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Abstract: Recovery trajectories derived from remote sensing data are widely used to monitor
ecosystem recovery after disturbance events, but these trajectories are often retrieved without a
precise understanding of the land cover within a scene. As a result, the sources of variability in
post-disturbance recovery trajectories are poorly understood. In this study, we monitored the recovery
of chaparral and conifer species following the 2007 Zaca Fire, which burned 97,270 ha in Santa Barbara
County, California. We combined field survey data with two time series remote sensing products:
the relative delta normalized burn ratio (RdNBR) and green vegetation (GV) fractions derived from
spectral mixture analysis. Recovery trajectories were retrieved for stands dominated by six different
chaparral species. We also retrieved recovery trajectories for stands of mixed conifer forest. We found
that the two remote sensing products were equally effective at mapping vegetation cover across
the burn scar. The GV fractions (r(78) = 0.552, p < 0.001) and normalized burn ratio (r(78) = 0.555,
p < 0.001) had nearly identical correlations with ground reference data of green vegetation cover.
Recovery of the chaparral species was substantially affected by the 2011–2017 California drought.
GV fractions for the chaparral species generally declined between 2011 and 2016. Physiological
responses to fire and drought were important sources of variability between the species. The conifer
stands did not exhibit a drought signal that was directly correlated with annual precipitation, but the
drought likely delayed the return to pre-fire conditions. As of 2018, 545 of the 756 conifer stands had
not recovered to their pre-fire GV fractions. Spatial and temporal variation in species composition
were important sources of spectral variability in the chaparral and conifer stands. The chaparral
stands in particular had highly heterogeneous species composition. Dominant species accounted for
between 30% and 53% of the land cover in the surveyed chaparral patches, so non-dominant land
cover types strongly influenced remote sensing signals. Our study reveals that prolonged drought
can delay or alter the post-fire recovery of Mediterranean ecosystems. It is also the first study to
critically examine how fine-scale variability in land cover affects time series remote sensing analyses.
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1. Introduction

Wildland vegetation in Southern California frequently experiences intense crown fires that
significantly alter ecosystem function by destroying aboveground biomass and altering soil
properties [1]. Fires affect carbon cycling, nutrient cycling, soil water repellency, runoff, erosion,
streamflow, and sediment export [2–4]. Burned vegetation is also the largest driver of carbon stock loss
in California [5]. These effects generally diminish as vegetation regrows [2,4], although fire-induced
changes in the composition of vegetation patches can lead to long-term changes in ecosystem structure
and function [6].

Monitoring burn severity and post-fire vegetation regrowth are essential for detecting the
ecological effects of wildfires, especially as large fires become more frequent in the western
United States [7]. Field surveys are a common method of assessing ecological changes after fires,
but they are expensive and time consuming, especially for continuous landscape-scale monitoring.
Remote sensing is another method of monitoring land cover change, which provides broad spatial
and temporal coverage. Landsat imagery covering the entire globe has been collected regularly for
over 45 years and is now freely available for public use [8]. Recent studies have taken advantage
of this data availability by developing time series data sets to monitor ecosystem recovery after
wildfires [9–11]. The recovery trajectories derived from these data sets are an improvement over simple
two-date change detection models because they capture the temporal variability that occurs after fires,
including inter- and intra-annual trends [12].

Various remote sensing products have been used to develop post-fire recovery trajectories.
Spectral indices are the most common method of assessing burn severity and post-fire vegetation
regrowth using Landsat imagery. Many studies rely on the normalized burn ratio (NBR) and its variants
for these purposes [13,14]. Spectral indices such as NBR primarily measure changes in greenness
compared to pre-fire conditions. These indices are easy to calculate and are computationally efficient,
however they produce unitless values that do not directly measure any biophysical property [15].
Spectral mixture analysis (SMA) is another method of assessing fire effects using remote sensing
data [10,16–18]. SMA estimates the fractional cover of different materials, such as green vegetation,
within a pixel. While spectral indices such as NBR produce unitless measures of vegetation greenness,
SMA can generate absolute estimates of green vegetation (GV) cover inside of a pixel. As a result,
SMA fractions are physically meaningful values that can be compared with observations by field
ecologists [15]. This has obvious advantages for studies that integrate remote sensing and field
ecology data. Fire effects also vary at a scale that is finer than the spatial resolution of many spaceborne
sensors [19]. Spectral indices that assign a single value to a pixel do not capture this subpixel variability,
but SMA can decompose the remote sensing signal in order to determine a pixel’s composition.
As a result, SMA is more sensitive to the variability that occurs within vegetation patches after fires.
That being said, SMA models require extensive calibration in order to produce accurate retrievals.

While remote sensing trajectories are often used to monitor ecosystem recovery after wildfires,
previous studies have retrieved recovery trajectories without a precise understanding of the underlying
land cover. Plant species exhibit different physiological responses to fires, so the types and number of
species present in a patch affect its recovery behavior. The structure and composition of vegetation
patches also change over time as vegetation regrows [20,21]. These factors affect the timing and
magnitude of vegetation greenness signals in remote sensing data, but few studies have examined
these sources of variability [17]. Likewise, few studies have examined whether individual species
or functional types exhibit unique recovery trajectories after the same disturbance event [17,22,23].
This study fills that gap. We combine multi-temporal remote sensing imagery with field survey data to
retrieve post-fire recovery trajectories for chaparral species and stands of mixed conifer forest. We also
examine how fine-scale variability in species composition influences post-fire recovery trajectories.
In doing so, we answer the following research questions:

1. How effectively do NBR and GV fractions map vegetation cover across a burn scar?
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2. How variable are post-fire recovery trajectories for different plant species and functional types?
What drives this variability?

3. How heterogeneous are the structure and composition of vegetation patches in chaparral and
mixed conifer ecosystems? How does this heterogeneity affect post-fire recovery trajectories?

2. Methods

2.1. Study Area

This study examines vegetation regrowth following the 2007 Zaca Fire in Santa Barbara County,
California (Figure 1). The Zaca Fire burned 97,270 ha starting on 4 July 2007. It was fully contained
on 2 September 2007. The majority of the burn scar is located in undeveloped wilderness areas inside of
Los Padres National Forest. The elevation of the burn scar ranges from 254 m to 2077 m. Mean annual
precipitation ranges from 324 mm to 1260 mm depending on elevation and topographic position,
with 95% of the precipitation occurring between November and March [24]. The majority of vegetation
cover inside the burn scar is chaparral shrubland, which is characterized by the presence of species such
as Ceanothus spp., Arctostaphylos spp., and Adenostoma fasciculatum. Coastal sage scrub species such as
Eriogonum fasciculatum occur in xeric locations. Oak species including Quercus berberidifolia, Quercus
chrysolepis, and Quercus wislizenii are also prevalent across the landscape. Stands of conifers occur
intermittently throughout the burn scar, especially at higher elevations. These stands include species
such as Pinus coulteri, Pinus jeffreyi, Pseudotsuga macrocarpa, Abies concolor, and Calocedrus decurrens.
The dominant chaparral and conifer species are evergreen, but many herbaceous species senesce
during the summer dry season. Botanical nomenclature follows Baldwin et al. [25].

