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Abstract: The National Land Cover Database (NLCD) 2016 provides a suite of data products, including
land cover and land cover change of the conterminous United States from 2001 to 2016, at two-
to three-year intervals. The development of this product is part of an effort to meet the growing
demand for longer temporal duration and more frequent, accurate, and consistent land cover and
change information. To accomplish this, we designed a new land cover strategy and developed
comprehensive methods, models, and procedures for NLCD 2016 implementation. Major steps
in the new procedures consist of data preparation, land cover change detection and classification,
theme-based postprocessing, and final integration. Data preparation includes Landsat imagery
selection, cloud detection, and cloud filling, as well as compilation and creation of more than
30 national-scale ancillary datasets. Land cover change detection includes single-date water and
snow/ice detection algorithms and models, two-date multi-index integrated change detection models,
and long-term multi-date change algorithms and models. The land cover classification includes
seven-date training data creation and 14-run classifications. Pools of training data for change and
no-change areas were created before classification based on integrated information from ancillary data,
change-detection results, Landsat spectral and temporal information, and knowledge-based trajectory
analysis. In postprocessing, comprehensive models for each land cover theme were developed in
a hierarchical order to ensure the spatial and temporal coherence of land cover and land cover changes
over 15 years. An initial accuracy assessment on four selected Landsat path/rows classified with this
method indicates an overall accuracy of 82.0% at an Anderson Level II classification and 86.6% at
the Anderson Level I classification after combining the primary and alternate reference labels. This
methodology was used for the operational production of NLCD 2016 for the Conterminous United
States, with final produced products available for free download.

Keywords: national land cover database; land cover change; Landsat; ancillary data; hierarchical
postprocessing; temporal/spatial context; pixel/object-based information integration
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1. Introduction

Timely information from land cover and land use (LCLU) change products is essential for climate
and environmental change studies, proper land management and land-use decision making, and
regional and global sustainable development [1–4]. Remote sensing plays a key role in producing
LCLU status and monitoring change at regional and global scales. Amid the varieties of remote
sensing data used in LCLU, Landsat imagery has been the flagship source of continual, uninterrupted,
moderate spatial resolution data of the Earth’s surface over the last four decades. Current methods for
large-area monitoring of land cover change typically employ Landsat data [5] and most commonly
center on one-theme products, such as forest disturbance monitoring [6–11], fire monitoring [12],
croplands mapping [13], urban expansion [14], and surface-water bodies [15].

Alternatively, comprehensive land cover monitoring is much rarer. In the U.S., the National Land
Cover Database (NLCD) has been produced for over 20 years. The initial land cover product was
produced on circa1992 Landsat imagery [16]. The process, method, legend, and database approach
were subsequently revised and improved to produce the modern era of NLCD with products produced
in 2001, 2006, and 2011 [17–19]. However, these new NLCD products were no longer compatible with
NLCD 1992. NLCD 2011 products, which were released in 2013, represented a decade of consistently
produced land cover change and impervious surface change information for the Conterminous United
States (CONUS) across three periods at five-year intervals: 2001, 2006, and 2011 [19]. NLCD products
have become a cornerstone in U.S. land cover applications and are widely used in such areas as climate
modeling, hydrology, land management, environmental planning, urban development, wildlife habitat,
and ecosystem assessment and education [20–27].

The demand for longer temporal duration and more frequent, accurate and consistent land
cover classifications and corresponding change information is ever-growing in our advancing world.
Improved data availability, computer technology innovation, and advanced science development have
created a better environment for improving large-area monitoring capabilities, especially for automated
land cover generation [28]. For example, Gong et al. [29] produced the first 30-m resolution global land
cover maps using Landsat imagery and automated algorithms. However, that was one-time global land
cover mapping for broad land cover categories based on spectral data only, so efficiency was achieved
but not accuracy. Chen et al. [30] designed an operational approach based on pixel-object-knowledge
to produce two 30-m global land cover datasets for the years 2000 and 2010. They integrated pixel-
and object-based classification and developed a knowledge-based interactive verification procedure to
help improve the final classification accuracy. They indicated that the automated classification was
not robust for global mapping with typically less than 65% classification accuracy, and interactive
verification and modification were necessary to ensure the quality of the products. Chen et al. [30],
however, produced only two land cover classifications for 2000 and 2010 and did not focus on the
change between the two dates. The Continuous Change Detection and Classification (CCDC) algorithm
developed by Zhu and Woodcock [31] can use all available Landsat data to detect land cover change
and produce land cover maps for any given time. The CCDC has been adopted by the U.S. Geological
Survey (USGS) Land Change Monitoring, Assessment, and Projection (LCMAP) project in an ongoing
effort for operationally producing national and global land cover and land cover change products [32];
however, no products have been completed nor released yet.

Hansen and Loveland [5] pointed out that there is an essential distinction between research-based
products and operational products. Higher standards are usually required for operational products,
such as higher consistency and accuracy, and timely delivery. Research-based products have a higher
tolerance for uncertainty and were commonly produced in smaller regions compared to operational
products. To operationally produce multi-date consistent land cover and land cover change products,
there typically exist several challenging issues: (1) spectral confusion within and among different land
cover types [30]; (2) errors and inconsistency in multi-temporal land cover and change maps due to
differences in class definition, input data, and methods [33–35]; (3) land cover dynamics that vary by
land cover type, geographic region, and time over vast and complex landscapes [36,37]; and (4) the
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complexity of balancing operational efficiency and product quality in product generation. NLCD
has evolved to be the authoritative land cover product by making accurate, temporally, and spatially
consistent 30-m land cover data available to the public. However, continued innovation is critical, and
improving the NLCD process to identify an efficient operational approach, capable of incorporating
the latest advancements in large-scale mapping and monitoring and automated land cover processing
is important.

The goal for NLCD 2016 land cover was to incorporate the latest advancements in automated
land cover processing, while still retaining the accuracy of previously delivered products that required
substantial human intervention. Our product design sought to advance U.S. large-area land cover and
land change science by developing and delivering an accurate and updated suite of land cover and
land cover change products [38]. Our specific land cover product objectives included:

(1) Correcting base errors that have persisted from the original NLCD 2001 land cover product
and have been propagated in subsequent epochs over areas of no change;

(2) Developing additional NLCD land cover product epochs at two- to three-year intervals between
2001 and 2016

(3) Creating seven epochs of consistent land cover and land cover change products through all
years (2001–2016)

(4) Providing more comprehensive land cover information about the landscape through the effort
of separating rangeland grass and shrubland from forest transitional classes

In this paper, we focus on describing the new methodology for the NLCD 2016 land cover and
land cover change product, and demonstrate the process with results from four representative Landsat
path/rows. The method has been applied to CONUS for operational production of NLCD 2016, with
products available at www.mrlc.gov.

2. Materials and Methods

2.1. Overall Idea and Concepts

The core approach of our strategy was to integrate a variety of information from spectral, temporal,
object-oriented spatial, ancillary data, expert knowledge, and change trajectory throughout the entire
process of NLCD 2016 development, including data preparation, training data creation, land cover
classification, postprocessing, and final integration [38]. Although time-series spectral information can
provide powerful insight into land cover and land use condition and context, additional information
is needed to increase the stability, accuracy, and consistency of land cover and change products.
We developed four guiding concepts that were considered throughout the NLCD 2016 process:
(1) implement high-quality ancillary data and expert knowledge whenever possible; (2) integrate
spectral, temporal, spatial, and change trajectory information; (3) employ land cover hierarchical
theme-based approaches; and (4) balance pixel-based and object-based approaches.

2.2. Data Preparation

2.2.1. Landsat Imagery Preparation

Landsat Imagery Selection

Collection 1 Level-1 Landsat images were downloaded directly from the USGS Landsat archive
(https://www.usgs.gov/land-resources/nli/landsat). These images were geometrically corrected and
natively projected directly to an Albers projection at Top of Atmosphere (TOA) reflectance. TOA was
used because, at the time of research, Surface Reflectance (SR) imagery was a provisional product and
not recommended. For each Landsat path/row, eight Landsat images were required to be processed to
obtain cloud-free data for change detection and classification. One leaf-on image was selected for each
target year (2001, 2004, 2006, 2008, 2011, 2013, and 2016), and one leaf-off image was selected for only

www.mrlc.gov
https://www.usgs.gov/land-resources/nli/landsat
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2016. We used six bands (blue, green, red, near-infrared (NIR), shortwave infrared (SWIR) 1, SWIR 2)
for all the Landsat images.

