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Abstract: Phytophthora root rot (PRR) disease is a major threat in avocado orchards, causing extensive
production loss and tree death if left unmanaged. Regular assessment of tree health is required
to enable implementation of the best agronomic management practices. Visual canopy appraisal
methods such as the scoring of defoliation are subjective and subject to human error and inconsistency.
Quantifying canopy porosity using red, green and blue (RGB) colour imagery offers an objective
alternative. However, canopy defoliation, and porosity is considered a ‘lag indicator’ of PRR
disease, which, through root damage, incurs water stress. Restricted transpiration is considered a
‘lead indicator’, and this study sought to compare measured canopy porosity with the restricted
transpiration resulting from PRR disease, as indicated by canopy temperature. Canopy porosity
was calculated from RGB imagery acquired by a smartphone and the restricted transpiration was
estimated using thermal imagery acquired by a FLIR B250 hand-held thermal camera. A sample of 85
randomly selected trees were used to obtain RGB imagery from the shaded side of the canopy and
thermal imagery from both shaded and sunlit segments of the canopy; the latter were used to derive
the differential values of mean canopy temperature (∆ Tmean), crop water stress index (∆ CWSI), and
stomatal conductance index (∆ Ig). Canopy porosity was observed to be exponentially, inversely
correlated with ∆ CWSI and ∆ Ig (R2 > 90%). The nature of the relationship also points to the use of
canopy porosity at early stages of canopy decline, where defoliation has only just commenced and
detection is often beyond the capability of subjective human assessment.

Keywords: canopy porosity percentage; RGB imagery; canopy thermal imagery; restricted
transpiration; differential crop water stress index (∆ CWSI); differential stomatal conductance
index (∆ Ig); Phytophthora root rot diseases; canopy decline; crop stress

1. Introduction

Phytophthora root rot (PRR), caused primarily by the soil-born Oomycete pathogen
Phytophthora cinnamomi (Pc), is an economically significant disease in avocado production. For
example, it resulted in a loss of 40 million USD in California in 1989, and a 50% loss in production in
Australia in 1974 [1,2]. A similar catastrophic event was reported again in Australia after heavy floods
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in 2011 and 2013, resulting in a 28% drop in production due to PRR disease [3]. It is estimated that
PRR cost the Australian industry approximately 10 million AUD in 2015 [4]. This pathogen infects
and kills entire feeder root systems of avocado trees, limiting water and nutrient uptake and causing
the tree canopies to exhibit stress symptoms [5]. From its onset, canopies can reach a state of severe,
visual damage within a period of several months or years, the symptoms of which include senescence,
wilting, defoliation and, eventually, tree mortality [5,6]. A means of assessing the severity of PRR
disease in trees is vital for disease management in commercial avocado orchards.

Owing to the physical inconvenience and time-consuming nature of directly sampling tree roots
to assess damage, visual observations of canopy decline by orchard staff have been adopted by some
producers as a surrogate. ‘Ciba-Geigy’ first introduced a method in 1984 to visually compare canopy
health (canopy decline) to a set of standard canopy photos associated with a numerical severity
ranking [7]. However, such visual assessments of canopy decline are subjective, inefficient and lack
scalability from the individual tree to the entire orchard. Proximal (near surface) and remote sensing
technologies offer the potential for objectivity and scalability because they allow the assessment of
vegetation condition based on the radiation sensed by digital sensors [8]. Remote sensing technology
detects radiation scattered from vegetation both within and, importantly, beyond, the spectral range
of the human eye [9]. Red, Green and Blue (RGB) radiation from the visible range (0.4–0.7 µm) have
been used in canopy structural studies [10,11] and radiation beyond human eyes, such as near infrared
(0.7–1.3 µm), short-wave infrared (SWIR) (1.3–3.0 µm) and thermal infrared (8–14 µm), also have
been used for canopy stress studies [12–18]. Among the previous remote sensing work carried out
on assessing PRR-induced canopy decline, Salgadoe et al. [19] evaluated RGB images of canopies
captured with a hand-held mobile phone, as well as visible and near infrared radiation acquired by the
Worldview-3 (WV3) satellite, to quantify PRR disease severity according to the proportion of “decline”
in avocado canopies. The RGB images were able to quantify canopy decline based on the calculated
canopy porosity percentage (proportion of sky area visible through the canopy). WV3 satellite images,
on the other hand, were successful in identifying PRR disease severity (varying canopy declines) by the
optical reflectance characteristics of individual tree canopies using a near infrared to red radiance ratio
(NIR(770–895 nm)/Red(630–690 nm)). Here, canopy porosity was the key influence, as the satellite image
pixels were effectively a mixture of canopy and underlying ground spectral signature. One limitation
of the satellite approach was the difficulty in acquiring images during extended cloudy periods, such
as those that often occur over Australian growing regions. Using ground-based cameras to image
canopies may become standardized for rating canopy decline associated with PRR in avocado trees.
Canopy porosity (percentage) is an easily adoptable, objective, alternative for the ‘Ciba-Geigy’ health
rankings currently used to assess PRR-induced canopy decline [19].