Sources: Esri, USGS, NOAA
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Figure 1. Location of the Zaca Fire burn scar in California, USA.

Recovery from the Zaca Fire was affected by the 2011–2017 California drought. Annual precipitation
in California is summarized using water years that last from 1 October until 30 September. Santa Barbara
County received abnormally low rainfall during the water years of 2011–2015, when county-wide rainfall
was 40 to 69 percent of average (Figure 2) [26]. The water year of 2013–2014 was the worst drought year in
the last 1200 years [27], and the period of drought from 2012 to 2015 was unprecedented in the historical
record [28]. An atmospheric river provided substantial drought relief in January and February 2017 [29].
County-wide rainfall in the 2016–2017 water year was 136 percent of average [26]. Dry conditions returned
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in the next water year, and Santa Barbara County remained in some degree of drought condition until
February 2019 [30].
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Figure 2. County-wide rainfall in Santa Barbara County, California as a percent of water year average.
California water years last from October 1 until September 30. Reproduced from Santa Barbara County
Water Resources [26].

2.2. Remote Sensing

2.2.1. Imagery

Landsat images from 2000 to 2018 (path 42, row 36) were used to monitor vegetation changes
across the burn scar. Images from 2012 were omitted from the analysis because Landsat 5 failed in 2012
and Landsat 8 was not launched until 2013. Landsat 7 data were not used to fill the gap because its scan
line corrector failed in 2003 [31]. The Level 2 surface reflectance products were acquired from the U.S.
Geological Survey [32]. All images were captured in September, except for the 2015 image, which was
captured in August because there was no cloud-free image available for September. September imagery
was selected to maximize vegetation senescence at all elevations across the burn scar, which minimized
variability in phenology caused by topography. As a result, GV cover is at its annual minimum in the
September imagery. September image dates also coincide with the end of the California water year.
The images from 2000 to 2006 were used to calibrate baseline metrics of vegetation cover. Based on fire
history data, 98.3% of the burn scar had not burned in at least 40 years at the time of the Zaca Fire,
so the pre-fire images represented mature vegetation [33]. The images from 2007 to 2018 were used
to monitor vegetation regrowth after the fire. The measurements from 2013 to 2016 were affected by
severe drought.

Imagery from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) was used to build
spectral libraries for SMA. AVIRIS is a 224 channel imaging spectrometer that was flown on a Lockheed
ER-2 [34]. AVIRIS flightlines have been flown over the Zaca burn scar regularly since 2013 as part of the
HyspIRI airborne campaign [35]. This study utilized five AVIRIS flightlines flown on 24 August 2015
and 17 June 2016. The five flightlines covered the majority of the burn scar. The Level 2 surface
reflectance products for these images were acquired from NASA [36]. Additional pre-processing was
performed on the 2015 flightlines in order to improve the reflectance retrievals and ensure consistent
georegistration. See Meerdink et al. [37] for more information.
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2.2.2. Relative Delta Normalized Burn Ratio

The normalized burn ratio (NBR) is commonly used to monitor land cover change after wildfires.
NBR is derived from Landsat imagery using the formula

NBR =
NIR− SWIR2
NIR + SWIR2

(1)

where NIR is the near-infrared band and SWIR2 is the second shortwave infrared band [13].
The difference between pre-fire and post-fire NBR, known as delta NBR (dNBR), is often used as
a metric of burn severity and vegetation regrowth [13]. NBR is sensitive to the amount of green
vegetation in a pixel, so the largest dNBR values occur in pixels that had large amounts of green
vegetation before a fire. To compensate for this bias, Miller and Thode [14] proposed the relative dNBR
(RdNBR), which is calculated using the formula

RdNBR =
NBRprefire −NBRpostfire√
|NBRprefire/1000|

(2)

RdNBR normalizes dNBR by pre-fire vegetation cover, so it is a more reliable metric for
comparing disturbance and recovery patterns across disparate sites. RdNBR values are correlated with
burn severity. Values near zero indicate that a pixel is undistinguishable from pre-fire conditions [14].
Previous studies of forested ecosystems have reported that RdNBR values greater than 650 indicate high
burn severity. The maximum observed RdNBR values in those studies were approximately 1300 [14,38].
In a study of a chaparral ecosystem, Hubbert et al. [39] reported that 99% of pixels had RdNBR values
greater than 1000.

NBR was calculated for all of the Landsat images. RdNBR was then calculated for each year from
2007 to 2018. The median NBR value from 2000 to 2006 was used as NBRprefire for all RdNBR calculations.
The NBR values from 2007 to 2018 were used as NBRpostfire. This produced an RdNBR recovery trajectory
for each pixel inside of the burn scar.

2.2.3. Multiple Endmember Spectral Mixture Analysis

SMA estimates the fractional cover of materials inside of a pixel [40]. SMA assumes that a pixels’
spectrum is a linear combination of the spectra of the materials inside of the pixel, weighted by the
fractional cover of each material [41]. SMA estimates the fractional cover of different materials by
decomposing the observed spectrum using reference spectra of pure materials, known as endmembers.
Endmembers can be extracted from images or collected in situ using a field spectrometer. Field spectra
can be captured at the leaf scale, branch scale, or stand scale. Image spectra are typically stand-scale
measurements [42]. The SMA decomposition is based on the equations

Siλ =
N

∑
k=1

fkiEkλ + εiλ (3)

N

∑
k=1

fki = 1 (4)

where S is an observed spectral mixture for location i at wavelength λ. E is the set of N endmembers, k,
which are weighted by the fractions fki. ε is the residual between the modeled and measured spectra.
The selected model for a pixel minimizes the root mean squared error (RMSE) between the modeled
and measured spectra.

Multiple endmember spectral mixture analysis (MESMA), a variant of SMA, allows the number
and types of endmembers to vary by pixel. It also places additional constraints on acceptable
models [43]. Because the number and types of endmembers vary by pixel, MESMA spectral libraries
can contain multiple endmembers for each class and endmembers for classes that are not present
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across the entire scene. As a result, both the size of the spectral library and the number of potential
models for each pixel can be very large. To address this, several techniques have been developed to
select potential endmembers and choose the ones that form the best possible spectral library [44–46].
Endmember selection is an important step that determines the accuracy of the final product [47,48].

