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Abstract: Bulgaria is a country with a high frequency of hail and thunderstorms from May to
September. For the May–September 2010–2015 period, statistical regression analysis was applied
to identify predictors/classification functions that contribute skills to thunderstorm forecasting in
the Sofia plain. The functions are based on (1) instability indices computed from radiosonde data
from Sofia station F1, and (2) combination of instability indices and Integrated Water Vapor (IWV),
derived from the Global Navigation Satellite System (GNSS) station Sofia-Plana, F2. Analysis of the
probability of detection and the false alarm ratio scores showed the superiority of the F2 classification
function, with the best performance in May, followed by June and September. F1 and F2 scores
were computed for independent data samples in the period 2017–2018 and confirmed the findings
for the 2010–2015 period. Analysis of IWV and lightning flash rates for a multicell and supercell
thunderstorm in June and July 2014 showed that the monthly IWV thresholds are reached 14.5 and
3.5 hours before the thunderstorm, respectively. The supercell IWV peak registered 40 min before the
thunderstorm, followed by a local IWV minimum corresponding to a peak in the flash rate. In both
cases, an increase of IWV during severe hail was registered, which is likely related to the hydrometeor
contribution to GNSS path delay. The results of this study will be integrated into the Bulgarian
Integrated NowCAsting tool for thunderstorm forecasting in the warm/convective season.
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1. Introduction

Bulgaria is a country with a high frequency of thunderstorms during the warm part of the year,
from April to September. A pan-European study of thunderstorm climatology [1] reported that the
regions with the highest frequency are (1) the central Mediterranean, (2) the Alps, (3) the Balkan
Peninsula, and (4) the Carpathians. The annual peak of thunderstorm activity is in July and August
in northern, eastern, and central Europe, and in May and June for western and southeastern Europe.
Trend analysis of the mean annual number of days with thunderstorms since 1979 indicates an increase
in southeastern Europe. Stations in southeastern Europe, Belgrade, Bucharest, and Sofia, share similar
features, with well-defined peaks in the summertime and a rapid increase in April/May, and a decrease
in October. For Sofia, the highest in Europe, the mean annual number of days with thunderstorms and
severe thunderstorms has been reported, respectively, at 44 and 13 days. Severe thunderstorms are
defined in [1], based on (1) radiosonde data: (a) mixed-layer convective available potential energy
(CAPE > 150 J/kg) and convective inhibition (CIN > 275 J/kg), and (b) deep-layer shear combined with
CAPE (WMAXSHEAR > 400 m2/s2); (2) Global Atmospheric reanalysis (ERA-Interim): (a) mixed-layer
CAPE > 150 J/kg, (b) convective precipitation >0.075 mm/h, mixed-layer WMAXSHEAR > 400 m2/s2.
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Ref. [2] reports that west Bulgaria is the region with the highest frequency of thunderstorms, but also
severe weather events, including hailstorms, torrential precipitation, and severe convectively-induced
wind storms. A recent study by [3] reported on three supercell storms which developed over western
Bulgaria on 8 July 2014, with hail stone sizes of up to 10 cm, strong wind gusts, and torrential
rain. The Doppler radar data revealed the existence of a mesocyclone, meso-anticyclone, microburst,
and a three-body scatter signature. Ref. [4] conducted a study over 155 days with precipitation in
southern Bulgaria from May to September 2002–2006, with separation into two samples: (1) days
with frontal convective clouds, and (2) days with free convection. It was reported that for days with
hail, the mean values and the thresholds of instability indices Convective Available Potential Energy
(CAPE) and Lifted Index (LI) were similar to the values determined for thunderstorm development
in other regions of Europe. However, it was concluded that neither the instability indices nor the
environmental parameters (temperature and pressure at Lifted Condensation Level) were able to
differentiate the precipitation type. Similar results are reported from other authors [5–9]. Their
studies showed that instability indices alone are not able to predict the probability of thunderstorm
development satisfactorily. Furthermore, the universally determined threshold values are often
unsatisfactory for different geographical areas with specific meteorological conditions. For these
reasons, Refs. [7–9] propose new local threshold values, and a combination of different instability
indices and atmospheric parameters.