Landsat Imagery Cloud and Shadow Detection and Filling

If some selected base images had clouds or anomalies, additional Landsat images were chosen and
later used to fill cloud/shadow areas in the base image using the method developed by Jin et al. [39].
A cloud and anomaly (e.g., fire smoke) mask without omission error was produced by hand-editing
the initial cloud mask derived by integrating information from the Fmask [40,41] and a cloud detection
model of our own design. Our cloud detection model was designed simply to add any missing clouds
and especially cloud shadows to the cloud and shadow areas from the Fmask to reduce hand-editing,
see Jin et al., 2013a for more details. Some hand-editing work was still periodically required to create
a cloud and its shadow mask without omission error for cloud contaminated base images.

The Spectral Similarity Group (SSG) cloud-filling method [39] works well on the majority of
Landsat images but may occasionally work poorly on a few target images with large areas (e.g.,
an entire city) directly masked out by hand-editing. To correct a few of the most troublesome areas,
a compositing method was also designed for filling cloud/shadow mask areas to produce an alternate
filled image to ensure a good quality cloud-free image for each target date. The compositing method
also used two Landsat images (target image and a reference image), which were likely to be the
same pair of images used for the cloud detection and SSG cloud filling. The method estimates new
spectral values for cloud/shadow areas for the target image by adding the mean spectral difference of
each band between the target and reference images over the cloud-free green vegetation areas to the
corresponding reference band value. We identified the pixels where Normalized Difference Vegetation
Index (NDVI) values of both images are higher than 0.5 and not in cloud masks as the cloud-free green
vegetation area. An assumption of the method is that the trend of spectral change in the cloud/shadow
area between the two image dates caused by different acquisition dates is the same as it is in the
cloud-free area. We focused on adjusting the spectral differences based on green vegetation areas to
reduce negative impacts on the compositing image on change detection and classification results in
later processes.

2.2.2. Ancillary Data Preparation

We utilized expert knowledge from ancillary data during our entire process. We compiled and
created many ancillary data from different sources and used them for land cover and land cover
change mapping and postprocessing to increase mapping accuracy and consistency (Table 1). All these
ancillary data were processed to raster images having the same projection and same spatial resolution
of 30-m with Landsat imagery.

Table 1. Ancillary data prepared and used for National Land Cover Database (NLCD) 2016 land cover
and land cover change production.

Prepared Ancillary Data Data Source Preparation

NLCD legacy data: NLCD 2001,
2006, 2011 https://www.mrlc.gov/

updated road network data incorporated
into NLCD

National Agricultural Statistics
Service (NASS) Cropland Data

Layer (CDL) 2016
https://www.nass.usda.gov/ Crosswalked into NLCD classes

NASS Cultivated layer 2009–2015 https://www.nass.usda.gov/
Combined 2009–2013, 2011–2015 NASS

Cultivated layer to extend the time period

National Wetland Inventory
(NWI) https://www.fws.gov/ Crosswalked NWI into NLCD classes

Hydric Soil https://www.nrcs.usda.gov/ Mosaicked tiles into a national map

https://www.mrlc.gov/
https://www.nass.usda.gov/
https://www.nass.usda.gov/
https://www.fws.gov/
https://www.nrcs.usda.gov/
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Table 1. Cont.

Prepared Ancillary Data Data Source Preparation

Wetland Potential Index (WPI)

Created in house (USGS NLCD)
The index has already been

adopted for LCMAP (Zhu et al.,
2016)

A 7-ranking class of wetland potential created
by using the convergence of evidence from

NWI, Hydric Soil, and NLCD 2011.

Vegetation Change Tracker (VCT)
from 1984 to 2010 https://www.landfire.gov/

Mosaicked tiles into a national map and
converted it into a disturbance-year map at

2–3-year intervals.

Existing Vegetation Type (EVT)
2001 https://www.landfire.gov/

Crosswalked into Anderson level I and
climax-class like classes

Shrub crosswalk
Created in house (by USGS NLCD

Shrub project)
https://www.mrlc.gov/

Developed models to crosswalk percentage
shrub, herbaceous, barren, and other

components from Shrub project products into
NLCD classes (shrub, herbaceous, barren)

Fire from 1984 to 2016
(1) Fire_year_oldest
(2) Fire_year_latest

(3) Fire_intensity_oldest
(4) Fire_intensity_latest

(5) Fire_frequency

https://www.mtbs.gov/
https://www.geomac.gov/

Developed models to integrate each-year fire
from 1984 to 2014 from MTBS, and 2014–2016
fire from GeoMAC to produce five ancillary

data related with fire year and severity

Fire_recovery_zone Created in house (by USGS NLCD
Shrub project)

Created a CONUS map with four fire zones
with different vegetation recovery rates

according to precipitation, ecoregion,
and DEM

Fire_recovery_forest_zone Created in house (USGS NLCD)

Created a map for the western U.S. with ten
zones with different recovery rates for forest

after fire according to assessment and
opinions from experts

Digital Elevation Model (DEM)
and derivatives (aspect, cti, slope) https://nationalmap.gov/

Removed some artifacts from DEM and
calculated derivatives from smoothed DEM

Wetland_boundaries Created in house (USGS NLCD)

Created a CONUS map with 6 wetland zones
which characterize different kind of wetland

change dynamics according to
expert knowledge

Shrub_boundary Created in house (USGS NLCD)

Created a CONUS map with two zones which
roughly separate CONUS into west shrub and

east forest regions according to
expert knowledge

Sage_dominated_region Created in house (by USGS NLCD
Shrub project)

Created a map that indicates the area where
sage shrub likely dominates according to

expert knowledge

Percent Imperviousness maps of
2001, 2006, 2011, and 2016 https://www.mrlc.gov/

Created by independent NLCD urban
mapping efforts to provide developed classes

and changes over time

2.3. Training Data Creation

2.3.1. Overall Strategy

Adequate land cover training data for all historical epochs is critical to our process. Hence, a large
part of our land cover generation process was focused on training data development. We dynamically
created training data for each year and each NLCD land cover types plus three new forest transitional
classes (i.e., Herbaceous-Forest, Shrub-Forest, and Young-Forest). Table A1 shows all the NLCD
2016 land cover type descriptions. The NLCD land cover types are at the approximate Anderson
et al. [42] Level II thematic detail [43]. Two strategies were employed to create training data for each
target year. First, training data for each land cover type of each epoch year were created according
to the Landsat image of the target year and derived indices, multiple spectral change products from

https://www.landfire.gov/
https://www.landfire.gov/
https://www.mrlc.gov/
https://www.mtbs.gov/
https://www.geomac.gov/
https://nationalmap.gov/
https://www.mrlc.gov/
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change detection, trajectory analysis, and a variety of ancillary data. These data were assembled
based on priority/confidence level of training data accuracy for each Anderson Level I land cover
theme. Once all the training data for all land cover classes were assembled, an object-based refined
training dataset was created by integrating segmented polygons from the corresponding-year Landsat
image using eCognition software [44] with pixel-based training data. We used eCognition to run
a multiresolution segmentation (scale parameter was set as 10, image layer weights are the same, shape
0.1 and compactness 0.5) on each-epoch Landsat image. Those polygons created with scale 10 are likely
composed of one land cover type. We kept only the training data where the pixel-based training data
matched the polygon majority land cover type to increase the confidence. Second, training data were
created in reverse chronological order from 2016 back to 2001 for each NLCD anchor year (2016, 2011,
2006, and 2001). Creation of training data starts in 2016 and work backward as more numerous and
better categorized ancillary data (e.g., National Agricultural Statistics Service (NASS), Cropland Data
Layer (CDL) 2016, and Cultivated layer 2009–2015) were available for the most recent years. The 2016
classification is then fed as input into the training data model for 2011 to add consistency to the training
data across time. In turn, the 2011 classification is used as input to create training data for 2006, and
2006 is used as input for 2001. After training data creation and classification were done for the four
NLCD anchor years, those outputs were integrated to create training data for in-between years (i.e.,
2013, 2008, 2004) to maintain the consistency and match the dynamic change pattern. For in-between
years, we used both-end classifications as two inputs (i.e., 2001 and 2006 for 2004; 2006 and 2011 for
2008; 2011 and 2016 for 2013) and then generated training data and classifications in this order: 2016,
2011, 2006, 2001, 2013, 2008, 2004.

2.3.2. Training Data Model Input Preparation

Figure 1 shows the training data creation process. Before creating training models, several
intermediate products were developed to provide inputs for training data creation. First, models were
developed to produce binary water and snow extents of each year. Water and snow frequency were
then generated over the years from 2001 to 2016, which also indicate the maximal extent of water and
snow, respectively. Within the water detection model, we employed the Normalized Difference Water
Index (NDWI) and the characteristic of the spectral value of water likely to decrease with the band
wavelength to detect water. We also used slope and NLCD to remove commission errors likely caused
by terrain shadow or dark forest. Seven water layers from 2001 to 2016 were used both for creating
water training data and for capturing the maximum water extent and the water dynamic change
pattern over time. These were also used for producing the final water land cover for each epoch.