Spectral Library Development

For this study, MESMA GV fractions were used to monitor vegetation regrowth inside of the burn
scar. Endmembers for the MESMA spectral library were extracted from the AVIRIS images and used
to unmix the Landsat images. AVIRIS endmembers were used because the spectra were acquired at an
appropriate spatial scale for ecological studies [42] and can be convolved to the spectral resolutions
of broadband sensors such as Landsat. While endmembers can be extracted directly from Landsat
imagery, the higher spectral resolution of AVIRIS data makes it possible to identify narrow absorption
features, which may reveal the contents of the pixel in more detail [49]. The higher spatial resolution
of AVIRIS also increases the likelihood of extracting spectrally pure endmembers.

The goal of the MESMA analysis was to quantify the fractional cover of GV, non-photosynthetic
vegetation (NPV), and soil within each pixel, so potential endmembers were stratified across
those classes. Classification and Assessment with Landsat of Visible Ecological Groupings (CALVEG)
data were used as ground reference data during endmember extraction. CALVEG is a GIS database of
California land cover that is maintained by the U.S. Forest Service [50]. We extracted endmembers from
areas dominated by six CALVEG alliances that represent different plant species and functional types:

1. Ceanothus chaparral alliance
2. Chamise alliance
3. Scrub Oak alliance
4. Coast Live Oak alliance
5. Bigcone Douglas-fir alliance
6. Black Cottonwood alliance

GV spectra were extracted from the June 2016 AVIRIS flight lines. Approximately 15 GV
spectra were selected from each flight line for each alliance, totaling 480 potential GV endmembers.
NPV spectra were extracted from the August 2015 flight lines in order to maximize vegetation
senescence across the scene. We extracted 495 potential endmembers from areas dominated by
annual grasses and forbs, which were senesced at the time the images were captured. Soil spectra
were also extracted from the August 2015 flight lines in order to minimize spectral contamination from
photosynthetic vegetation. We extracted 559 potential soil endmembers from areas covered by barren
ground, agricultural soil, and streambed alluvium.

Iterative endmember selection (IES) was used to select the most representative endmembers from
each subclass (i.e., the six GV alliances, the three soil types, and NPV) [44,51]. For each subclass,
IES picks the pair of endmembers that has the highest kappa statistic for that subclass. It then
iteratively adds and removes endmembers from the selection in order to increase the value of the
kappa statistic. IES is completed when it is not possible to increase the value of the kappa statistic by
adding or removing any more endmembers from the spectral library. IES is an automated process
that selected 26 GV endmembers, 17 soil endmembers, and 3 NPV endmembers for inclusion in the
spectral library.

Eight additional endmembers were manually added to the library. Three of the eight endmembers
(two NPV endmembers and one soil endmember) were extracted from WestUSA, which is a reference
spectral library that was created using a field spectrometer [42]. These endmembers were brighter than
the image spectra and helped ensure that the spectral library captured the full range of illumination
variability that occurred within the scene. Three ash endmembers were extracted from an AVIRIS
image flown shortly after the 2004 Gaviota fire in Santa Barbara County, California. A fourth ash
endmember was extracted directly from the September 2007 Landsat image. The burn scar was covered
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in ash when the 2007 Landsat image was collected, so the ash endmembers helped model parts of
that image. Ash is short-lived on the landscape after fires [52], so the four ash endmembers were only
included in the spectral library for the 2007 image. Finally, photometric shade with zero reflectance
at all wavelengths was added to the spectral library [41]. This enabled MESMA to model observed
spectra that are proportionally darker than mixtures of endmembers because of illumination variability.
After unmixing, the fractional cover allocated to the shade endmember was proportionally reallocated
to the other materials in each pixel in order to estimate subpixel land cover [41]. This process is known
as shade normalization.

After preliminary endmember selection was completed, the endmembers were manually
inspected to ensure that they were pure representations of their class. Several endmembers were
removed from the library because they represented a combination of multiple land cover types,
which caused the models to overestimate GV fractions. In order to guide this process, we compared
the modeled GV fractions for 2018 with ground reference data of GV cover from the field survey
transects [53,54]. The selected endmembers maximized the agreement between the two data sets.
The creation of the ground reference data is described in Section 2.3. In total, 18 GV endmembers,
2 soil endmembers, and 1 NPV endmember were manually removed from the library to ensure that it
only contained pure endmembers.

The final MESMA spectral library contained 29 endmembers, including 8 GV endmembers,
16 soil endmembers, 4 NPV endmembers, and photometric shade. The library for the 2007 image
also contained the four ash endmembers. All plant species and all soil types were represented in the
final library. The spectral libraries were convolved to the spectral resolutions of Thematic Mapper
(TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) before unmixing.

Spectral Unmixing

MESMA was performed using VIPER Tools version 2.0 [55], an extension for ENVI
(Harris Geospatial Solutions, Broomfield, CO, USA). All Landsat images were unmixed using the
spectral library described in the previous section. The potential models for each pixel contained
between two and four endmembers from different classes (i.e., GV, NPV, soil, and shade). The selected
model minimized the RMSE between the modeled and measured spectra. Several constraints were
placed on MESMA in order to ensure that the selected models were physically reasonable: endmember
fractions were constrained between 0 and 1, shade fractions were constrained between 0 and 0.8, and
the maximum allowable RMSE was 0.025 [56]. All fractions were shade normalized after unmixing.
The shade-normalized GV fractions were extracted for each image date in order to create a GV trajectory
for each pixel inside of the burn scar.