A review [10], covering the application of ground-based Global Navigation Satellite Systems
(GNSS) for studying water vapor field evolution, concluded that there is “clear evidence of the benefits
that GNSS can bring to the monitoring of severe weather events”. A study in Portugal [11] reported that:
(1) the temporal variation of GNSS derived Integrated Water Vapor (IWV) correlated with rainfall, and
(2) can be used for the detection of heavy rain. A recent study [12] focused on the short-term forecast
of intense rainfall using a neural network approach, and integration of IWV with meteorological data.
Reported was an improvement in intense rainfall event detection and a reduction of the number of
false-positive alarms, with a good classification score varying from 63% up to 72%, and a false positive
rate of 21%. Reported was also a very high hit rate for the rain versus no rain detection and close to zero
false alarms. Ref. [13] proposes a method for retrieving two indices for the degree of inhomogeneity
of water vapor using the GNSS carrier phase. The first index describes the spatial variation of Water
Vapor Concentration (WVC), while the second indicates higher-order Water Vapor Inhomogeneity
(WVI). The horizontal scales of the indices are about 60 km and 2–3 km, respectively. The indices
were applied over Japan for August 2011, and their monthly averaged values indicated: (1) distinct
diurnal variation in the mountainous region of central Honshu, and (2) coincidence with the diurnal
variation in precipitation frequencies in the area. The relations between the indices and precipitation
indicate that the WVI is strongly correlated with intense rainfall than IWV. IWV was found to be more
strongly related to precipitation lower than 10 mm/h. The spatiotemporal variations of WVC and
WVI were studied for a thunderstorm on 11 August 2011 for the Tokyo area, and both were found to
increase ahead of the initiation of convective precipitation [13]. Ref. [14] investigated the relationships
between intense rainfall and the convergence of surface winds and WVC for heavy-rainfall cases in
July–August 2011–2013. It was reported that: (1) the peak of surface wind convergence was observed
10–30 min before the heavy rainfall, (2) convergence continued to increase for approximately 30 min
prior to the convergence peak time, and (3) an increase of WVC coincided with an increase in wind
convergence. Thus [14] concluded that it would be possible to predict rapidly and accurately the
occurrence of heavy rainfall by monitoring the temporal variations and the distributions of surface
wind and WVC by a high-density observation network, like the one in the Tokyo region. Ref. [15]
studied the relation between the high-frequency IWV (1 min) and intense rainfall events in Brazil, in
the November–December 2011 period. A sharp IWV increase, or “jump”, was found before intense
rainfall and believed to be associated with water vapor convergence, the continued formation of cloud
condensate, and precipitation particles. A wavelet correlation analysis showed oscillations in the
IWV time series correlated with the intense rainfall events. These oscillations are on scales related to
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periods of approximately 32 to 64 min (associated with IWV jumps), and 16 to 34 min (associated with
positive IWV pulses). The IWV time-derivative histogram before the rainfall event revealed different
distributions influenced by positive IWV pulses (derivative >9.5 kg/m2/hr) for higher intensity and
extension events.

Reported in [16] is a severe flood, caused by intense rainfall, in Colorado, USA, from 9 to 16
September 2013. Analysis of IWV for the 10-year period showed that in 2013: (1) the seasonal IWV
maximum extended into early September, and (2) the September monthly mean IWV exceeded the
99th percentile of climatology with a value 25% higher than the 40-year climatology. Prior to the
flood, a rapid increase in IWV was found from 22 to 32 kg/m2, and remained around 30 kg/m2 for the
entire event. The IWV frequency distribution in September was typically normal, while in 2013, a
bimodal distribution was found with above-average IWV from 1 to 15 September, and much drier
conditions from 16 to 30 September. The positive IWV anomaly during the flood was found to be a
result of large-scale moisture transport from the Tropical Eastern Pacific and the Gulf of Mexico [16].
The potential of high-frequency IWV (5 and 15 min) in combination with weather radar reflectivity
was exploited by [17] for a derecho event in Poland on 11 August 2017. Reported is a strong agreement
between the IWV and the rate of IWV change spatial maps and radar reflectivity, with the maximum
values of reflectivity and precipitation coinciding with the maximum IWV values. In addition, the
GNSS derived gradients converged toward the maximum values of reflectivity. Ref. [18] presented an
H2O alert system for Belgium using GNSS derived horizontal gradients of the water vapor content
to detect small scale structures of the troposphere for a rainfall event on 28–29 June 2005. The alert
was based on a dry/wet contrast in a 30 min time window before the initiation of a convective system.
Validation of the alert system with precipitation by weather radar and satellite-derived cloud top
temperature gave a score of about 80%. Ref. [19] reports on an extensive observing period in May–June
2013, with heavy rain and floods in the Czech Republic and the catchment area of the Danube river
in central Europe, and the northern part of the Alps. GNSS derived gradients were found to be
significantly higher compared to the one derived from Numerical Weather Prediction (NWP) models.
GNSS tropospheric products were found to provide more detailed structures in the atmosphere than
the NWP models were able to capture.

This manuscript aims to exploit the synergy between GNSS derived IWV and instability
indices, to obtain a GNSS-based product tailored for thunderstorm analysis and nowcasting in
the Sofia plain. In Section 2 the GNSS derived IWV dataset is presented, as well as the instability
indices and statistical analysis. The classification function scores for thunderstorm forecasting in the
May–September 2010–2018 period are discussed in Section 3.1, and two case studies of supercell and
multicell thunderstorms are presented in Section 3.2. Discussion and conclusions are in Sections 4
and 5, respectively.