Second, we generated MIICA changes [45] between any two consecutive Landsat dates (i.e.,
2001–2004, 2004–2006, 2006–2008, 2008–2011, 2011–2013, 2013–2016) and between NLCD anchor
years (i.e., 2001–2006, 2006–2011, 2011–2016) from 2001 to 2016. MIICA captures the spectral change
(as a biomass increase or biomass decrease) by using four spectral indices between two Landsat images.
MIICA was designed to capture all kinds of land cover type changes, while simultaneously minimizing
error. In total, nine MIICA change maps were created. MIICA was useful for deciding whether a land
cover type change is real between two dates during the training data creation. We also developed
multi-date change detection models to create a Forest Disturbance Year map of 2001 to 2016 based
on a 7-date time series (i.e., 2001, 2004, 2006, 2008, 2011, 2013, and 2016) of Normalized Spectral
Distance (NSD), which was derived like a z-score by using an individual Landsat image and persistent
forest areas as reference. The persistent forest was the area where the Vegetation Change Tracker
(VCT) of 1984–2010 ancillary dataset indicates persistent forest, NLCD 2011 legacy data classified as
forest, and both MIICA of 2006–2011 and 2011–2016 show no change occurred during the time period.
The persistent forest area was further refined by excluding the maximum water and snow areas. VCT
of 1984–2010 was also used to extend the disturbance 2001–2016 change-date product back to 1986
to better assess succession and trajectory in the targeted years. The forest disturbance year product
of 1986–2016 at 2- to 3-year intervals provides information about the forest disturbance date over
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a 30-year period and distinguishes likely non-forest areas (i.e., disturbed at/before 1986 class in the
product) from likely persistent-forest area (i.e., no-change class). The temporal information provides
insights on forest regrowth stages and land cover types and was employed in NLCD training data
creation, land cover classification, and postprocessing.

Third, models were developed to create another product called an enhanced long-term land
cover (LLC) strata according to the time series of NSD, forest disturbance year of 1986–2016, and
combined Cultivated layer 2009–2015. The enhanced LLC product has five general classes/strata: likely
agriculture, likely persistent forest, likely transitional forest, likely rangeland, and uncertain areas.
The enhanced LLC product provides a high level and long-term perspective about the landscape
and plays a key role in creating consistent training data for different dates. These intermediate
products (Table A2), along with ancillary data and Landsat imagery, are the model inputs for creating
training data.
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Figure 1. Overview of training data creation process for modeling seven dates (2001 to 2016) of
land cover.

2.3.3. Training Data Creation Rules

For each land cover theme, we used spectral, temporal, and ancillary data, and change trajectory
to distill high-quality training data (see below subsections). Training data for different land cover class
types were then assembled in the following hierarchical order: urban, agriculture, water, snow, barren,
forest, rangeland, and wetland. During the process, training data from higher class orders override
the training data from lower class orders when overlap occurs. Pixels suspected but not identified as
high-quality training data areas for land cover types from the top order were not considered as training
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data for any other land cover types in the lower orders to reduce spectral confusion across the land
cover themes and create large amounts of robust training data dynamically.

Urban Classes Training

For mapping urban classes in the final land cover products, NLCD employs a separate continuous
field generation strategy. This continuous field product (i.e., impervious percentage) is binned into four
developed classes: open space, low, medium, and high intensity. These classes all represent various
percentages of the developed impervious surface. This allows a more robust and concise generation of
developed features as spectrally impervious/developed has properties of nearly all classes (forested
suburbs, golf courses as hay/pasture, dense urban as barren, small roads disappearing into farmland
features, etc.). Although urban classes will be decided by the independent impervious percentage
mapping efforts, they cannot be ignored during our general training and classification process for
7-date land cover mapping because of the risk of complicating other land cover type classifications.
Therefore, we directly adopt NLCD urban classes (NLCD 2001 for 2001 and 2004, NLCD 2006 for 2006
and 2008, NLCD 2011 for 2011, 2013, and 2016) as training data with the assumption that there is no
urban contraction over time.

Agriculture Classes Training

NLCD has two agriculture classes: cultivated crops and pasture/hay. For agriculture, we integrated
information from NASS CDL 2016 and Cultivated layer 2009–2015, NLCD, and LLC strata to determine
the training data. For example, we consider a pixel as a cultivated crop training point for 2016 when
the pixel meets five criteria simultaneously: (1) NLCD 2011 classified it as agriculture (Anderson
Level I), (2) NASS CDL 2016 classified it as cultivated crop (Anderson Level II), (3) Cultivated layer
2009–2015 classified it as cultivated crop a majority of the time during 2009 to 2015 (Anderson Level II),
(4) our own enhanced LLC product classified it as an agriculture-like class over time from 1986–2016
(Anderson Level I), and (5) National Wetland Index (NWI) did not classify it as wetland. Areas that
were not selected as cultivated crop training but still considered cultivated crop by NASS CDL 2016 and
Cultivated layer 2009–2015 were excluded as training data for any other land cover types. Similar rules
and the same inputs were used to create training data for the pasture/hay class as the cultivated crop.

Water, Snow, and Barren Classes Training

For water, we combined the water frequency, water extent of the targeted year, NLCD legacy
maps, and MIICA changes to decide the water training data for each date. For example, a pixel was
considered as a water training pixel for 2016 if both the water extent of 2016 and NLCD 2011 classified
it as water, and MIICA 2011–2016 classified it as no change between 2011 and 2016. Pixels not selected
as water training where the water frequency product identifies them as potential water are excluded as
training data for any other land cover type. For snow, similar steps as water were used to decide snow
training data for each targeted year. Barren training was identified for 2016 when the pixel meets three
criteria at the same time: (1) NLCD 2011 classified it as barren, (2) MIICA 2011–2016 classified it as no
change between 2011 and 2016, and (3) enhanced LLC indicated the pixel was not a forest-theme class.

Forest-Theme Classes Training

Our forest-theme classes include the original NLCD forest classes plus three additional forest
transitional classes. The three forest transitional classes are herbaceous-forest, shrub-forest, and
young-forest, which are designed to represent different forest successional/regrowth stages. These
three forest transition classes were used to differentiate from climax rangeland classes and to improve
training data separation and subsequent classification accuracy. The young-forest class was created for
those forests that after disturbance had not yet regrown to mature trees, allowing extra information
to reduce the confusion between shrub and forest during classification. In the final published
product, the young-forest class is crosswalked to either shrub-forest or forest according to regional
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growth rates and successional properties. The herbaceous-forest and shrub-forest transitional classes
hierarchically belong to NLCD legacy herbaceous and shrub classes, but demonstrate spectral properties
of transitioning from/to either a past or future forest. Historically, the NLCD legacy shrub/scrub class
included rangeland shrubs and young trees in an early successional stage or trees not meeting the
5-m height of the NLCD class definition. The NLCD legacy grassland/herbaceous class included
rangeland grassland and forest areas in very early successional stage after abrupt forest stand replacing
disturbances, such as clearcuts, fires, and hurricanes. Rangeland shrub and grassland ecosystems have
very different spectral and temporal dynamic patterns from forest transitional classes.

Training data for forest-theme classes were created by using the forest disturbance year of 1986
to 2016, enhanced LLC strata, Landsat image, and Normalized Burn Ratio (NBR) of the year [46,47],
and NLCD legacy data. For example, we consider a pixel as a forest for 2016 when enhanced LLC
classified it as a likely persistent forest class, and NLCD 2011 legacy data classified it as a forest class.
We consider a pixel as a forest transitional class (e.g., shrub-forest) in 2016 if enhanced LLC classified it
as a likely forest transitional class, the forest disturbance year of 1986 to 2016 shows it as disturbed
before 2016, NLCD 2011 classified it as forest or herbaceous or shrub (but excluding the area where the
forest disturbance year of 1986 to 2016 shows it as disturbed before 2011, NLCD 2011 classified it as
forest), and NBR of 2016 shows a certain range of spectral value. For herbaceous-forest or young-forest,
similar rules/logics are applied with the disturbance year or range values of NBR adjusted accordingly.

Rangeland Shrub and Grassland Classes Training

Similar to urban classes, for the true shrub and grassland classes (i.e., rangeland), NLCD employs
a separate continuous field generation strategy [48], which identifies shrub, grass, and barren areas in
the West that are directly used by the NLCD land cover product. We update this product back through
time during postprocessing by developing ecological fire succession models to project these classes
historically. At the training data stage for rangeland classes, we identify a pixel as a training point for
2016 if NLCD 2011 classified it as a shrub or grassland, and LLC classified it as a likely rangeland class
over time.

Wetland Classes Training

Wetland training data represent the last step of hierarchically developing training data from
higher confidence order to lower confidence order classes. Only areas remaining are considered as
potential wetland training areas after excluding training data pixels of other land cover types and
removing uncertain pixels through hierarchical-order combinations. Wetland training pixels were
further identified from a synergistic combination of NLCD identifying a pixel as a wetland class and
LLC identifying it as not an agriculture-like class.