2.2.4. Assessment of Remote Sensing Products

The selected MESMA model maximized the agreement between the 2018 GV fractions and
ground reference data of GV cover from the field survey transects. RMSE and Pearson’s correlation
coefficient were used to quantify model fit. The units of the GV fractions are the same as the units of
the field observations (i.e., percent cover of vegetation scaled from 0–1), so the two data sets could be
directly compared. NBR and RdNBR produce unitless values, so they cannot be directly compared with
field observations. We assessed their ability to model changes in vegetation cover by calculating the
correlation between the 2018 NBR values and the ground reference data. While RdNBR was ultimately
used to quantify post-fire vegetation regrowth, RdNBR values do not represent land cover at one
point in time; RdNBR is a multi-temporal metric that measures changes in NBR values between two
image dates. Thus, it is appropriate to use NBR, but not RdNBR, to assess model fit. We also calculated
the correlation between the MESMA and NBR products to quantify the strength of their agreement.
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2.3. Vegetation Field Surveys

In order to characterize the land cover in the remote sensing images, we conducted vegetation
field surveys in the summer of 2018. These data enabled us to analyze how fine-scale variability in
land cover influences remote sensing signals of post-fire vegetation regrowth. Species cover data were
collected from eighty-two 45 m transects located throughout the burn scar. The transect locations were
selected based on six criteria:

1. in an area of high burn severity (2007 dNBR > 600)
2. homogenous vegetation composition
3. homogenous slope and aspect
4. minimum 40 m from a road to minimize the impacts of the road on surrounding vegetation (e.g.,

invasive grass)
5. maximum 150 m from an accessible road or trail
6. estimated slope less than 35 degrees

Because species composition is an important control on post-fire recovery behavior, we also
stratified the survey sites by dominant vegetation type using CALVEG data. Approximately half of the
sites were dominated by mixed chaparral (e.g., Ceanothus spp., Arctostaphylos spp., and A. fasciculatum),
a quarter of the sites were in oak woodlands, and a quarter of the sites were located at the interface of
chaparral shrubland and mixed conifer forests. The sites located near the forests did not have conifer
overstories and were primarily covered by conifer saplings, shrubs, or herbaceous species.

Species cover data were collected from the 45 m transects using a digital camera mounted on a 5 m
tall boom (Wonder Pole, Salem, OR, USA). The camera was adjusted so that the lower border of each
image aligned with the transect tape and the upper border of the image extended 5 m downslope of
the transect tape. Photographs were taken every 5 m along the transect tape, totaling 10 photographs
for each transect. A small number of survey sites had no slope. For those sites, photographs were
taken on both sides of the transect tape at five evenly spaced points along the transect. Every plant
species within each transect was identified and extensive notes were taken recording the locations of
each species within the transect. Grass species were not identified individually and were assigned to a
single taxonomic group.

To estimate the fractional cover of different species within each transect, points were sampled from
each photograph using a regular sampling scheme [57,58]. In the laboratory, we overlaid a 7 × 6 point
grid onto each photograph and labeled the species cover at each grid point. Non-biotic land cover
types (e.g., rock and charcoal) were also labeled accordingly. In total, there were 42 grid points for
each photograph and 420 grid points for each transect. The proportion of grid points assigned to each
species was used as an estimate of its fractional cover within the transect.

GV, NPV, and soil fractional cover were estimated using the same method. These estimates were
used to calibrate endmember selection for the spectral mixing models, as described in Section 2.2.3.
Because these cover types vary at a finer spatial resolution than species cover, a 10 × 10 grid was
overlaid onto each photograph, totaling 1000 grid points for each transect. The proportion of grid
points assigned to each cover type was used as an estimate of its fractional cover within the transect.

The species cover data were analyzed using principal components analysis (PCA) to identify
species assemblages across the transects. We only analyzed cover data for dominant species, defined
as species that had a fractional cover greater than 25% in at least one transect [59]. PCA was performed
on cover data for all of the transects, even if a species was not dominant in a particular transect.

We also performed two additional analyses to quantify fine-scale variability in land cover.
We calculated the mean percentage of land cover that was identical between all pairs of transects
dominated by each species. This enabled us to test whether stands dominated by the same species have
consistent land cover across the landscape. We also calculated the percent cover of dominant species
in each transect. Species exhibit different physiological responses to disturbance, so compositional
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heterogeneity within and across vegetation stands may inhibit our ability to attribute remote sensing
signals to particular plant types.

2.4. Conifer Canopy Cover

The field survey protocol could not quantify the canopy cover of mature conifer trees, so conifer
canopy cover was determined by manually interpreting high-resolution imagery. Conifer stand
boundaries were extracted from CALVEG. We extracted all 756 stands within the burn scar dominated
by the “Mixed Conifer–Pine” alliance. This alliance was selected because its stands are located in areas
of known conifer mortality after the fire (Dr. Nicole Molinari, personal communication), and because
it contains most of the conifer species found within the burn scar. The stands are primarily located in
the vicinity of Big Pine Mountain in Los Padres National Forest.

The conifer stand boundaries were overlaid onto high-resolution imagery available through
the National Agriculture Imagery Program and Google Earth (Google, Mountain View, CA, USA).
We utilized images captured from 2002 to 2018. Percent canopy cover from before and after the fire
was manually assessed and recorded for each stand. Canopy cover was classified into four classes:
no trees (0% canopy cover), sparse (1–25% canopy cover), open (25–75% canopy cover), and dense
(75–100% canopy cover). Thresholds in 25% increments were selected to minimize subjectivity and
error during the manual interpretation process [60]. They are similar to thresholds used by Canada’s
National Forest Inventory [61] and previous studies [62].

2.5. Recovery Trajectories

RdNBR values were computed for each year from 2007 to 2018. GV fractions were computed for
each year from 2000 to 2018. Values for the remote sensing products were extracted from the centroid
of each 45 m transect. In order to determine whether different species exhibited distinct recovery
trajectories, the transects were grouped by dominant species. Mean RdNBR and GV trajectories were
then computed for each dominant species. Median RdNBR values and GV fractions were also extracted
from the 756 stands of mixed conifer forest. The stands were then grouped based on pre-fire and
post-fire canopy cover and the mean trajectories were computed for each group.

3. Results

3.1. Land Cover

Species cover data for the chaparral shrubland were collected from 82 vegetation transects between
June and August of 2018. Sixty-nine plant species and four non-biotic land cover types were observed
within the transects. There were between 3 and 19 species in each transect, with a mean diversity
of 8.4 species. In total, there were 14 dominant species, which had more than 25% cover in at least
one transect.

PCA of the transect data for the dominant species revealed that the ground cover of one
dominant species often had low or negative correlations with the ground cover of other dominant
species (Figure 3). This was particularly true for the four most prevalent species: Q. berberidifolia,
Ceanothus cuneatus, A. fasciculatum, and Arctostaphylos glandulosa. This suggests that these species
are diagnostic of the different vegetation alliances that exist across the landscape. These chaparral
alliances are well documented in literature, and their distributions respond to fine-scale variability in
environmental conditions. A. fasciculatum dominates in many arid locations. Obligate-seeding Ceanothus
spp. (e.g., C. cuneatus) and Arctostaphylos spp. dominate on ridge lines and arid south-facing slopes.
Q. berberidifolia dominates on mesic north-facing slopes [63,64].