2. Datasets and Method

2.1. Observation Datasets

The data used in this manuscript are from Sofia University Atmospheric Data Archive (SUADA).
SUADA [20] was developed in 2012 as a regional database aiming to facilitate the use of GNSS
tropospheric products for meteorological and climatic studies in Bulgaria and southeastern Europe.
The archived observations include: (1) GNSS, (2) surface synoptic observations (SYNOP), and (3)
upper-air sounding (ROAB). Also archived in SUADA are numerical simulations with the Weather
Research and Forecasting (WRF) NWP model. A schematic presentation of the SUADA dataflow
used in this manuscript is presented in Figure 1a, with a detailed description of each data source
given below.
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Figure 1. (a) Schematic presentation of data flow. (b) Map of Sofia with marked position of Global 
Navigation Satellite System (GNSS) station SOFI-Plana (SOFI, blue dot) and synoptic and 
radiosonde Sofia station (red dot). 
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The GNSS tropospheric products from stations Sofia-Plana (SOFI, altitude 1164 m asl.) are 
provided by the International GNSS Service (IGS). The tropospheric products for SOFI (blue dot on 
Figure 1b) are from IGS Final Troposphere estimates produced with Bernese GPS Software 5.0 (up 
to 2017) and 5.2 (from day 29 of year 2017) [21], using precise point positioning [22]. The IGS 
processing strategy [23] has the following setup: (1) IGS Final satellite orbits/clocks earth orientation 
parameters, (2) 7o elevation cut-off angle, (3) Global mapping function (GMF), hydrostatic and wet 
mapping functions [24], (4) 27 h data arc, (5) 5 min data rate, and (6) relative a-priori sigmas; for 
Zenith Total Delay (ZTD) 1 mm and for gradients 0.1 mm. The tropospheric product from GNSS 
processing used in this work is ZTD. To derive IWV, the surface pressure (ps, (hPa)) and 
temperature (ts, (K)) were used. Zenith Wet Delay and IWV are calculated following [25,26] 

ZWD = ZTD − 0.0022768 ps / (1 − 0.00266 cos (2 ϑ − 0.00028 h)), (1) 

IWV = ZWD (106 / ((k3/Tm + k'2) Rv)), (2) 

Tm = 70.2 + 0.72 ts , (3) 

where k'2 = (17±10) (K/hPa), k3 = (3.776±0.004)105 (K2/hPa) are constants [27], Rv = 461.51 (J/(kg K)) is 
the gas constant for water vapor, Tm (K) is the weighted mean atmospheric temperature, h (km) is 
the height, and ϑ is the latitude variation of the gravitational acceleration. The used surface 

Figure 1. (a) Schematic presentation of data flow. (b) Map of Sofia with marked position of Global
Navigation Satellite System (GNSS) station SOFI-Plana (SOFI, blue dot) and synoptic and radiosonde
Sofia station (red dot).

2.1.1. GNSS Tropospheric Products—SOFI Station

The GNSS tropospheric products from stations Sofia-Plana (SOFI, altitude 1164 m asl.) are
provided by the International GNSS Service (IGS). The tropospheric products for SOFI (blue dot on
Figure 1b) are from IGS Final Troposphere estimates produced with Bernese GPS Software 5.0 (up to
2017) and 5.2 (from day 29 of year 2017) [21], using precise point positioning [22]. The IGS processing
strategy [23] has the following setup: (1) IGS Final satellite orbits/clocks earth orientation parameters,
(2) 7◦ elevation cut-off angle, (3) Global mapping function (GMF), hydrostatic and wet mapping
functions [24], (4) 27 h data arc, (5) 5 min data rate, and (6) relative a-priori sigmas; for Zenith Total
Delay (ZTD) 1 mm and for gradients 0.1 mm. The tropospheric product from GNSS processing used in
this work is ZTD. To derive IWV, the surface pressure (ps, (hPa)) and temperature (ts, (K)) were used.
Zenith Wet Delay and IWV are calculated following [25,26]

ZWD = ZTD − 0.0022768 ps/(1 − 0.00266 cos (2 ϑ − 0.00028 h)), (1)

IWV = ZWD (106/((k3/Tm + k’2) Rv)), (2)

Tm = 70.2 + 0.72 ts, (3)
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where k’2 = (17±10) (K/hPa), k3 = (3.776±0.004)105 (K2/hPa) are constants [27], Rv = 461.51 (J/(kg K)) is
the gas constant for water vapor, Tm (K) is the weighted mean atmospheric temperature, h (km) is the
height, and ϑ is the latitude variation of the gravitational acceleration. The used surface pressure and
temperature are from (1) SYNOP observations with temporal resolution of 3 hours for calculating IWV,
analyzed in Section 3.1, and (2) WRF simulations with temporal resolution 15 minutes for calculating
IWV analyzed in Section 3.2.