2.4. Classification

The decision-tree classifier, SEE 5 [49,50], has been the primary classifier of products since NLCD
2001. Li et al. [51] tested 15 classification algorithms and concluded that most algorithms including
decision trees could produce high classification accuracies with sufficient and representative training
samples, hence for NLCD 2016, we continue to use SEE 5 for classification. Our SEE 5 classification
targeted 7 dates of land cover classification using four types of independent variables: (1) 1986—the
target year forest disturbance year map at 2- to 3-year intervals, which represents temporal information;
(2) Landsat image of the year, which represents spectral information; (3) compactness of Landsat image
segmentation polygons, which represents object-based shape information; and (4) a digital elevation
model (DEM) and its derivatives, which represents terrain information (Figure 2).

The classification was conducted for every target year twice, producing a full version and a light
version. The full version used all four types of independent variables, and the classification included all
land cover classes except class 21 (i.e., developed, open space). The light version excluded the 1986–2016
forest disturbance year from the independent variables and did not include the urban and wetland
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classes. The light version identifies the most likely land cover type, while the full version classifies
urban and wetland classes, and helps improve forest-theme classes land cover classification where
the 1986–2016 forest disturbance year product might be wrong. We adopted a stratified proportional
sampling method that used 2% of the training dataset as training samples and 1% as validation samples
with the restriction of a minimum number of 5000 samples per class.
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Figure 2. Overview of major steps to generate initial NLCD land cover mapping products for each
target year.

The two versions of classifications were also processed to corresponding object-based land cover
maps based on objects from each-epoch Landsat image through eCognition. We integrated the
segmented-polygons with the corresponding land cover map to produce a new object-based land cover
map with the majority land cover type for each polygon. We also produced the percentage map of
the majority land cover type for each polygon. Both versions of classifications were then integrated
with ancillary data, the object-based information, the forest disturbance year of 1986 to 2016, and
training data to produce an initial land cover map of the target year (Figure 2), mainly targeting urban
and wetland classes. The ancillary data included NLCD legacy data, Wetland Potential Index (WPI),
Wetland_boundaries, and the NASS Cultivated layer 2009–2015.

The general integration rules are as follows. (1) Urban is the priority, which means that we directly
adopt NLCD urban classes (NLCD 2001 for 2001 and 2004, NLCD 2006 for 2006 and 2008, NLCD 2011
for 2011, 2013, and 2016) regardless of the classifications. Extra urban areas introduced from land
cover classification were replaced with classes from the light version classification. (2) For wetland
classes, agriculture has higher priority over wetland, and water has higher priority over wetland
depending on regions (e.g., tidal water has no priority over wetland), but wetland has higher priority
over other classes. For example, the pixel was mapped as a wetland if it met any of the following
criteria: (a) classified as a wetland in full version classification, with at least one support from NWI
or Hydric Soil, (b) classified as a wetland, with WPI support, and not cultivated crop indicated by
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Cultivated layer 2009–2015, (c) with WPI support but at least two sources, and not cultivated crop,
or (d) polygon majority land cover type classified as a wetland, with WPI support, and not classified as
agriculture classes. (3) For classes other than urban and wetland, we determine the best land cover
label for each pixel based on the convergence evidence from the classification, polygon majority land
cover information, and training data. A total of seven initial land cover maps were generated in
a back-in-time order with the past NLCD legacy data year taking precedence (i.e., 2016, 2011, 2006,
2001, 2013, 2008, and 2004).

2.5. Postprocessing

Our postprocessing focused on a spatial coherence check on land cover labeling for each epoch,
a temporal consistency check for land cover labels over time, and a temporal trajectory logical check,
integrating the information to improve land cover labeling accuracy. It also allows regional land cover
patterns to have different paths where appropriate by creating or leveraging ancillary data that contain
the needed regional stratification information.

For the spatial coherence check (Figure 3), we created two sets of object-based land cover maps
corresponding to the 7-epoch land cover maps from the classification step. One set is based on objects
from each-epoch Landsat image, which are integrated with the land cover map from the corresponding
date to produce a new object-based land cover map with the majority land cover type for each polygon.
The other set is based on objects derived from the forest disturbance year product of 1986 to 2016,
with the neighbor-connected pixels with the same disturbance year considered as one object, and this
data is then integrated with each-epoch land cover to produce the majority land cover type for each
disturbance patch. Besides these two sets of object-based land cover maps, one temporal majority land
cover map, showing the most likely land cover for each pixel over the time period of 2001–2016, was
also created from the 7-epoch land cover maps.
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Finally, we integrated these pixel-based and object-based land cover maps to produce a new land
cover map with better spatial and temporal consistency. Integration rules were based on three criteria:
(1) change and no-change, (2) converging evidence of four land cover maps (original, two object-based,
temporal majority) for each-epoch, and (3) land cover types. For example, if a pixel is classified as
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a cultivated crop class, the most reasonable label for the target year is from Landsat-object-based land
cover; if a pixel is identified as a change pixel and it is classified as forest transitional class, the most
reasonable label is from the disturbance-object-based land cover; if a pixel is identified as no-change
and it is classified as ice/snow class, the most reasonable label is the temporal majority land cover;
if a pixel is classified as a water or urban or wetland class, the most reasonable label is from the original
pixel-based land cover; and the most reasonable label for the remaining pixels is the land cover class
with more convergence evidence from pixel-based and object-based land cover inputs.

After integrating the 7-epoch land cover maps with pixel-based and object-based information,
we then run a land cover theme-based hierarchical order trajectory check. Since each land cover type
has its own unique characteristics, this information is used to distinguish it from other land cover classes
and to better categorize and track land cover change. The postprocessing was conducted for each
land cover type in chronological order: (1) water, (2) wetlands, (3) forest and forest transition classes,
(4) permanent snow and ice, (5) agricultural lands, and (6) rangeland shrubland and herbaceous. Within
each theme, the process utilized information from spectral data, spatial context, temporal data, change
trajectory/pattern, expert knowledge, and ancillary data to refine the initial land cover and change
labels through a set of rules. For example, for rangeland shrubland and herbaceous, we leveraged
expert knowledge and other ancillary data to determine the likely trajectory of rangeland land cover
succession and push the rangeland shrub/herbaceous class back to 2001 where fire disturbances
occurred. We have three crosswalked land cover classes (rangeland shrub, rangeland grass, and barren
land) circa 2015 from the continuous field products of shrub, herbaceous, and bare ground for the
western U.S. through the NLCD Shrub project funded by the Bureau of Land Management (BLM). First,
we combined Monitoring Trends and Burn Severity (MTBS) fire information and GeoMAC [52] fire from
1984 to 2016 to four ancillary data for CONUS: latest_fire_year, oldest_fire_year, severity_latest_fire,
and severity_oldest. Second, we developed two ancillary data to account for the geographic regional
difference and vegetation fire ecological and climate-based succession rate. Third, we determined
the potential forest or rangeland shrub or grass climax class areas by integrating information from
7-date new land cover classifications, NLCD legacy data, the percentage data of shrub, herbaceous
and barren from the NLCD Shrub project, and the existing vegetation type (EVT) product from
LANDFIRE project. Fourth, we converted the expert knowledge about the postfire recovery process
varied by fire-year, fire-severity, ecological region, and land cover type into model rules and produced
knowledge-based shrub/herbaceous labels for each date map. Fifth, we integrated the information
from knowledge-deduced land cover, other ancillary data, and land cover classifications to make the
final decision about the best land cover label for each pixel for each epoch.

2.6. Final Integration

The goal for NLCD is to create a widely usable product that provides a relatively simple
understanding of change across time that is credible and defensible. In order to accomplish this, a final
integration step is required to harmonize land cover change both temporally and spatially. Final
integration emphasizes retaining the spatial consistency of change patches across time.

For the final integration, three types of objects were created. (a) Spatial objects representing the
landscape spatial pattern of 2016 generated by implementing eCognition segmentation on a combined
set of two 2016 Landsat leaf-on and leaf-off images. To produce an object-based-majority land cover
map for each corresponding date. (b) Temporal objects to represent landscape patterns over time by
implementing eCognition segmentation on a combined file of eight NBRs from 2001 to 2016. Seven
object-based-majority land cover maps were then produced by summarizing the information between
objects and each land cover map. (c) Seven-date smart-eliminated land cover maps derived by using
the NLCD Smart Eliminate Tool, which provides an interface for weighting classes while establishing
a minimum mapping unit (MMU) to remove isolated pixels (Homer et al., 2007).