We also calculated the mean percentage of land cover that was identical between all pairs of
transects dominated by each species (Table 1). This provided a metric of compositional similarity that
revealed whether stands dominated by a given species had consistent land cover across the landscape.
For the four most prevalent species, the compositional similarity ranged from 54.27 to 60.84%.
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Nearly half of the land cover within those transects was different, even though the dominant species
were the same. We also calculated the dominant species cover in each transect (Table 1). For the four
most prevalent species, the mean dominant species cover ranged from 32.53% to 47.94%. The remainder
of the land cover belonged to non-dominant land cover types. P. coulteri and Quercus agrifolia were
excluded from these analyses because they only dominated one transect each.
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Figure 3. Principal components analysis (PCA) loading plot of species cover data from the field survey
transects. The analysis includes species that were dominant (>25% cover) in at least one transect.
The vector for Quercus agrifolia is very short and not intelligible.

Table 1. Compositional similarity of transects dominated by different species. The second column
indicates the mean percentage of land cover that is identical between all pairs of transects dominated
by a given species. The third column indicates the mean dominant species cover in transects dominated
by each species.

Species Compositional Similarity (%) Dominant Species Cover (%) Number of Transects

Adenostoma fasciculatum 60.84 40.18 19
Arctostaphylos glandulosa 56.34 32.53 15
Ceanothus cuneatus 54.67 47.94 7
Ceanothus leucodermis 58.74 35.27 7
Ceanothus oliganthus 62.41 52.94 4
Ceanothus palmeri 54.04 40.79 5
Cercocarpus betuloides 73.49 30.16 2
Hosackia crassifolia 82.96 39.64 2
Quercus berberidifolia 54.27 40.15 12
Quercus chrysolepis 51.39 36.94 5
Quercus wislizenii 51.80 30.56 4
Grass spp. 57.19 35.53 5

Based on these findings, Q. berberidifolia, C. cuneatus, A. fasciculatum, A. glandulosa, Ceanothus
leucodermis, and Cercocarpus betuloides were selected for remote sensing analysis. The first five species were
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selected because they were the most prevalent species across the landscape. C. betuloides was selected
because previous studies reported that it had extremely low mortality during the 2011–2017 California
drought [65]. The six selected species also represent different functional responses to fire. After wildfires,
chaparral species either resprout from surviving underground plant tissue (obligate resprouters), recruit
from seeds (obligate seeders), or both (facultative seeders) [66]. Q. berberidifolia and C. betuloides are
obligate resprouters. C. cuneatus is an obligate seeder. A. fasciculatum, A. glandulosa, and C. leucodermis are
facultative seeders [67–69].

In order to assess fire impacts on the mixed conifer forest, pre-fire and post-fire canopy cover
were manually labelled for all 756 CALVEG stands dominated by the “Mixed Conifer–Pine” alliance
(Figure 4). Saplings could not be resolved in the imagery, so the classifications were based on the
fractional cover of mature trees. In total, 254 stands (34.6%) changed canopy cover class as a result of
the fire. 481 stands (65.4%) did not change canopy cover class. Sixty-two stands (8.4%) experienced
complete conifer mortality. No stand had more canopy cover after the fire than it did before the fire.
Twenty-one stands were classified as having no trees before the fire. These stands appear to have been
misclassified by CALVEG and were excluded from further analysis.
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Figure 4. Post-fire canopy cover for conifer stands based on their pre-fire canopy cover. Classifications are
based on manual interpretation of high-resolution imagery.

3.2. Recovery Trajectories

3.2.1. Assessment of Remote Sensing Products

The GV fractions for 2018 achieved strong agreement with the ground reference data of vegetation
cover from the transect photographs (RMSE = 0.096, n = 80; Figure 5). The 2018 GV fractions
(r(78) = 0.552, p < 0.001) and 2018 NBR values (r(78) = 0.555, p < 0.001) had nearly identical correlations
with the ground reference data. The two data sets also exhibited very strong linear relationships
with each other. We calculated the correlation between the GV fractions and NBR values for each
year from 2000 to 2018. The annual correlation coefficients ranged from 0.9 to 0.98. The mean annual
correlation coefficient was 0.952. The four lowest correlation coefficients occurred in the four years
after the fire.
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Figure 5. Comparison of (a) 2018 green vegetation (GV) fractions and (b) 2018 normalized burn ratio
(NBR) values with estimates of GV cover from the transect photographs.

3.2.2. Relative Differenced Normalized Burn Ratio

Mean 2007 RdNBR values for the six chaparral species ranged from 1275 to 1423. All six species
recovered rapidly between 2007 and 2011, but recovery stalled between 2013 and 2016 (Figure 6).
These dates coincided with a period of extreme drought [70]. C. leucodermis generally had the highest
mean RdNBR values throughout the time series, followed by A. glandulosa. C. betuloides had the lowest
mean RdNBR values after 2011, suggesting that it was more resilient during drought than the other
species. The trajectories for A. fasciculatum, C. cuneatus, and Q. berberidifolia had intermediate RdNBR
values and were similar throughout the time series.
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Figure 6. Mean relative delta normalized burn ratio (RdNBR) trajectories for six chaparral species.
RdNBR trajectories were extracted from the locations of the field survey transects. The transects were
grouped by dominant species, and the mean trajectory was calculated for each species.
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The RdNBR values for the conifer stands were inversely correlated with the degree of canopy loss
following the fire (Figure 7). In stands that experienced complete canopy loss (n = 62), the mean 2007
RdNBR was 1114. Partial canopy loss leading to sparse (n = 108) or open (n = 84) canopies resulted in
RdNBR values of 701 and 351, respectively. For stands that did not experience canopy loss (n = 481),
the mean 2007 RdNBR value was 302. The degree of canopy loss also influenced the shapes of the
recovery trajectories. In stands that experienced complete canopy loss (i.e., no mature trees survived),
the RdNBR values decreased rapidly during the first four years of recovery and then more slowly
after that. Other stands had more linear trajectories. Average 2018 RdNBR values were relatively
similar across all combinations of pre-fire and post-fire canopy cover. The mean values for the different
combinations only ranged from 150 to 272.
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Figure 7. Mean RdNBR trajectories for conifer stands with different combinations of pre-fire and
post-fire canopy cover.

3.2.3. Green Vegetation Fractions

The six chaparral species had similar GV trajectories before the fire (Figure 8). The greenness of
all six species fluctuated because of inter-annual variability in precipitation. There were substantial
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declines in vegetation greenness in 2002 and 2004, which were years that had below average rainfall in
Santa Barbara County. C. leucodermis had the highest average GV fractions from 2001 to 2004.