The pressure difference between the GNSS and SYNOP station altitude was calculated using the
polytropic barometric formula [28]

ps = pm (
t

t − L
(
Hg − Hm

) )(g M/R L), (4)

where ps is the pressure at the GNSS station altitude, pm is the pressure at SYNOP station altitude/WRF
grid point, t (K) is the temperature in SYNOP station/WRF grid point, L (6.5 (K/km)) is tropospheric
lapse rate, Hm (km) is the altitude of the SYNOP station/WRF grid point, Hg (km) is the altitude of the
GNSS station, g is the gravitational acceleration, M (g/mol) is the molar mass of air and R ((Nm)/(mol
K)) is the universal gas constant.

WRF version 3.7.1 [29] was used to derive GNSS IWV with a temporal resolution 15 min. The
WRF inner domain covers Bulgaria, and has a horizontal resolution of 2 km and 45 vertical levels.
The simulations were conducted using the following parametrizations schemes: (1) Unified Noah
land-surface model for the land surface [30], (2) Yonsei University scheme for the planetary boundary
layer [31], (3) Lin scheme for the microphysics [32], and (4) Rapid Radiative Transfer Model for
long/short-wave radiation [33]. Initial and boundary conditions are from the Global Forecasting System
NWP model.

2.1.2. Surface, Upper-Air and Lightning Observations at Sofia

The surface synoptic observations of (1) 2 m air temperature (ts), (2) pressure (ps), and (3) weather
type, at station Sofia (595 m asl.), were collected manually by the National Institute of Meteorology and
Hydrology (NIMH), at 00, 03, 06, 09, 12, 15, 18, and 21 UTC. In Figure 1b, the position of station Sofia is
marked with a red dot. To compute the instability indices, the radiosonde (ROAB) profiles from Sofia
station at 12 UTC were used. The instability indices used in discriminant analysis, their formula, and
the reference are given in Table 1. In addition, the environmental parameter, temperature, at Lifted
Condensation Level (TLCL) was calculated. Lightning data, including the observed time and location in
latitude and longitude of cloud to groundstrokes, were from the European lightning detection network
(LINET) [34,35]. The flash rate was calculated as the number of flashes per 4 min (FR/4min).

Table 1. List of instability indices. Column: (1) abbreviation and name, (2) formula, and (3) reference.

Index Abbreviation
Full Name Formula Reference

SWEAT
Severe Weather Threat Index

20(TT −49) + 12 D850 + 2 V850 +
V500 + 125 (sin (∆V500-850) + 0.2)) [36]

SHI
Showalter Index

T500 − Tlp(850hPa) [37]

LI
Lifted Index

Tlp(fcs surface) −T500 [38]

K
K Index (T850 − T500) + D850 - (T700 − D700) [39]

CAPE
Convective Available Potential

Energy
g

∑ Tp −Te
Te

∆z [40]
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Table 1. Cont.

Index Abbreviation
Full Name Formula Reference

TT
Total Totals Index (T850 − T500) + (D850 − T500) [36]

BRN
Bulk Richardson Number

CAPE
1
2 U2 [41]

In Table 1, (1) V850 and V500 are the 850 and 500 hPa wind speeds (kn), (2) D850 and D700 are
dewpoint (C) at 850 and 700 hPa, (3) Tlp(850hPa) is temperature (C) at 500 hPa of a parcel lifted from
850 hPa, (4) Tlp(fcs surface) is 500 hPa temperature (C) of a lifted parcel with the average pressure,
temperature, and dewpoint of the layer 500 m above the surface (subscripted FCS surface), and (5) Tp

is the temperature of a parcel from the lowest 500 m of the atmosphere, raised dry adiabatically to
the Lifted Condensation Level (LCL), and moist adiabatically thereafter; Te is the temperature of the
environment, ∆z is an incremental depth, and (6) U is vector difference between 0–6 km mean wind
speed and 0–0.5 km mean wind speed. Subscript lp denotes a value associated with a lifted parcel [42].