The final integration process is accomplished with three main steps. First, land cover maps
are examined through a scene-pair backward chain check to rule out unreasonable changes and any
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unreasonable inconsistencies. Second, a spatial coherence check is conducted to ensure all land cover
types across all dates are spatially coherent based on intersecting land cover types along with change
and no-change strata to produce a consistent, integrated, and temporally cohesive 7-date national
land cover. Third, any regional issues were identified and corrected by using specific regional models.
For example, forest thinning areas, especially in the southeastern U.S., tend to be erroneously classified
as herbaceous-forest right after disturbance, so we designed a regional model to correct for that error.

2.7. Accuracy Assessment

In order to provide an initial accuracy assessment of this new method, we selected four Landsat
path/rows (p18r37, p31r27, p41r32, and p45r28) to represent different land cover geographies (Figure 4).
These path/rows are from diverse landscapes with different change patterns over time. P18r37 is located
in the southeastern U.S., is dominated by forests, has high potential productivity, and has experienced
rapid LCLU change. P31r27 is in the Prairie Pothole region, which is dominated by agriculture,
contains thousands of shallow wetlands known as potholes, and has commonly experienced changes
among agriculture, wetland, and water. P41r32 is in the Central Basin and Range ecoregion, which
is dominated by rangeland shrub and fire disturbance. P45r28 crosses two ecoregions: the Eastern
Cascades Slopes and Foothills, and the Columbia Plateau. This area is dominated by northwest forest,
rangeland shrublands/grasslands, and agricultural lands. Harvest and fire both play an important role
in the forest land cover change (https://landcovertrends.usgs.gov/west/eco9Report.html). The change
between agriculture and rangeland classes is the most common land cover conversion in the Columbia
Plateau (https://landcovertrends.usgs.gov/west/eco10Report.html).
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Figure 4. Four Landsat path/row and sample areas selected for product accuracy assessment. NLCD
2011 is shown as the background.

Eighty random points were created for each Landsat path/row. Each point represents a pixel
and was positioned at the center of the pixel. A similar response design as the NLCD 2011 thematic
accuracy assessment [53] was adopted to obtain a reference dataset. Reference labels of Anderson
Level I and II land cover classes were collected for all mapping target years according to time series
Landsat imagery and Google Earth high-resolution images without knowledge of the map classification.
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Primary and alternate labels were assigned to each point and each epoch; however, alternate labels
were also allowed to be the same as primary labels if the interpreter was highly confident of the
label. Shrub-forest is regarded as shrubland, while herbaceous-forest is regarded as herbaceous in the
validation process. Besides reference land cover labels, a change transitional index (yes/no) between
the consecutive two epochs was also interpreted and provided.

3. Results

Landcover production following this method protocol has been operationally produced for
CONUS and is available from https://www.mrlc.gov/. Rigorous assessment of CONUS results
following previous NLCD accuracy assessment protocols is underway [53]. For this paper, assessment
results are presented in three sections to provide validation perspectives on this new NLCD 2016
landcover approach. First, we present intermediate results from key steps on path/row p18r37. Second,
we show examples of final land cover and land cover change results from the selected four path/rows.
Third, we analyze accuracy assessment results from the same four path/rows.

3.1. Results Demonstration

In this section, we present important intermediate and final products from various stages
of the process including preprocessing, training data creation, classification, postprocessing, and
final integration.

Figure 5 shows an example of Landsat image preprocessing results, with, Figure 5b,d representing
the cloud-free results. For each Landsat path/row, eight Landsat images were processed to be completely
cloud-free, like the example shown in Figure 5. As a result of Landsat image preprocessing, a total
of 3045 Landsat images were processed to be cloud-free for all seven epochs across CONUS. We rely
on these Landsat images and ancillary data to produce change detection and land cover mapping
products for NLCD.

Figure 6 shows the Landsat images along with some intermediate products used as inputs for
training data models. The water product of each Landsat date, generated by our water detection
model, matches well to each corresponding Landsat image. In 2001, this area is mainly covered by
forests, in 2006, the second Landsat image and water map from the left show a new reservoir, and
in 2011, the third Landsat image and water map show the reservoir expansion. This change from
forest to water is also evident with the MIICA from 2001–2006 and 2006–2011, which show the new
reservoir and its expansion as biomass decrease (BD, in red in Figure 6). The MIICA products show
that the forest, urban, and water changes were captured in general with low omission errors, especially
for BD change. The fourth row in Figure 6 shows the long-term multi-date change detection results.
The forest disturbance year product of 1986–2016 at two- to three-year intervals (the far right panel of
the fourth row), which combines VCT ancillary data and the time-series forest disturbance year product
from the seven-date Landsat images of 2001–2016, provides information about forest disturbance over
a 30-year period and the likely persistent forest area as the class of NoChange (nc, white color in
Figure 6). The forest disturbance year product also distinguishes likely non-forest area as the class
of disturbed during or before 1986 (blue color in Figure 6) from forest transitional areas, which look
similar to each other in Landsat images. The enhanced LLC product (the far right panel of the fifth
row) categorizes the area as the primary class of forest-like transitional class (i.e., transiting either
from or to forest), then as persistent forest, then some persistent non-forest-like class, and almost no
cultivated-crop class. The enhanced LLC product provides the high-level and long-term landscape
perspective. Information from each intermediate product provides insights on creating consistent
training data for different dates.

For the same example area shown in Figure 6, Figure 7 shows ancillary data inputs for training
data models, actual training data, and the initial land cover classifications created for 2001, 2006,
2011, and 2016. Most of those training data are spatially and temporally consistent with each other
for the no change area, and the training data for forest-theme classes are dynamically consistent

https://www.mrlc.gov/
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with forest regrowth/succession trajectory. Overall, the initial classification looks reasonable for each
individual date.

Figure 8 shows the land cover maps derived from different process stages (i.e., after postprocessing,
after final integration, and final released products) for the same area as shown in Figures 6 and 7.
Compared to initial land cover classifications, land cover maps after postprocessing are more spatially,
temporally, and logically consistent with each other. The land cover maps after final integration, which
has integrated spatial-temporal object information, are even more spatially coherent and visually
appealing with less salt-and-pepper effects than land cover maps from previous steps. The final
integrated land cover maps also adjusted the forest cut areas classified as herbaceous-forest into the
managed grassland class (originally NLCD hay/pasture class), which likely will not grow back to
forest. The land cover 2001–2016 change classes organized the changes into hierarchical theme-based
categories and form an easy-to-view product that summarizes the changes that happened from 2001 to
2016. In this example (Figure 8), the land cover type change map shows that water, forest, and urban
are the main disturbance types for this area.
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Figure 5. A subset example of cloud filled Landsat results. The coordinate of the image center is
83◦35′28.643”W 33◦25′25.171”N. (a) 2001 Landsat image of p18r37(07/14/2001), (b) the cloud-filled
2001 Landsat image, (c) 2006 Landsat image of p18r37 (07/28/2006), and (d) the cloud-filled 2006
Landsat image.
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Figure 6. Landsat images (84◦0′11.571”W 33◦22′42.752”N is the center coordinate ), ancillary data, and
intermediate products developed for training data creation: (1) the first row is preprocessed Landsat
images of 2001, 2006, 2011, and 2016 from left to right; (2) the second row is water detection maps
corresponding to each Landsat image; (3) the third row is MIICA output of each consecutive image pair,
having two values (i.e., biomass increase and biomass decrease); (4) the fourth row is disturbance year
(the first panel starting from the left is VCT ancillary data, the second panel is the time-series forest
disturbance year product from 7-date Landsat images of 2001–2016, and the third panel is the forest
disturbance year product of 1986–2016 at 2- to 3-year intervals by integrating information from first
and second files); (5) the fifth row is long-term land cover (the first panel is the combined 2009–2015
Cultivated layer, with dark green representing no cultivated crop across time, the second panel is
longer-term land cover (LLC), and the third panel is the enhanced LLC).
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Figure 7. The original land cover, training data, and initial classification for the example area: (1) the
first row is NLCD 2001, NLCD 2006, NLCD 2011, and NASS CDL 2016 crosswalked; (2) the second
row is training data (no training data in the black area) created for 2001, 2006, 2011, and 2016 from
left to right; (3) the third row is the initial decision tree classifications for 2001, 2006, 2011 and 2016.
There are three new classes (young-forest, shrub-forest, and herbaceous-forest) added to the original
NLCD legend.
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steps; 2) the second row is final integration and some regional adjustment of land cover; 3) the third 
row is land cover, which is the final released product where the young-forest class was crosswalked 

Figure 8. Land cover at different stages (please refer to Figure 7 for the land cover legend): (1) the first
row is land cover of 2001, 2006, 2011, and 2016, each with different land cover theme postprocessing
steps; (2) the second row is final integration and some regional adjustment of land cover; (3) the third
row is land cover, which is the final released product where the young-forest class was crosswalked
into other classes; and (4) the fourth row is the land cover change classes summarized over 2001–2016
associated with the 7-date land covers.