The fire destroyed practically all green vegetation in the chaparral shrubland: mean 2007 GV
fractions for the six species ranged from 0 to 0.01. GV fractions increased rapidly in the four years after
the fire, but the recovery of C. leucodermis lagged behind that of the other species. GV fractions generally
declined between 2011 and 2016, presumably as a result of the drought. C. betuloides had the highest GV
fractions during the drought years, while GV fractions for the other species were substantially lower.
C. leucodermis and A. glandulosa exhibited the least change during the drought, but the post-fire GV
fractions for both species were much lower than their pre-fire values. By September 2017, GV fractions
for four of the six species had recovered to the values observed in the dry pre-fire years of 2002
and 2004. In certain cases, GV fractions recovered to the values observed in wetter years such as 2003,
but this pattern is not consistent across the data set. C. leucodermis and A. glandulosa did not recover to
pre-fire values.
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Figure 8. Mean GV trajectories for six chaparral species. GV trajectories were extracted from the
locations of the field survey transects. The transects were grouped by dominant species, and the mean
trajectory was calculated for each species.

In the conifer stands, GV fractions declined between 2006 and 2007 as a result of the fire and
increased between 2007 and 2018 as vegetation regrew (Figure 9). Conifer stands that experienced
partial canopy loss exhibited linear recovery trajectories, while stands that experienced complete
canopy loss exhibited logarithmic recovery trajectories. In stands that had small amounts of canopy
cover after the fire, the post-fire GV signal must have been strongly influenced by shrubs and
herbaceous species in the understory.

The maximum possible canopy loss occurred in conifer stands that had dense canopies before
the fire and no trees after the fire. In those stands (n = 26), 2007 GV fractions were 92% less than their
pre-fire median and 2018 GV fractions were 24% less than their pre-fire median. In stands that did
not change canopy cover class (n = 481), 2007 GV fractions were 20% less than their pre-fire median
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and 2018 GV fractions were 12% less than their pre-fire median. 2018 GV fractions were less than
pre-fire median GV fractions in 545 of the 756 stands that we analyzed.
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Figure 9. Mean GV trajectories for conifer stands with different combinations of pre-fire and post-fire
canopy cover.

4. Discussion

Field survey data are essential for understanding and evaluating remote sensing signals of
disturbed ecosystems [71]. Likewise, remote sensing data can help interpolate field observations across
an entire landscape. In this study, we combined field survey data with remote sensing imagery to
retrieve post-fire recovery trajectories for different plant species and functional types. We also used the
field survey data to identify sources of variability in the recovery trajectories that are not apparent
from the imagery data alone.

4.1. Remote Sensing Products

The RdNBR and GV trajectories provide different insights into the post-fire recovery of burned
vegetation. RdNBR measures the normalized difference between pre-fire and post-fire NBR values,
so it represents the change in vegetation cover compared to pre-fire conditions. GV fractions are
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an absolute measure of vegetation cover on a single image date. We found that the NBR values
and GV fractions had nearly identical correlations with the estimates of GV cover from the transect
photographs. This finding suggests that they are equally effective at mapping post-fire vegetation cover.
However, NBR and RdNBR produce unitless values, while GV fractions are physically meaningful
values that can be compared with observations by field ecologists [15]. Unitless spectral indices
can be combined with field survey data to model vegetation cover and other ecosystem traits [72],
but it is not clear when such models can be transferred from site to site without additional ground
reference data [73]. The NBR correlation with vegetation cover that we observed is similar to the
correlation reported by Morresi et al. [74], but additional work is needed to validate the consistency of
these relationships. Few studies have assessed the ability of NBR and other spectral indices to map
fractional cover of vegetation.

4.2. Variability in Recovery Trajectories

4.2.1. Chaparral Species

The RdNBR and GV trajectories for the chaparral species revealed rapid vegetation regrowth
from 2007 to 2011. The trajectories for the species were initially very similar, but diverged over time as
vegetation regrew. The exception to this trend was C. leucodermis, whose recovery lagged one year
behind that of the other species. Five of the six species exhibited substantial declines in GV fractions
during the 2011–2017 California drought. By September 2017, GV fractions for four of the six species
had recovered to the values observes in the dry years of 2002 and 2004, but the GV fractions did
not consistently recover to the values observed in wetter years. We propose three factors that may
account for the observed variability between species: post-fire ecological succession, the physiological
responses of species to fire and drought, and inter-annual variability in precipitation.

The initial similarity between the trajectories may be attributable to a succession of ephemeral
herbaceous species that germinate after fires. Immediately after a fire, the pre-fire dominant shrubs
only comprise a small fraction of the land cover. It takes at least four to five years for shrubs to regain
their pre-fire cover, and a succession of herbaceous species dominates vegetation patches while the
shrubs regrow [21,75]. These ephemeral species likely influenced the remote sensing estimates of
vegetation cover, and they may have obscured differences between the RdNBR and GV trajectories for
the chaparral species. The herbaceous plants decline in cover as the shrubs regain dominance [21,75],
so their influence on remote sensing signals diminishes over time. The trajectories began to diverge
around 2010, and they exhibited distinct trends in subsequent years.

The physiological responses of species to fire and drought were also important drivers of
variability in the recovery trajectories. The composition of patches dominated by obligate resprouters
(e.g., Q. berberidifolia and C. betuloides) changes little after fires because resprouting plants emerge
from established root systems and are extremely resilient. Resprouting plants also benefit from
having established root systems because it decreases their vulnerability to water stress during post-fire
recovery [76,77]. Obligate and facultative seeders (e.g., C. cuneatus, A. fasciculatum, A. glandulosa,
and C. leucodermis) recruit from dormant seed banks and usually experience substantial population
increases after fires. As a result, patches dominated by seeding species change in both structure and
species composition for several years after the disturbance [21]. Unlike resprouting plants, seedlings
must establish new root systems after a fire, which makes them more vulnerable to water stress until
they reach maturity [76–78].

The physiological differences between the species were not expressed in the recovery trajectories
until the onset of the drought in 2011, when the trajectories began to exhibit sensitivity to inter-annual
variability in precipitation. C. cuneatus was the most sensitive to precipitation variability throughout
the time series. Its GV fractions declined substantially during the drought years of 2011–2017 and
increased rapidly during the wet growing seasons of 2004–2005 and 2016–2017. Its RdNBR values also
increased during the drought and decreased rapidly between 2016 and 2017. It is likely that C. cuneatus
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was the most sensitive to drought because it is an obligate seeder, and seedlings have less extensive
root systems than resprouting plants. C. betuloides, an obligate resprouter, was the most resilient
species during the drought. It had the highest GV fractions and lowest RdNBR values after 2011.
C. betuloides benefits from an established root system and is highly resistant to drought-induced
cavitation, which enables it to thrive under dry conditions [79]. Our finding is also consistent with
that of Venturas et al. [65], who reported that C. betuloides did not experience any mortality during
the drought. A. glandulosa and C. leucodermis exhibited the least change during the drought, but their
post-fire GV fractions were substantially lower than their pre-fire GV fractions. As a result, they
generally had the highest RdNBR values throughout the time series. A. glandulosa is well adapted to
arid microclimates, which may explain its relative stability during the drought [80]. The explanation
for the drought response of C. leucodermis is less clear. C. leucodermis exhibited the slowest recovery,
so its drought response might have been affected by the timing of its regrowth relative to the onset of
the drought.