2.2. Statistical Analysis

Days from May to September 2010–2015 with available IWV data were included in the statistical
analysis. Based on SYNOP data, the days were divided manually into two samples: (1) no thunderstorm
group (NTH), including 350 days with no thunderstorm occurrence over Sofia region and, (2)
thunderstorm group (TH), including 248 days with thunderstorms having formed and developed
over the Sofia region. The environmental conditions (instability indices and IWV) for the days from
both groups were analyzed. The basic statistics, median, mean, and 10, 25, 75, and 90 percentiles of
IWV, and Instability Indices (InI), were estimated separately for NTH and TH groups. A F-test, with
a confidence level of 0.05, was applied to determine the statistically significant difference between
the groups. The standard discriminant analysis, using StatSoft [43], was applied to obtain the critical
values (threshold) of the IWV that separate the days into two groups, for NTH and TH. Stepwise
discriminant analysis [43] was used to search for classification functions F(TH, NTH) that determine
the case type (NTH or TH), based on: (1) instability indices F1(InI), and (2) instability indices and IWV
of F2(IWV,InI). The values of F(TH, NTH) ≥ 0 classified the case as a thunderstorm. The stepwise
forward procedure was performed to evaluate at each step, which of the analyzed variables contributed
most to the discrimination between groups. The standard criteria (p-level, Wilk’s lambda) were
used as an indication of the statistical significance of a model built by stepwise discriminant analysis.
Classification functions are determined separately for each month and in addition to the period from
May–September. The following four skill scores were calculated for the classification functions

(1) Probability of detection (POD) [44]:

POD = THC/(THC+THI) (5)

(2) False alarm ratio (FAR) [44]:

FAR = NTHI/(THC+NTHI) (6)

(3) Critical Success Index (CSI) [44]:

CSI = THC/(THC+THI+NTHI) (7)

(4) True Skill Statistic (TSS) [45]:

TSS = THC/(THC+THI) - NTHI/(NTHI+NTHC) (8)
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where (1) THC is the number of correctly classified thunderstorm days, (2) THI is the number
of incorrectly classified thunderstorm days, (3) NTHC is the number of correctly classified
no-thunderstorm days, and (4) NTHI is the number of incorrectly classified no-thunderstorm days.
The ability for the classification function to predict the day type NHT and TH was tested using an
independent data sample with 61 TH and 77 NTH days, from May to September 2017–2018.

3. Results

3.1. Classification Functions for Thunderstorm Forecasting

3.1.1. IWV Threshold for TH and NTH Days 2010–2015

In this study, the IWV threshold values are calculated for the thunderstorm season from May to
September 2010–2015. As seen in Figure 2, there is a good separation between TH and NTH groups.
IWV for TH group (red color) is characterized with higher values than the NTH group (blue color).
There is a difference between the mean values (Figure 2) and median values (Figure 3) of IWV for
both groups. The analysis shows that the biggest difference is in September. For NTH and TH days,
the mean values are 20.67 and 28.20 kg/m2, respectively, and 20.83 and 27.78 kg/m2 for the median,
respectively. For the other months, the differences: 1) mean IWV TH minus IWV NTH and 2) median
IWV TH minus IWV NTH are about 4 kg/m2. In May, maximum daily values of IWV higher than 20
kg/m2 are registered in only 19% of NTH days and in 65% of TH days (Table 2, line 2). In June, the
maximum daily IWV values higher than 24 kg/m2 are registered in 28% of all NTH days and in 68%
of TH days. Similar results are obtained for July and August (Table 2). In September, 82% of NTH
days have maximum daily IWV up to 26 kg/m2, while for 86% of TH days, the registered maximum
values are higher than 26 kg/m2. The results are confirmed by the F-test, which shows that there is a
significant difference in the maximum IWV registered on TH and NTH days.

Table 2. Maximum daily Integrated Water Vapor (IWV) value (column 2) and corresponding fraction
of the days that registered no thunderstorm (NTH) (column 3) and thunderstorm (TH) (column 4), for
the selected month (column 1).

Month IWV
(kg/m2)

NTH Days
(% of All NTH days)

TH Days
(% of All TH days)

May >20 19 65
June >24 28 68
July >28 28 51

August >28 11 64
September >26 18 86

Based on preliminary statistical analysis, corresponding monthly threshold values were computed
(Table 3). In all months, the percentage of correctly classified TH days was more than 65%. The highest
number of correctly classified TH days was in August and September, with POD values of 0.79 and
0.91, respectively. The percentage of correctly classified NTH days were 87% in May and 69% in June.
For July and September, the FAR values were above 0.40 and the highest FAR of 0.51 was in August.
Thus, it should be noted that based on IWV, only a large number of false alarms are expected. An IWV
threshold for the May–September period was also computed, and it was 23.5 kg/m2. For this threshold,
67% of TH were correctly classified, but the false alarm was very high 45% (Table 3).
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Table 3. Monthly threshold of IWV (column 2), Probability of Detection (POD) (column 3), and False
Alarm Ratio (FAR) values (column 4).