The fundamental limitation of these visual (including image)-based canopy assessment protocols
for detecting the effect of root pathogens is the fact that canopy defoliation is considered a ‘lag
indicator’. Pathogenic infections of trees generally result in changes in gross metabolic process
such as respiration, photosynthesis, and transpiration [20,21]. All of these changes are interrelated;
some occur simultaneously, and others present in sequence, reflecting different stages of disease
development [22]. PRR-induced canopy decline (canopy porosity) is a cumulative result of aggravated
water stress, attributed to the inability of roots to supply water to meet the transpiration requirements
facilitated through stomatal conductance [6,23]. Sterne et al. [23] states that PRR disease infection
(by Pc) in roots is followed by root cell death, a decrease in root permeability to soil water and,
hence, an increase in resistance to water intake during non-limiting soil water situations. Owing
to the soil–plant–atmosphere continuum for water transport [24], this subsequently decreases the
canopy transpiration rate, finally resulting in a reduction in leaf water potential [23], resulting in a
reduction in leaf photosynthetic activity owing to reduction in leaf chlorophyll content [25,26], and
then canopy defoliation.

The evaporative demand of tree canopies is significantly influenced by photosynthetically
active radiation (PAR) [27,28]. In a study conducted on healthy avocado canopies, Sterne et al. [23]
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found a significant difference in stomatal conductance during the period 1100–1400 h local time
(maximum insolation) for sunlit and shaded segments of tree canopies (Figure 1a). However, under
conditions of limited water uptake in non-limiting soil water, in this case caused by PRR, canopies
with moderate decline exhibited similar levels of stomatal conductance for both sunlit and shaded
segments (corresponding to restricted transpiration) (Figure 1b) [23].
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Figure 1. Measured stomatal conductance of water vapor from the canopies of healthy and phytophthora
root rot (PRR)-diseased avocado trees (Data extracted from Sterne et al. [23]).

Active stomatal closure in canopy leaves, for whatever reason, results in restricted transpiration,
a reduction in evaporative cooling and, hence, an increase in leaf temperature in order to maintain
leaf/canopy energy balance [13,29–32]. Thermal imagery (TI) or infrared thermography (IRT) is
often used for non-destructively sensing temperature changes related to leaf/canopy stomatal
conductance [33–35]. On the basis of the earlier work of Sterne et al. [23], we assert that, in the
presence of adequate soil water, the differential canopy surface temperature of the sunlit and shaded
segments of avocado tree canopies can be a physiological ‘lead indicator’ of PRR-restricted water
uptake (or restricted transpiration).

Thermal imaging sensors are able to capture non-visible radiation in the wavelength range 8–12
µm and illustrate, in easily discernible ‘pseudo color’ format, images where each image pixel contains
the temperature value of each surface element, governed by the spatial resolution of the image [33].
These cameras may be hand-held [36,37], including as a smartphone plug-in (FLIR ONE) [38], or can be
deployed in ‘unmanned aerial vehicles’ (UAVs) [39,40] and aircraft [41,42]. There is a limited amount
of satellite-based thermal sensors available, such as Landsat [17,43], but their low spatial resolution
(30 m, obtained by resampling from the original 100 m resolution) with the corresponding thermal
band severely limits their usefulness in the detection of individual trees. This study will focus on
the use of hand-held thermal cameras, given their potential for use by orchard managers. Owing to
the issues of scalability and workflow when dealing with large numbers of individual tree canopies
(and assuming multiple images are acquired, for example to target both shaded and sunlit sides of
canopies), automated thermal image analysis techniques should also be deployed.