In 2018, the RdNBR values for all six species remained above zero, indicating that they did
not recover to median pre-fire conditions 11 years after the fire. The GV fractions for four species
recovered to the values observed in the dry years of 2002 and 2004, but C. leucodermis and A. glandulosa
did not recover to pre-fire GV fractions. Several studies have used Landsat time series to analyze
the post-fire recovery of chaparral ecosystems, but no studies have examined the impact of a
prolonged drought on recovery trajectories [9,22,81,82]. The previous studies reported full recovery
in 7–15 years, which may suggest that the 2011–2017 California drought delayed the recovery to
pre-fire conditions within the Zaca burn scar. For example, Peterson and Stow [81] reported that
GV fractions stabilized approximately seven years after a fire. Hope et al. [22] reported that the
normalized difference vegetation index (NDVI) returned to pre-fire values in 10 years. Storey et al. [9]
reported that the enhanced vegetation index, soil adjusted vegetation index (SAVI), and modified SAVI
returned to pre-fire values in four years. They also reported that NBR and NDVI returned to pre-fire
values in 9 and 12 years, respectively. McMichael et al. [82] reported that leaf area index stabilized
approximately 15 years after a fire. That being said, there are important methodological differences
between the previous studies and our study. The previous studies did not stratify their samples based
on burn severity, while our study only examined high burn severity sites. Thus, burn severity may
also account for some of the difference in the reported recovery times.

4.2.2. Mixed Conifer Forest

We also examined the 756 stands of mixed conifer forest within the Zaca burn scar. There was
significant variability in stand density before and after the fire, so we grouped the stands based on their
pre-fire and post-fire canopy cover. This enabled us to retrieve RdNBR and GV trajectories for varying
degrees of canopy loss and vegetation type conversion. Two distinct patterns emerged among the
recovery trajectories. First, as the extent of canopy loss increased, the 2007 RdNBR values increased and
the magnitude of change between the 2006 and 2007 GV fractions also increased. Second, as post-fire
canopy cover decreased, the shapes of the trajectories transitioned from being linear (high post-fire
canopy cover) to logarithmic (low post-fire canopy cover).

The first pattern highlights a difference between the recovery trajectories for chaparral and
conifer species. While chaparral stands are comprised of low-stature vegetation that is prone to intense
crown fires, conifer forests have pronounced vertical structure that protects foliage from being scorched
by flames. Low severity fires generally burn foliage that is close to the ground. As a fire’s severity
increases, it burns foliage higher in the canopy [83]. Foliage above the maximum scorch height will
still be green, so conifer stands with surviving trees can have non-zero GV fractions immediately
after a fire. The 2007 GV fractions were approximately proportional to post-fire canopy cover, and the
RdNBR values exhibited similar trends. Some stands that did not experience substantial canopy loss
had higher than expected 2007 GV fractions, presumably due to surviving understory vegetation.
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The second pattern can be attributed to the influence of understory vegetation on remote sensing
signals after the fire. In stands with closed canopies, the recovery trajectories represent changes in the
spectral properties of the tree crowns. In areas without closed canopies, the remote sensing signal is
strongly influenced by understory cover [84]. Stands with dense canopy cover after the fire exhibited
linear increases in GV fractions and little change in RdNBR values. Presumably, these trajectories
represent the regeneration of scorched foliage within the tree crowns. Stands with no trees after the
fire exhibited logarithmic trajectories that are qualitatively similar to the trajectories of the chaparral
shrub species. These trajectories likely represent shrubs and other understory vegetation because the
tree crowns were completely destroyed by fire. Stands with intermediate amounts of canopy cover
after the fire had recovery trajectories that were neither perfectly linear nor logarithmic. These findings
suggest that the conifer and shrub species have distinct recovery patterns, which are caused by their
canopy architecture and physiological responses to fire.

Unlike the chaparral species, the conifer stands did not exhibit a drought signal that was directly
correlated with annual precipitation. Both the RdNBR and GV trajectories indicated continuous
recovery throughout the 2011–2017 drought. Nonetheless, 545 of the 756 conifer stands did not return
to their pre-fire values within 11 years, indicating that there was long-term change as a result of the
fire or drought or both. The most obvious source of long-term change is the fire-induced mortality of
mature conifer trees. Prolonged drought can also reduce growth, cause crown dieback, and inhibit
seedling establishment in conifer species [85–87]. Based on previous studies of fire effects, the drought
likely delayed the return to pre-fire levels of greenness in the conifer stands. Fernandez-Manso et al. [10]
retrieved GV trajectories for field survey plots in a Mediterranean forest. Plots with low burn severity
recovered in seven years and plots with moderate burn severity recovered in 13 years. Moressi et al. [74]
performed a similar analysis using spectral indices. They found that modeled recovery times varied
between 8 and 12 years, depending on the forest type, burn severity, and spectral index. Almost none
of the stands in our analysis recovered to pre-fire levels of greenness within 11 years, which suggests
that fire effects alone do not account for the observed recovery times.

4.3. Species Composition

We also used the field survey data to quantify fine-scale variability in species composition within
and across vegetation stands. Many studies rely on thematic land cover maps to analyze fire behavior
and effects, but the biophysical attributes of vegetation patches vary continuously in both space and
time [88,89]. Because the spatial variability occurs at a scale that is finer than the spatial resolution of
most sensors, reflectance signals for individual pixels are influenced by numerous plant species and
functional types. We observed between 3 and 19 species in each field survey transect, with a mean
diversity of 8.4 species. The mean dominant species cover ranged from 30.16 to 52.94%, depending on
the species. While classification schemes based on dominant species are simple and easy to understand,
non-dominant species inevitably introduce spectral variability into remote sensing signals. If linear
mixing is assumed, this variability is approximately proportional to the non-dominant species’ ground
cover within a pixel. Dominant species accounted for less than half of the land cover in most
transects, so non-dominant land cover types were as influential on the remote sensing signals as
the dominant species. These findings suggest that the recovery trajectories may represent vegetation
alliances dominated by particular species, rather than the dominant species themselves. We also
analyzed whether stands dominated by a given species had consistent land cover across the landscape.
On average, between 51.39% and 82.69% of the land cover was identical across transects dominated by
the same species. This suggests that vegetation alliances are somewhat stable across the landscape,
but there is still substantial within-class variability in patch composition.