Month IWV [kg/m2] POD FAR

May 19.68 0.69 0.13
June 23.09 0.75 0.31
July 27.05 0.69 0.44

August 25.60 0.79 0.51
September 24.55 0.91 0.46

May–September 23.50 0.67 0.45

3.1.2. Classification Functions May–September 2010–2015

The results presented in Section 3.1.1 provoked further investigation of IWV application in
thunderstorm forecasting. To improve the forecasting ability, instability indices CAPE, BRN, LI, K, TT,
SHI, SWEAT, and environmental parameters TLCL were included in the analysis. Stepwise discriminant
analysis was applied to derive two classification functions based on (1) instability indices (F1), and (2)
instability indices in combination with IWV (F2). In Table 4 the classification functions F1 and F2 that
provide the best separation between TH and NTH days are shown. It should be noted that CAPE and
BRN were not selected by the stepwise discriminant analysis and consequently, they were not included
in the classification functions F1 and F2. Detailed investigation of CAPE values for the selected period
showed no separation between TH and NTH days (not shown). For the monthly classification function
F1, the following indices were chosen by forward stepwise analysis: (1) May—K, LI and SWEAT, (2)
June—K, TT, SHI, and SWEAT, (3) July—K, TT, SHI, TLCL, and LI, (4) August—SHI, LI SWEAT, K, and
TT, and (5) September—SWEAT, K, SHI, LI, and TT. It should be noted that in four months, the K, TT,
and LI indices were selected, and in three months, the SWEAT and SHI indices were selected. For
the monthly F2 the chosen indices were: (1) May—SHI, TT, and K, (2) June—SHI, K, TT and TLCL, (3)
July—SHI, LI, K, TT and TLCL, (4) August—TT, SHI and SWEAT and (5) September—SHI, SWEAT, K,
and TT. For F2 in five months, the SHI and TT indices were selected, and in three months the K index
was selected. Interestingly, the indices selected for the monthly F1 and F2 differed. The F-test analysis
showed that only the K index and IWV had statistically significant values for TH and NTH days.

Table 4. Monthly classification functions were based on (1) instability indices (InI) (column 2)—F1, and
(2) instability indices and IWV (column 3)—F2. The last line presents the F1 and F2 functions for the
May–September 2010–2015 period.

Month F1 (InI) F2 (IWV,InI)

May 0.15×K + 0.32×LI + 0.01×SWEAT − 5.355 0.54×IWV + 1.36×SHI + 0.74×TT + 0.07*K −
51.16

June 0.11×K + 0.57×TT + 0.97×SHI +
0.01×SWEAT − 33.35

0.16×IWV + 1.24×SHI + 0.08×K + 0.75×TT
+ 0.24×TLCL − 110.97

July 0.06×K + 0.80×TT + 0.79×SHI + 0.34×TLCL
+ 0.44×LI − 136.17

0.16×IWV + 0.45×SHI + 0.27×LI + 0.02×K +
0.58×TT + 0.16×TLCL − 78.34

August 1.43×SHI – 0.34×LI + 0.03×SWEAT –
0.01×K + 0.77×TT – 40.92

0.28×IWV + 0.99×TT + 1.72×SHI +
0.03×SWEAT – 59.33

September 0.03×SWEAT + 0.06×K + 1.35×SHI -0.59×LI
+0.40×TT – 26.12

0.83×IWV + 1.48×SHI + 0.01×SWEAT –
0.06K + 0.64×TT - 52.54

May–September 0.63×TT + 0.05×K + 0.74×SHI + 0.21×TLCL
+ 0.01×SWEAT + 0.32×LI – 92.12

0. 24×IWV + 0.85×TT + 1.44SHI +
0.01×SWEAT + 0.11×TLCL + 0.02×K – 81.57

In Figure 4, skill scores for F1(InI) and F2(IWV,InI) from May to September 2010–2015 are presented.
The F1 POD score (light blue bars) was in the range of 0.75–0.89, with the lowest value being seen in
August, and the highest in July. The F2 POD scope (dark blue bars) is in the range of 0.83–0.94, with
the lowest value in August and the highest in June. The comparison between F1 and F2 monthly POD
scores gave an advantage to F2, with the largest improvement of 10% in September, followed by June
and August (8%), and May and July (4%). Comparison of the FAR score gave a range of 0.22–0.56 and
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0.13–0.39 for F1 and F2, respectively. The largest reduction in the false alarm ratio was is in September
(29%), followed by May (9%) and August (5%). In July, the FAR score of F2 was worse, with −4%
compared to F1. Analysis of the POD and FAR score gave the best performance of the F2 function for
May with a POD score of 0.89 and a FAR of 0.13, followed by June with a POD score of 0.94 and a FAR
of 0.24, and September with a POD score of 0.91 and a FAR of 0.27. These results are expected, and
directly linked to discussed in Section 3.1.1; good separation between IWV values for the TH and NTH
days for those months. As seen in Figure 4 for July and August, both F1 and F2 functions had a false
alarm ratio above 0.3. This is likely related to one side having the lower number of TH days, and the
largest range of IWV overlap for TH and NTH days (see Figure 2). A visual inspection of CSI and TSS
scores showed that they are higher for F2 for all months, with the largest increase in September, by 28
and 31% for CSI and TSS, respectively. For July, both CSI and TSS scores for F1 and F2 were very close.
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In order to facilitate the operational forecasting of convection development, a classification
function valid for the May to September period was also computed (Table 4, line 7). The obtained skill
scores for F2 are a POD score of 0.90, a FAR of 0.29, a CSI of 0.66 and a TSS of 0.64 (Figure 4, bottom
right). These scores were worse than the monthly F2 scores for May, June, and September. Thus, it can
be concluded that it is recommended to use monthly functions for operational forecasting.