To date, no work has been reported comparing differential canopy transpiration characteristics,
as delineated using TIR imagery, and aiming to examine PRR-induced canopy decline. Therefore,
the aim of this study is therefore to compare PRR-induced canopy porosity as calculated from RGB
images of avocado tree canopies (lag indicator), with thermal imagery of the same canopies serving as a
surrogate indicator of restricted water uptake resulting from PRR in non-limiting soil water conditions
(lead indicator). Such methods, when applied to PRR-induced canopy decline (or canopy porosity),
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may prove useful for early disease diagnosis, for managing disease progression and spread, and for
informing remedial management strategies.

2. Materials and Methods

2.1. Tree Sampling

The study was conducted during April and May 2018 in a commercial avocado orchard near
Childers (Bundaberg region), Queensland, Australia (24,051′0”S, 152,021′0”E). Eighty five, thirteen year
old avocado trees (cv. Hass), expressing different levels of canopy decline attributed to PRR disease,
were randomly selected. Infection by Pc was confirmed by isolation of the pathogen from necrotic roots
on P10VP-selective media and morphological examination [44] (data not shown). Farm agronomists
confirmed the trees were well irrigated by sprinklers for each tree (maintaining non-limiting soil water
conditions without flooding), adequately fertilized, and free from any form of growth-inhibiting factors
other than PRR disease.

2.2. Thermal Image Acquisition to Establish Lead Indicators of PRR-Induced Decline

Proximal (on-ground) thermal images of the shaded and sunlit sides of the canopies were acquired
with a FLIR B250 handheld research-grade infrared thermal imaging camera (FLIR® Systems, USA,
7.5–13 µm, 200 × 150 pixels, thermal sensitivity: 0.07 °C @ + 30 °C/70 mK, thermal accuracy: ±2 °C,
FOV: 25◦ × 19◦, range: −20–120 °C). A set of 340 images were obtained from the 85 avocado trees, each
tree having two images per side of the canopy (e.g., sunlit and shaded). A camera-to-tree distance
of 4 m was maintained and an elevation angle of 45◦ above the horizontal was adopted for each
image capture to ensure only upper canopy features with uniform clear sky (no sun disk) were in the
background (Figure 2). This view angle also ensured that tree canopies from adjacent rows behind the
selected target trees were not included [19]. All images were acquired from 1000 h to 1500 h (AEST)
with minimal wind conditions under clear skies, which coincides with the maximum transpiration
demand of the canopies [36]. Trees were well irrigated (maintaining non-limited soil water situation
without flooding) before undertaking the thermal image survey. In addition, relative humidity and
ambient air temperature were measured at the canopy level of each tree on site (using a hygrometer
Analog P2501, GH Zeal Ltd., London, UK).Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 13 
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As non-limiting soil water situations were maintained in the orchard, any stomatal conductance
alterations in PRR-diseased avocado tree canopies were assumed to be induced by the PRR
disease [12,18].

2.3. Thermal Image Analysis

2.3.1. Generating Temperature Data Files

Thermal images (.JPEG) were bulk processed in R (RStudio 1.1, Inc., Austria) using custom coded
scripts [45] to output a raw temperature data file (.CSV) (degrees Celsius) for each canopy image. A
surface emissivity of 0.98 for natural vegetation [12] and measured object distance, relative humidity,
and ambient air temperature values, were also input, following the work of Salgadoe et al. [46].

2.3.2. Thresholding Canopy Pixels

In order to obtain the minimum (Tmin), maximum (Tmax) and mean (Tmean) canopy temperature
values, the non-canopy-specific (sky and stem parts) and mixed pixels first have to be removed from
the image [47]. Due to the acquired large-number thermal images from both shaded and sunlit sides of
canopies, a computer-based histogram gradient (HG) approach [46] was applied (Figure 3). Using the
HG method, the thermal histogram of the image was thresholded by Tmin and Tmax limits, based on
the ratio pixel change (RPC) [46] (Figure 3).
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Using MATLAB® 2017a software and custom coded scripts [45], temperature histograms
representing the temperature data obtained from the shaded and sunlit side were thresholded
at RPC 1.0 and RPC 0.5 [46], respectively, to indicate Tmin and Tmax. The script provided outputs of
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canopy Tmin, Tmax and Tmean (Tmean as an average of pixel values between Tmin and Tmax) for each
thermal image.