Temporal variability in species composition also affects remote sensing trajectories. A succession
of ephemeral species dominates vegetation patches after fires, as discussed in Section 4.2.1. Even after a
vegetation patch has completed its initial recovery, it may not return to the state that was present before
the fire. The post-fire distributions of seeding species are a function of fire intensity and the locations
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of dormant seed banks at the time of the fire [21]. Secondary disturbances such as drought can also
affect the plant species and life forms that regenerate within burn scars [6]. Without pre-fire species
cover data, it is difficult to determine where and to what extent the long-term species composition
changed as a result of the fire. This introduces variability into remote sensing metrics that rely on
pre-fire baseline values, such as dNBR and RdNBR. It also affects the interpretation of remote sensing
trajectories that include pre-fire years. Few studies have considered temporal variability in species
composition as a source of variability in remote sensing trajectories [17]. These factors merit further
consideration in literature because remote sensing trajectories are often used to infer the drivers and
effects of ecological change [90]. Misattributing remote sensing signals to different vegetation types
could lead to erroneous conclusions about ecosystem dynamics.

4.4. Methodological Considerations

This study used field survey data to summarize and interpret remote sensing signals of
post-fire vegetation regrowth. Certain limitations should be considered when interpreting the results.
For example, the field survey data were collected at a different spatial scale than the Landsat spectra.
The field survey data were collected from 45 m × 5 m transects, while Landsat spectra were extracted
from 30 m × 30 m pixels. Documenting all of the plants along a 45 m transect is substantially more
efficient than documenting all of the plants in a 30 m × 30 m area. This is especially true in chaparral
ecosystems, where shrubs often form impenetrable canopies. The transects effectively subsampled
the Landsat pixels, and we assumed that the subsamples were representative of the Landsat pixels
as a whole. To the extent possible, we selected survey sites that had homogenous slope, aspect,
and vegetation composition, which bolstered the validity of that assumption. For safety reasons,
we also selected survey sites that were located near accessible roads and did not have steep slopes.
Large areas of the burn scar are not located near roads, so certain vegetation alliances may be over-
or underrepresented in the field survey data. The field survey data were also used to calibrate the
MESMA model. It is possible that the MESMA model was overfit to a particular sample of ground
reference data. However, the MESMA GV fractions exhibited a very strong linear relationship with the
NBR values, which were derived from an entirely different modeling framework. This suggests that
the field survey data were adequate to calibrate the MESMA model reliably. There may still be some
error in the MESMA GV fractions, as they are modeled and not measured values.

5. Conclusions

Integrating field survey data into remote sensing analyses makes it possible to characterize the
remote sensing signals for land cover types that would otherwise be difficult to differentiate. It also
makes it possible to identify sources of variability in remote sensing data that are not apparent from
imagery alone. In this study, we used time series imagery and field survey data to retrieve post-fire
recovery trajectories for chaparral species and stands of mixed conifer forest. In doing so, we answered
three research questions.

First, we examined whether NBR and GV fractions were effective for mapping vegetation cover
across a burn scar. The selected MESMA model maximized the agreement between the modeled GV
fractions and ground reference data of GV cover from the field survey transects. The two data sets
achieved strong agreement, indicating that the GV fractions were a reliable estimate of GV cover
across the burn scar. The NBR values and GV fractions had very similar correlations with the ground
reference data, indicating that they were equally effective at mapping vegetation cover.

Second, we examined sources of variability in post-fire recovery trajectories for chaparral species
and stands of mixed conifer forest. For the chaparral species, precipitation variability and species-level
physiology were the most obvious sources of variability throughout the time series. The chaparral
species exhibited rapid regrowth between 2007 and 2011, but GV fractions for five of the six species
declined substantially during the drought. In 2018, RdNBR values for the six species remained above
zero, indicating that they had not recovered to pre-fire conditions. For the conifer stands, the shapes
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of the recovery trajectories were determined by post-fire canopy cover. Stands with high post-fire
canopy cover had linear recovery trajectories, while stands with low post-fire canopy cover had
logarithmic recovery trajectories. The conifer stands did not exhibit a drought signal that was directly
correlated with annual precipitation, but in a majority of stands the GV fractions did not recover to
their pre-fire values.

Finally, we examined variability in the structure and composition of chaparral and conifer
patches. In the surveyed chaparral patches, dominant species only covered 30 to 53% of the land
area. Even within patches dominated by the same species, there was significant variability in species
composition across the landscape. Non-dominant species inevitably affected the remote sensing
signals, and these effects may not be consistent from patch to patch. In the conifer stands, canopy
dieback exposed understory land cover, including shrubs, grasses, and soil. In stands with substantial
amounts of canopy loss, the recovery trajectories were strongly influenced by understory vegetation.
For both chaparral and conifer stands, these effects vary over time because a succession of ephemeral
species populate vegetation patches as the long-term dominant species recover.

Our study expands on previous literature by exploring the opportunities and limitations of
using Landsat time series to monitor ecosystem recovery after disturbance. This technique has
gained popularity since the Landsat archive became freely available. Few studies have used
species cover data to retrieve post-disturbance recovery trajectories for different plant species and
functional types. The trajectories we retrieved were sensitive to changing environmental conditions
and some physiological differences between the species. The pre-fire and post-fire values were also
useful for assessing whether the ecosystem recovered to pre-fire conditions. However, our findings
also suggest that there may be fundamental limitations in our ability to infer the traits of individual
species using Landsat imagery. Species cover often varies at a scale that is finer than the spatial
resolution of spaceborne sensors, so researchers must be cognizant of the impact of non-dominant land
cover types on remote sensing signals. These considerations will become increasingly important as
hyperspectral spaceborne sensors become operational and researchers attempt more precise retrievals
of ecosystem properties.

Our study also reveals that prolonged droughts can slow or even reverse the post-fire recovery
of Mediterranean ecosystems, which can lead to long-term changes in ecosystem structure and
function [6]. Both fire activity and drought conditions have increased under anthropogenic climate
change [7,91], so it is increasingly likely that land managers will be forced to address multiple
overlapping disturbances in sensitive ecosystems. Without targeted management and restoration
efforts, vulnerable species may disappear from the landscape if they cannot maintain reproducing
populations under changing environmental conditions [86].
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