3.1.3. Verification of Classification Functions for May–September 2017–2018

For the independent sample period, May-September 2017–2018, the monthly skill scores were
calculated for the F1 and F2 functions (Figure 5). For this period, the F1 POD score (light blue bars) was
in the range of 0.55–1.0 with the lowest value in June, and highest in September. The F2 POD scope
(dark blue bars) was in the range of 0.73–1.0 with the lowest value in July, and highest in August and
September. The comparison between F1 and F2 monthly POD scores gave an advantage to F2, with the
largest improvement of 35% in June, followed by 25% in August and 5% in May. The monthly FAR
score was in the range of 0.21–0.50 and 0.08–0.43, for F1 and F2, respectively. The largest reduction
of the false alarm ratio was 40% in July, followed by 25% in September, 12% in August, and 11% in
May. Combined analysis of the POD and FAR scores gave the best performance to the F2 function for
September, with a POD score of 1.0 and a FAR of 0.25, followed by June with a POD score of 0.90 and
a FAR of 0.25, and May with a POD score of 0.95 and a FAR of 0.28. This result confirms that May,
June, and September were the months with the best scores. The CSI and TSS scores were higher for
F2 for all months, with the largest increases in July, by 29% and 35% for CSI and TSS, respectively,
followed by August with 19% and 36%, for CSI and TSS, respectively. The values for the skill scores
had higher variation in the 2017–2018 sample compared to the 2010–2015 sample, which is linked to
the smaller sample size. However, the verification of the classification functions with an independent
data sample confirmed the superiority of the classification function based on a combination of IWV
and instability indices.

3.2. Case Studies—Supercell & Multicell Thunderstorm

3.2.1. Multicell Thunderstorm—18 June 2014

On 18 June, the weather in Sofia was determined by a fast-moving cold front going from the west
to the east of Bulgaria. As a result, a severe multicell thunderstorms developed with heavy hail and
rainfall over the Sofia plain. The hailstone sizes were bigger than 2.5 cm in diameter. Using the SOFI
GNSS station, a continuous measurement of IWV during the multicell event was made (Figure 6).
The results from Figure 6 show that there was a strong increase of IWV (blue line in Figure 6) on
the day before the thunderstorm, from 1700 to 2345 UTC. The observed increase was more than 8
kg/m2 and at 2345 UTC, the IWV reached its peak of 28.54 kg/m2. At 2040 UTC on 17 June, the IWV
reached the calculated monthly threshold value of 23.09 kg/m2 (dashed blue line in Figure 6) obtained
in Section 3.1.1, and the process was correctly classified as TH. After reaching the threshold value, IWV
had a small increase and decrease but is still maintaining high values. The IWV had high values for
more than 10 hours, and could be considered as a sign for the potential of thunderstorm initiation.
Visual inspection of the flash rate in the multicell thunderstorm shows an increase from 1048 to 1252
UTC. The first strong flash rate peak (red bars in Figure 6) was at 1252 UTC reaching 18 flashes per 4
min. The flash rate peaked at 1252 UTC, shortly before the severe hail fall registered on the ground.
Between 1200 and 1300 UTC IWV values increased with 3 kg/m2 (about 10%). For the same period, ZTD
increased by 16 mm, and pressure dropped by 1 hPa (not shown). The pressure decrease can explain up
to 1 kg/m2 of the IWV increase, with the remaining being likely related to the hydrometeor contribution
to the GNSS path delay [46]. Ref. [19] reported a maximum contribution of hydrometeors of up to 17
mm ZWD, corresponding to a 3 kg/m2 increase of IWV on 23 June 2013 extreme weather events.
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3.2.2. Supercell Thunderstorm—8 July 2014