3.2. Examples of Final Land Cover and Land Cover Change Results

Figures 9–11 show typical examples of final land cover and change products from the four Landsat
path/rows. These examples provide visual examples of how the final seven epoch land cover and
land cover change products appear and visual assessments of the quality of new NLCD 2016 products
compared to ancillary data.

Figure 9 shows an example of the 7-date final land cover maps and corresponding Landsat images
as well as some ancillary data, forest disturbance date of 1986 to 2016, and land cover type change
over 15 years for p45r28. In the example area, forest disturbance is dominant, and the forest has been
harvested and regenerated by patches over time. Our land cover maps distinguish forest cut areas from
persistent shrub areas very well, even though these areas look similar within the same Landsat images.
The correct distinctions/classifications relied mainly on the information from forest disturbance year of
1986–2016 and enhanced LLC products.
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Figure 9. An example from p45r28 (image center coordinate is 121°22'38.784"W 45°49'49.162"N) with 
Landsat image, ancillary data, and new land cover and change products (please find legends in the 
previous figures): 1) the first column is the Landsat image of 2001, 2004, 2006, 2008, 2011, 2013, and 
2016 from top to bottom; 2) the second column is the new final land cover of 2001, 2004, 2006, 2008, 
2011, 2013, and 2016 from top to bottom; 3) the third column is NLCD 2001, forest disturbance year 

Figure 9. An example from p45r28 (image center coordinate is 121◦22′38.784”W 45◦49′49.162”N) with
Landsat image, ancillary data, and new land cover and change products (please find legends in the
previous figures): (1) the first column is the Landsat image of 2001, 2004, 2006, 2008, 2011, 2013, and
2016 from top to bottom; (2) the second column is the new final land cover of 2001, 2004, 2006, 2008,
2011, 2013, and 2016 from top to bottom; (3) the third column is NLCD 2001, forest disturbance year
of 1986 to 2016, NLCD 2006, enhanced LLC, NLCD 2011, land cover 2001–2016 change class, and
crosswalked NASS CDL 2016.
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Figure 10. An example from p41r32 (center coordinate is 117◦32′59.213”W 39◦49′56.074”N) with
Landsat image, ancillary data, and new land cover and change products: (1) the first column is the
Landsat image of 2001, 2004, 2006, 2008, 2011, 2013, and 2016 from top to bottom; (2) the second column
is the new final land cover of 2001, 2004, 2006, 2008, 2011, 2013, and 2016 from top to bottom; (3) the
third column is NLCD 2001, forest disturbance year of 1986 to 2016, NLCD 2006, enhanced LLC, NLCD
2011, land cover 2001–2016 change class, and crosswalked NASS CDL 2016; (4) the fourth column is
MIICA 2013–2016, oldest fire year from 1984 to 2016, severity of the oldest fire, latest fire year from
1984 to 2016, and severity of the latest fire.
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Figure 11. An example from p31r27 (center coordinate is 98°44'51.827"W 47°36'55.192"N) with Landsat 
image, ancillary data, and new land cover and change products: 1) the first column is the Landsat 
image of 2001, 2004, 2006, 2008, 2011, 2013, and 2016 from top to bottom; 2) the second column is the 
new final land cover of 2001, 2004, 2006, 2008, 2011, 2013, and 2016 from top to bottom, 3) the third 

Figure 11. An example from p31r27 (center coordinate is 98◦44′51.827”W 47◦36′55.192”N) with Landsat
image, ancillary data, and new land cover and change products: (1) the first column is the Landsat
image of 2001, 2004, 2006, 2008, 2011, 2013, and 2016 from top to bottom; (2) the second column is the
new final land cover of 2001, 2004, 2006, 2008, 2011, 2013, and 2016 from top to bottom, (3) the third
column is NLCD 2001, forest disturbance year of 1986 to 2016, NLCD 2006, enhanced LLC, NLCD
2011, land cover 2001–2016 change class, and crosswalked NASS CDL 2016; (4) the fourth column is
crosswalked NWI, Cultivated layer 2009–2015, and WPI.

Figure 10 shows typical fire disturbances on rangeland shrub areas in the western U.S. and
demonstrates the use of fire-related ancillary data and expert knowledge on land cover mapping.
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The impact of fire on Landsat image spectral values can disappear quickly in rangelands in just
a few years. However, because fires in these shrubland areas usually reset burned areas to grassland,
we employ fire year and fire severity and knowledge of fire succession trajectories in different regions
to improve the accuracy of rangeland land cover and land cover change mapping.

Figure 11 shows typical wetland and water change in the Prairie Pothole region and likely
Conservation Reserve Program (CRP) lands gradually coming out of conservation easement. Figure 11
also demonstrates the influence of wetland-related ancillary data such as NWI and WPI on wetland
and water mapping. The majority of wetland areas were consistently mapped over the years, and
mapped water areas match the corresponding Landsat images well. Figure 11 also indicates the
impact of agriculture-related ancillary data, such as crosswalked NASS CDL 2016 and Cultivated layer
2009–2015, on agriculture classes mapping. Our cultivated crop areas look more reasonable compared
to legacy NLCD and NASS CDL 2016.

3.3. Accuracy Assessment Results

The overall accuracies for the selected four scenes are 82.0% at Level II classification hierarchy
(Table 2) and 86.6% at Level I classification hierarchy (Table 3) when results combine either the primary
or alternate reference labels. These assessment results are comparable to accuracy results from previous
NLCD-generated products (82%, 83%, and 83% at Level II and 88%, 89%, and 89% at Level I for 2011,
2006, and 2001, respectively, in Wickham et al. [53] based on a stratified random sampling assessment).
The confusion numbers are the highest between grass (70) and shrub (50) (Table 3). We believe that was
caused by several factors, including (1) difficulties in determining the exact type (herbaceous-forest
or shrub-forest; rangeland grass or rangeland shrub) during forest and/or rangeland shrub regrowth
periods after disturbance, which are natural and continuous processes; (2) lack of high-resolution
reference images. If there is a change (e.g., forest cut or fire), the reference label becomes difficult to
determine. Either herbaceous-forest (no regeneration after change) or shrub-forest (new regeneration
after change) classification may be correct; (3) three out of four path/rows (p18r37, p45r28, and p41r32)
we selected having higher disturbance rate between grass (70) and shrub (50) than average and more
frequent succession transition; (4) mixed pixels, which represent the boundary of two or several land
cover types and abound at the scale of 30-m resolution, resulting in difficulties to identify the dominant
land cover. A lot of change patches in our selected path/rows caused more mixed pixels, which makes
it more difficult to produce high accuracy maps and to decide on the reference label as well. From
Table 4, water (11), high intensity developed (24), evergreen forest (42), shrub/scrub (52), and cropland
(82) are produced with higher user’s accuracies (greater than 85%, lower commission error) while
water (11), open space developed (21), evergreen forest (42), pasture/hay (81), and cropland (82) are
produced with higher producer’s accuracies (greater than 85%, lower omission error).

We also assess the accuracies of binary change/transition and no change/transition classification
between each consecutive two epochs (Table 4) at the Level II classification hierarchy. The results
show that there is about 3.2% (62/1920) changes across the four scenes for all the change epochs.
The producer’s accuracy (66.7%) and user’s accuracy (38.5%) of change classes are relatively lower than
the producer’s accuracy and user’s accuracy of the no change classes (both exceed 95%). The producer’s
accuracy of change was 44.6%–47.2%, while the user’s accuracy was approximately 82% for all the
change periods in 2001–2011 [53]. The difference in accuracies from the two accuracy assessments was
probably because of the different distributions of validation samples, the areal extent, the objectives,
mapping method, and sampling strategies.

The four Landsat scenes selected for this evaluation are among the most complex places for
mapping land cover and land cover change. We chose these four sites in order to rigorously test the
NLCD 2016 algorithm. The accuracy evaluation here does not represent the accuracy for the final
NLCD land cover products at the national scale. More comprehensive validation will be carried out at
the national scale for evaluating the accuracy of the final NLCD 2016 product.



Remote Sens. 2019, 11, 2971 23 of 32

Table 2. Accuracy assessment for all NLCD target years across the four path/row scenes at Level II classification hierarchy. In this confusion matrix and following
accuracy tables, Prod and User are producer’s and user’s accuracies, respectively, when the primary reference labels match with all map results during 2001–2016.
Aprod and Auser are the producer’s and user’s accuracies, respectively, with agreement defined as a match between the map and either the primary or alternate
reference labels. The diagonal numbers were highlighted and shaded gray to show the times of points that were correctly classified (i.e., match with the primary
reference labels) over seven epochs.