2.4. Deriving Thermal Indicators of PRR-Induced Canopy Decline

Given the actual canopy surface, temperature is determined by the evaporative demand through
factors such as wind speed, air temperature, air humidity and incident radiation [28,48], and the ability
of the leaves (through stomatal conductance) to service that demand by water provided from the plant
roots; the observed surface temperature was normalized by computing two temperature-based indices.
The crop water stress index (CWSI) builds upon the early work of Idso et al. [49] and was first reported
in index form by Jones et al. [50]

CWSI =

(
Tcanopy − Twet

)(
Tdry − Twet

) (1)

where Tcanopy is the mean canopy temperature. Once calculated for the sunlit and shaded segments,
the differential CWSI was calculated (∆ CWSI = |CWSIsunlit − CWSIshaded|). A second, index of stomatal
conductance (Ig) was also calculated using

(Ig) =

(
Tdry − Tcanopy

)(
Tcanopy − Twet

) (2)

derived by [32,51]. Again, the differential value was determined between the sunlit and shaded sides
(∆ Ig = |Ig sunlit − Ig shaded|). In both Equations (1) and (2), Twet and Tdry correspond to the temperature of
leaf/canopy with and without the cooling effect of transpiration, respectively. In order to compute those
indices, the minimum and maximum canopy temperature values (Tmin and Tmax, respectively) that
are assumed to be associated with Twet and Tdry must be derived from so-called ‘reference leaves’ [47].
Here, the histogram gradient (HG) thresholding method initially proposed by Salgadoe et al. [46] was
used to derive CWSI and Ig automatically from image analysis. An initial test result confirmed that the
HG method gave good performance compared to values from ‘reference leaves’ (results not shown),
particularly on the sunlit side. Jones et al. [47] and Salgadoe et al. [46] also experienced the same, as
reference surfaces are not truly represent characteristics of the measured canopy, due to the difference
in radiation absorbed by the reference and canopy leaves on the sunlit side [47]. The CWSI and Ig

values were therefore calculated by substituting Tcanopy, Tdry and Twet with Tmean, Tmax and Tmin. CWSI
gives values of between 0 to 1, where Ig provide values that can range from 1 to infinity [39]. The
higher the CWSI values, the greater the plant stress, whilst the opposite is the case for Ig [28,31].

2.5. RGB Image Acquisition and Calculating Canopy Porosity

In order to quantify the proportion of canopy decline in each candidate tree, the canopy porosity
percentage was calculated using a process previously reported by Salgadoe et al. [19]. Here, the
porosity is defined as the amount of sky area visible within the envelop of a canopy per unit canopy
area and values range from 0%–100%, for closed through to completely open (defoliated) canopies [19].
Visible color (RGB) images of the top section of each canopy were acquired on their shaded side using
a smartphone (Figure 2). The top sections of each canopy were imaged to avoid inclusion of canopies
behind the selected target trees (Figure 2), and images were composed to avoid leaves with specular
reflection. Two images per tree sample were acquired with a target-camera distance of 4 m and RGB
color images of 320 × 240 pixels were extracted in JPEG format. Canopy porosity percentage was
calculated over each RGB image using the ‘canopyPorosityBatch.m’ script [52] in MATLAB® 2017a
(MathWorks Inc., USA), which was developed based on the original work of Salgadoe et al. [19].
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2.6. Statistical Analysis

The canopy porosity values derived from RGB imagery were evaluated against the canopy thermal
parameters (∆Tmean = |Tmean sunlit − Tmean shaded|; ∆ CWSI and ∆Ig) using regression analysis in the
“Curve Fitting Toolbox” in MATLAB® 2017a software.

3. Results

Canopy porosity (Cp) percentages are plotted as functions of corresponding differential thermal
parameters ∆Tmean, ∆ CWSI and ∆Ig in Figures 4–6, respectively. Firstly, it is important to note that an
increase in the value of the thermal parameters (x-axis) is associated with a greater difference in the
transpiration characteristics of the sunlit compared to the shaded canopy segments. In other words,
the higher the x-value, the lower the PRR-induced, restricted water uptake. Consequently, the x-axis
of each curve also indicates greater restriction (left hand side) and lower restriction (right-hand side)
directions, for ease of interpretation. The canopy porosity exhibits an exponential decrease, with
increasing thermal values in all the cases (Figures 4–6). The right-hand portions of each graph are of
particular interest, as this often takes place during the early stages of PRR incursion, or in cases where
the trees are only weakly affected, where the trees are only just beginning to respond via defoliation
and where visible detection methods often struggle to identify the presence of PRR [19]. The ∆Tmean

data of Figure 4 exhibited the greatest amount of ‘noise’, which was unsurprising, given that ∆Tmean is
highly vulnerable to sudden environmental changes (e.g., localized changes in air flow).