On 8 July 2014, a supercell storm developed over the Sofia plain [3]. The temporal variability of
IWV, presented in Figure 7, showed a continuous increase before the supercell detection. The observed
increase from 0400 to 1100 UTC was more than 7 kg/m2. At 0728 UTC, i.e., 3.5 hours before the first
lightning detection, the IWV values reached the monthly threshold of 27.05 kg/m2 (dashed blue line in
Figure 7), and the process was correctly classified as TH. After reaching the monthly threshold values,
the IWV continued to increase. Visual inspection of the flash rate of the supercell showed an increase
from 1100 to 1228 UTC. The flash rate peaked at 1228 UTC, reaching 109 flashes per 4 min. Between
1100 and 1228 UTC, the IWV peaked at 29 kg/m2, and then had a small decrease. The peak of IWV was
detected 40 min before the first flash rate peak. After the IWV and flash rate peaked, a heavy hail fall
was registered on the ground. The hailstone sizes were larger than 10 cm in diameter and produced
major infrastructure loss. It could be seen that during the severe hail fall, the flash rate decreased.
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After the hail, the IWV values continued to maintain high values above 29 kg/m2. The second flash
rate peak, with 112 flashes per 4 min, was detected 4 min after the IWV peak of 31.56 kg/m2. After the
second flash rate and IWV peaks, the cell started to dissipate. IWV values remained high with the
storm dissipation.
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4. Discussion

The forecasting of thunderstorm formation and development is a major challenge in operational
meteorology, and is associated with large economic losses. The hail and thunderstorm on 8 July 2014
in Sofia was estimated to cost over 123 million EUR in insured losses over 2 hours [47]. In this work,
the added value of combining the instability indices with GNSS-IWV has been demonstrated for
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thunderstorm days in the warm part of the year from May to September, for the Sofia plains region.
The results clearly indicate improvement of POD, FAR, CSI, and TSS scores for a classification function,
combining instability indices and IWV for the 2010–2015 period. Furthermore, the performance of
the classification function was tested on an independent sample and its effectiveness was confirmed.
The results were confirmed by the F-test, which showed that there was a significant difference in the
maximum IWV, for TH and NTH days. This is an encouraging result, and suggests that the proposed
function can be used as guidance in diagnosing thunderstorms in the Sofia plains region. The limitation
of this function is its local validity for the Sofia region. However, the obtained quantitative monthly
threshold for thunderstorm development could be useful guidance for operational meteorology. In
particular, the proposed statistical approach can be applied to the instability of indices and IWV
computed from high-resolution mesoscale NWP models like WRF. However, despite the improved
topography representation, the current state-of-the-art mesoscale models underperform in regions
with complex topography, and during thunder and hailstorm events. One of the reasons is the lack of
observations with high temporal and spatial resolution, representing the local environment. Despite
the GNSS derived IWV having a temporal resolution of 15 minutes, its interpretation for the two
case studies in 2014 was a challenge. As shown by other studies, IWV accumulation is one of the
ingredients for thunderstorm formation. However, matching surface observations with high temporal
and spatial resolution is a major limitation of this study. Thus, we were not able to offer a conclusive
indicator for individual thunderstorm and IWV development, as found by studies in other regions
and continents. However, a recently deployed network in Bulgaria is designed to provide collocated
GNSS and surface observations with high temporal resolution, and will overcome this limitation.
Since May 2019, 12 GNSS and meteorological stations have been processed as a part of the BalkanMed
Real-time severe weather service (BeRTISS) project [48]. The results of this study will be used to
improve the thunderstorm forecast in the warm season, and will be included in the Bulgarian Integrated
NowCAsting tool.

5. Conclusions

Thunderstorm climatology shows that Sofia has the highest mean annual number of days with
thunderstorms and severe thunderstorms across Europe. The thunderstorm activity in the Sofia
plain starts with a rapid increase in April/May and decreases in October; thus, this study covers the
thunderstorm period from May to September 2010–2015. For the days with thunderstorms (TH) and
no thunderstorms (NTH), monthly threshold values of IWV were computed, and a good separation
between the two groups was found. Based on IWV alone, the highest probability of detection score
obtained was 0.91 but it was associated with a high false alarm ratio of 0.45. Thus, as a next step,
stepwise discriminant analysis was applied to derive classification functions using 1) instability indices
(F1), and 2) instability indices in combination with IWV (F2). The F-test analysis showed that only the
K index and IWV have statistically significant values for TH and NTH days. A comparison between F1
and F2 monthly probability of detection scores gave an advantage to F2, with the largest improvement
of 10% in September, followed by June and August with 8%. The largest reduction in the false alarm
ratio score was in September, followed by May and August. Analysis of both POD and FAR scores gave
the best performance for May, followed by June and September 2010–2015. Evaluation of the monthly
classification functions was carried out using an independent sample period of 2017–2018. Combined
analysis of the probability of detection and false alarm ratio scores gave the best performance for
September, followed by June and May. This result confirmed the finding from the first sample period,
that for May, June and September, the best scopes are obtained by the classification function combining
IWV and instability indices. The IWV and lightning flash rates for two case studies of a multicell
thunderstorm on 18 June 2014 and a supercell thunderstorm on 8 July 2014, were analyzed. Both
thunderstorms were classified as TH based on the monthly threshold values of IWV for June and July.
IWV reached a monthly threshold of 14.5 and 3.5 hours before the thunderstorm started.
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