Reference
11 21 22 23 24 41 42 43 52 71 81 82 90 95 Total User (%) Auser (%)

Map

11 61 0 0 0 0 0 0 0 7 0 0 0 0 7 75 81.3 100.0
21 0 56 7 0 0 7 0 0 0 7 0 7 0 0 84 66.7 75.0
22 0 21 0 7 0 0 0 0 0 0 0 0 0 0 28 0.0 50.0
23 0 0 0 0 7 0 0 0 0 0 0 0 0 0 7 0.0 0.0
24 0 0 0 0 7 0 0 0 0 0 0 0 0 0 7 100.0 100.0
41 0 0 0 0 0 32 12 25 7 0 0 0 0 0 76 42.1 61.8
42 0 0 0 0 0 1 323 15 39 3 0 0 0 0 381 84.8 89.2
43 0 0 0 0 0 14 12 21 0 0 0 0 0 0 47 44.7 74.5
52 0 7 0 0 0 4 41 3 430 41 0 0 0 0 526 81.7 90.1
71 0 0 0 0 0 5 6 0 141 119 4 0 0 0 275 43.3 59.3
81 0 0 0 0 0 15 0 0 0 44 138 19 0 7 223 61.9 76.2
82 2 8 0 0 0 0 0 0 7 4 10 356 0 21 408 87.3 95.1
90 7 0 0 0 0 0 2 0 3 9 0 0 21 7 49 42.9 57.1
95 2 0 0 0 0 0 0 0 0 7 7 10 7 21 54 38.9 61.1

Total 72 92 7 7 14 78 396 64 634 234 159 392 28 63 2240
Prod (%) 84.7 60.9 0.0 0.0 50.0 41.0 81.6 32.8 67.8 50.9 86.8 90.8 75.0 33.3 70.8

Aprod (%) 89.3 88.7 66.7 0.0 50.0 70.1 87.4 54.7 77.6 67.1 95.5 93.7 80.0 78.6 82.0
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Table 3. Accuracy assessment for all NLCD target years across the four path/row scenes at Level I
classification hierarchy. Refer to Table 2 for table descriptions.

Reference
10 20 40 50 70 80 90 Total User (%) Auser (%)

Map

10 61 0 0 7 0 0 7 75 81.3 100.0
20 0 105 7 0 7 7 0 126 83.3 88.9
40 0 0 455 46 3 0 0 504 90.3 93.9
50 0 7 48 430 41 0 0 526 81.7 90.1
70 0 0 11 141 119 4 0 275 43.3 59.3
80 2 8 15 7 48 523 28 631 82.9 91.0
90 9 0 2 3 16 17 56 103 54.4 66.0

Total 72 120 538 634 234 551 91 2240
Prod (%) 84.7 87.5 84.6 67.8 50.9 94.9 61.5 78.1

Aprod (%) 89.3 99.1 91.0 77.6 67.1 97.0 88.3 86.6

Table 4. Confusion matrix for NLCD change detection between each consecutive two epochs (2001–2004,
2004–2006, 2006–2008, 2008–2011, 2011–2013, 2013–2016). Refer to Table 2 for table descriptions.

Reference
No

Change/Transition Change/Transition Total User (%) Auser (%)

Map No change/transition 1802 40 1842 97.8 99.2
Change/transition 56 22 78 28.2 38.5

Total 1858 62 1920
Prod (%) 97.0 35.5 95.0

Aprod (%) 97.4 66.7 96.7

4. Discussion

A spatially detailed and temporally consistent long-term record on land cover status and changes
is critical to scientists and stakeholders in assessing natural and human impacts on Earth’s environment,
and to carry out climatic, ecological, and natural resource studies and applications at national and
global scales. However, at this level of complexity, the high demand for data acquisition and processing,
the cost of project execution, and inadequate analytical techniques and methodology often hinder
rapid generation of accurate products. This paper reports a new and comprehensive methodology that
has been designed and tested to address these issues. Specifically, the developed methods include
a streamlined process for assembling and preprocessing Landsat imagery and geospatial ancillary
datasets; a multi-source integrated training data preparation and decision tree-based land cover
classification process; a temporally, spectrally, and spatially integrated land cover change analysis
procedure; and a hierarchical theme-based post-classification and integration protocol for generating
land cover and change products.

The below sections highlight salient features of the new NCLD methodology within the context of
the large area land cover and change mapping operation.

4.1. Time Series Landsat Image Preprocessing

Unlike any previous NLCD project, NLCD 2016 aims at the development of a long-term, consistent
national land cover and land cover change product spanning 15 years. One fundamental requirement
for implementing NLCD 2016 is a well-calibrated, spatially and temporally consistent long-term
Landsat imagery dataset across the Nation. Although many Landsat image preprocessing methods
have been developed, such as image compositing [54] and synthetic image processing [55], few have
taken into account both spatial and temporal context simultaneously for image cloud and shadow
detection and gap fill. Our research on preprocessing strategies developed improved procedures [39]
and resulted in a processing protocol to produce 8-date cloud-free images across the 15-year period for
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each Landsat path/row for the entire CONUS. Most procedures developed for these steps have been
scripted into an automated process to gain operational efficiency.

4.2. Geographic Ancillary Data

Ancillary data are prior knowledge datasets, which are usually derived through collective
efforts from an expert team and are likely highly accurate, at least for the focus theme. Geographic
ancillary data and local knowledge can be used to improve the accuracy of either classification or
the post-classification processes [30,32,56–59]. For NLCD 2016, we have collected and prepared
many ancillary datasets to address different issues related to particular land cover classes. These
ancillary data were used not only for developing training data but also for land cover classification
and postprocessing. Accuracy assessment results provide compelling evidence that indicates usage of
ancillary data has improved overall and class-specific accuracies of the NLCD 2016 prototype product,
especially for the wetland class and classes with a land use connotation.

4.3. Training Data for Large Area and Multi-Temporal Land Cover and Change

Many studies demonstrated the importance of high-quality spatially and temporally representative
training data for conducting land cover and change classification [32,51,60,61]. The quality of training
data is particularly crucial when conducting large-area land cover classification, and insufficient
training data are identified as a primary reason for a low accuracy of national or global products when
compared to independently collected reference data [62]. For NLCD 2016 research, we have devoted
much effort to assemble spectrally, spatially, and temporally consistent training data for each epoch
year from 2001 to 2016. Such an approach resulted in a high-quality training dataset that allows spatial
and temporal signature extension for mapping land cover and changes at the national scale. Key
lessons from our training data creation include: (1) it is feasible to create a large quantity of high-quality
training data through modeling and have the training data work well for large-scale classifications;
(2), it is essential to target creation of training data for change areas to improve the overall classification
accuracy, with trajectory analysis playing an important role in adding training data to change areas;
(3), it is important not to remove the training data of edge pixels (i.e., the boundary pixels of landscape
patches) because these data are needed to ensure that the land cover label remains stable for those
edge pixels over time if no changes occur; and (4) it is also important to create training data according
to each land cover theme and to combine those training data in a confidence/priority order.

4.4. Temporal and Spatial Land Cover Characterization and Change Mapping Method

Khatami et al. [57] concluded after their meta-analysis of 266 studies of classification algorithms
that inclusion of texture information yielded the greatest improvement in the overall accuracy of
land-cover classification with an average increase of 12.1%, and ancillary data was second, yielding
an 8.5% increase. For NLCD 2016, we integrated multi-temporal, multi-spectral, and geospatial
ancillary data and knowledge to derive seven epoch land cover and change products. We developed
targeted strategies and comprehensive models for mapping land cover types and changes beyond the
conventional spectral-only change detection and classification.

4.5. Postprocessing

We conducted class-specific postprocessing procedures to improve temporal and spatial accuracy
and consistency in class labels over time. Conclusions from previous research call for a post-classification
error reduction process [10]. In particular, post-classification error reduction that incorporates
knowledge of land cover dynamics and ecological processes is useful when time series land cover
maps are generated [63]. In our study, the post-classification process utilized information from spectral
and temporal data, spatial context, change trajectory, expert knowledge, and ancillary data to refine
the initial land cover and change labels, and corrected errors in each epoch year’s land cover map as



Remote Sens. 2019, 11, 2971 26 of 32

well as temporal inconsistency in time series land cover maps. The postprocessing was conducted in
a hierarchical order, and different sets of rules and models were developed for each land cover class.

Postprocessing improved the accuracy of the initial land cover label from the seven-date land cover
maps and also ensured spatial temporal coherence and consistency on the land cover change products
from 2001 to 2016. Temporal information has been demonstrated to be able to add high additional value
to change detection and classification [64,65]; however, the spatial domain information of the majority
of the time series algorithms is almost entirely ignored [66]. Zhu [66] presents a comprehensive review
of change detection algorithms using Landsat time series based on 102 articles published between 2000
and 2016 and points out that a spatial-temporal integrated approach, similar to what we employ here,
may be the future direction for change detection.