The normalized thermal indices ∆ CWSI and ∆ Ig ranged from ~0.04 to ~0.18 and ~0.2 to
~0.7, respectively, and the exponential decay curve explained more than 90% of the variance in the
canopy porosity percentages (Figures 5 and 6). A gradual reduction in defoliation was observed
from 60% to 20% Cp, when ∆ CWSI and ∆ Ig increased from 0.0 to 0.1 (in Figure 5) and 0.0 to 0.4 (in
Figure 6), respectively.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 13 
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4. Discussion

Using the canopy temperature characteristics as a lead indicator of PRR-induced restricted
water uptake, this study successfully demonstrated the value of canopy porosity as a lag indicator
PRR-induced restricted water uptake. The latter, of course, is the basis of current orchard monitoring
for PRR using visual estimates. However, it is estimated that the decline symptoms in avocado
tree canopies are not visually detectable by human eyes until canopy porosity values of >33% are
attained [19]. Canopy porosity (%) derived using hand-held cameras is relatively straightforward
to adopt as an objective alternative to the comparatively subjective ‘Ciba-Geigy’ health rankings in
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assessing PRR-induced canopy decline. In this present work, calculated canopy porosity percentages
were found to be very sensitive to changes in the lead indicators, ∆CWSI (as well as ∆Ig), but only
during the mid-stages of decline (here taken to be mid-values of the thermal parameters). Importantly,
what the results indicate is that the thermal parameters themselves, namely CWSI and Ig, show
monotonic decreases of up to 30% (right hand portions of Figures 5 and 6) from their unrestricted
values (taken to be minimal or light PRR infection), yet there is no apparent change in canopy porosity.
The reason for this is likely that, during the earlier (or lighter) stages of infection by PRR, the trees are
able to generate new, compensatory root growth [53] in an attempt to maintain sufficient leaf water
potential in canopy leaves.

From a data processing point of view, the image-based canopy porosity methodology also has
limitations. During RGB image analysis, specular reflection from canopy leaves can artificially increase
the derived porosity value, owing to the similarity of sky pixels with leafs exhibiting specular reflection
(skylight or sunlight). Certainly an initial test of the data revealed a higher-than-expected proportion of
images with such leaves, that had to be rejected from the analyses (~50%). In future work, a polarizing
filter will be included on the camera to remove specular reflections from the canopy leaves. However,
the specular reflection was not an issue for thermal imagery, as these pixels were automatically excluded
from the image during the application of the histogram gradient (HG) method [46].

Furthermore, there is a limitation if needing to directly upscale this methodology to a platform
looking downwards, where the earth is a background image, especially in the segregation of shaded
and sunlit segments of the canopies, as well as calculating canopy porosity. Therefore, additional
canopy features such as crown heterogeneity [54] or intra-crown variability [55] or the use of canopy
spectral reflectance base vegetation indices [19] may offer ways to evaluate canopy porosity and
restricted transpiration as a result of PRR disease in avocado orchards.

The results of this present work suggest that the ‘lead-indicator’, namely the thermal response
of the canopy, is the approach to take when identifying possible PRR infections in avocado trees. A
‘risky’ assumption is that the thermal response is indeed due to PRR and not some other water-limiting
condition imposed by act or omission. One tactic is to make sure trees are been well irrigated (not
flooded) before image acquisition.

5. Conclusions

Canopy porosity as calculated by RGB imagery can be used to objectively measure canopy
decline [19], and, according to this study, it has been shown to be a statistically significant indicator of
restricted transpiration in avocado trees due to PRR disease. However, during early onset, or in the
case of light PRR infections, the results indicate that thermal imagery, and the derivation of differential
indices contrasting the sunlit and shaded segments of a canopy, may prove a better indicator of PRR as
the basis for objective tree-level assessment at orchard scale. While both RBG image-based porosity
and thermal image-based canopy temperature assessment methods show promise for PRR detection
in avocado trees, further investigation is warranted to absolutely confirm the sensitivity of either
technique to PRR infection on the basis of a detailed assessment of root damage and restricted water
flow resulting from PRR detection.
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