correlations between HRS and BIT were robust and significant, confirming our hypotheses.
There are no generally accepted thresholds for error, and tolerance for error will vary among applications.
We, however, clearly demonstrated that BIT component cover generally corresponded to temporal
and spatial patterns observed in the field observations, as prediction in the HRS data. Relationships
between HRS and BIT data were strong across a broad range of vegetation types, disturbance histories,
and management practices in the study area. Our validation results serve to increase confidence in the
BIT time-series of rangeland components, fostering increased usage in land management decisions
and research applications.
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