4.6. Final Integration

A national-scale project such as NLCD 2016 requires careful quality control procedures to ensure
high accuracy and consistency of the final products. After postprocessing was completed, the final
integration process ensured accurate and coherent spatiotemporal objects across all years from 2001 to
2016. All spatiotemporal objects followed a temporal change (or no change) trajectory in the same way.
All pixels within an object belonged to the same land cover class for an epoch year. We integrated
pixel-based and object-based land cover maps and achieved a balance between maintaining the
coherence of multi-pixel objects for certain land cover types and keeping single-pixel level information
for other types. A guideline we followed was to use an object-based approach for mapping change
of natural vegetation and agricultural classes to maintain the spatial coherence; to use a pixel-based
approach for water, snow/ice and develop classes to retain their spatial details; and to integrate
object-based and pixel-based approaches for no change areas [38].

4.7. Constraints and Limitations of NCLD 2016 Methods

Although the methods reported here improved the turnaround time to release seven new epochs
of land cover products, some method dependencies and limitations remain. The developed methods
rely on relatively perfect imagery to achieve a high accuracy of the final land cover and change products.
If the image quality and acquisition time related to vegetation phenology are not optimized, the quality
of land cover model output may be compromised. As some model processes rely on ancillary data
and/or expert knowledge to determine land cover conditions and changes, uncertainties and errors
within these data can negatively affect the spatial, temporal, and thematic accuracies of modeling
output. Since so many ancillary data (particularly for CONUS) were used throughout the entire process,
it makes the process difficult to be directly applied to other regions where such rich ancillary data are
not available. However, the idea of leveraging ancillary data and our descriptions of how ancillary
data can be created and used to improve land cover mapping at each processing stage provide helpful
insights for other similar projects. The operational unit is still based on one Landsat path/row, which
likely impacts the efficiency and may add to the complexity and confusion over the overlap areas of
Landsat path/rows. While the entire process, which is composed of over 100 models, is complicated
and may be difficult to replicate in other areas, the basic concepts and approach can be applied to
other land cover change and mapping cases. Despite these limitations, results from our selected areas
confirm the efficacy and robustness of the new method, which has been streamlined and advanced for
NLCD 2016 operational national production.

5. Conclusions

This paper reports a new and comprehensive methodology that was designed to create a seven
epoch, spatially and temporally consistent, accurate, and up-to-date land cover and change datasets
from 2001–2016. The method has been tested and validated using four Landsat path/rows representing
a variety of land cover types and land cover changes. The overall accuracies for the four path/rows
as a whole are 82.0% at Anderson Level II classification hierarchy and 86.6% at Level I classification
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hierarchy when matching the map labels with either the primary or alternate reference labels. Using
the same protocol for the matching, the overall accuracy of individual scenes varies from 77.9% to
86.8% at Level II.

It is anticipated that NLCD 2016, a nationally consistent time series land cover and change
database at 30-m spatial resolution, will revolutionize our understanding of the spatial magnitude
and trajectory of land use and land cover change. NLCD 2016 will enable the data producer and user
communities to go beyond land cover change detection alone and move toward a more comprehensive
scientific understanding of the nation’s land cover dynamics, processes, causes, and consequences
in a consistent and credible way [67]. NLCD 2016 will provide insights on a substantial period of
past land cover dynamics and provide a foundation for assessing impacts of future changes on the
provision and management of land resources and ecosystem service. NLCD 2016 products, which are
available for download from www.mrlc.gov, can be used to assess land cover change through time,
provide critical input data to a variety of environmental process models, and allow simulation of many
natural and anthropogenic processes that are not directly observable.
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Appendix A

Table A1. NLCD 2016 Land Cover Class Descriptions for Conterminous United States (CONUS).

11. Open Water—All areas of open water, generally with less than 25% cover of vegetation or soil.
12. Perennial Ice/Snow—All areas characterized by a perennial cover of ice and/or snow, generally greater
than 25% of total cover.
21. Developed, Open Space—Includes areas with a mixture of some constructed materials, but mostly
vegetation in the form of lawn grasses. Impervious surfaces account for less than 20 percent of total cover.
These areas most commonly include large-lot single family housing units, parks, golf courses, and vegetation
planted in developed settings for recreation, erosion control, or aesthetic purposes
22. Developed, Low Intensity—Includes areas with a mixture of constructed materials and vegetation.
Impervious surfaces account for 20–49 percent of total cover. These areas most commonly include
single-family housing units.
23. Developed, Medium Intensity—Includes areas with a mixture of constructed materials and vegetation.
Impervious surfaces account for 50–79 percent of the total cover. These areas most commonly include
single-family housing units.
24. Developed, High Intensity—Includes highly developed areas where people reside or work in high
numbers. Examples include apartment complexes, row houses, and commercial/industrial. Impervious
surfaces account for 80 to100 percent of the total cover.
31. Barren Land (Rock/Sand/Clay)—Barren areas of bedrock, desert pavement, scarps, talus, slides, volcanic
material, glacial debris, sand dunes, strip mines, gravel pits, and other accumulations of earthen material.
Generally, vegetation accounts for less than 15% of total cover.
41. Deciduous Forest—Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of
total vegetation cover. More than 75 percent of the tree species shed foliage simultaneously in response to
seasonal change.
42. Evergreen Forest—Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of
total vegetation cover. More than 75 percent of the tree species maintain their leaves all year. Canopy is never
without green foliage.

www.mrlc.gov
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Table A1. Cont.

43. Mixed Forest—Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total
vegetation cover. Neither deciduous nor evergreen species are greater than 75 percent of total tree cover.
44*. Young-Forest—Areas identified as spectrally having properties of both shrub and forest, likely indicating
a transitioning young forest.
45*. Shrub-Forest—Areas identified as current Shrub/Scrub like original Class 52 but showing spectral
properties of transitioning to future forest. This class includes trees in a shrub successional stage.
46*. Herbaceous-Forest—Areas identified as current grass like original Class 71 but showing spectral
properties of transitioning from being either a past forest or to future shrub-forest. This class includes trees in
an early herbaceous successional stage.
52. Shrub/Scrub—Areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than
20% of total vegetation. This class includes true shrubs, young trees in an early successional stage or trees
stunted from environmental conditions.
71. Grassland/Herbaceous—Areas dominated by grammanoid or herbaceous vegetation, generally greater
than 80% of total vegetation. These areas are not subject to intensive management such as tilling but can be
utilized for grazing.
82. Cultivated Crops—Areas used for the production of annual crops, such as corn, soybeans, vegetables,
tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation
accounts for greater than 20 percent of total vegetation. This class also includes all land being actively tilled.
90. Woody Wetlands—Areas where forest or shrubland vegetation accounts for greater than 20 percent of
vegetative cover and the soil or substrate is periodically saturated with or covered with water.
95. Emergent Herbaceous Wetlands—Areas where perennial herbaceous vegetation accounts for greater than
80 percent of vegetative cover and the soil or substrate is periodically saturated with or covered with water.

* New forest transitional classes used in land cover generation. Note these classes are not included in the general
land cover release.

Table A2. Descriptions of immediate products used in the training data creation process.

1. Water extent of each year—Water areas detected corresponding to each-epoch Landsat image
2. Snow extent of each year—Snow areas detected corresponding to each-epoch Landsat image
3. Water frequency of 2001–2016—Accumulated water occurrence frequency generated from 7 water

extent maps, 2001–2016. This also likely indicates the maximum water extent from 2001 to 2016
4. Snow frequency of 2001–2016—Accumulated snow occurrence frequency generated from7 lsnow extent

maps, 2001–2016. This also likely also indicates the maximum snow extent from 2001 to 2016
5. Multi-Index Integrated Change Analysis (MIICA)—A change product derived from two dates of

Landsat images with two change classes (biomass increase, biomass decrease), likely indicating areas
experiencing high magnitude spectral change between two dates

6. Persistent forest—A product conservatively shows the areas staying as forest without disturbance
during 2001 to 2016

7. Normalized Spectral Distance (NSD)—An output identifying the normalized spectral difference of
each Landsat pixel to the average spectral values of persistent forest pixels

8. Forest Disturbance year,2001 to 2016—A product created from 7-date multi-temporal change detection,
showing the earliest forest disturbance year between 2001 to 2016

9. Forest Disturbance year of 1986 to 2016—A product thatintegrates VCT of 1984–2010 to the Disturbance
year of 2001 to 2016 on either areas of no-disturbance or areas disturbed before 2001. This provides
information about the forest disturbance date at 2–3 years intervals, as well as likely non-forest and
persistent forest areas over the time period 1986–2016.

10. Long-term Land Cover (LLC)—A product derived from the analysis of 7-date NSD temporal pattern,
categorizing the landscape from 1986–2016 into four general coarse strata: likely agriculture, likely
persistent forest, likely transitional forest, and likely rangeland.

11. Enhanced LLC—A product categorizing the landscape from1986–2016 into five general strata: likely
agriculture, likely persistent forest, likely transitional forest, likely rangeland, and uncertain other areas.
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