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Abstract: Hyperspectral imaging is widely used to many applications as it includes both spatial
and spectral distributions of a target scene. However, a compression, or a low multilinear rank
approximation of hyperspectral imaging data, is required owing to the difficult manipulation of the
massive amount of data. In this paper, we propose an efficient algorithm for higher order singular
value decomposition that enables the decomposition of a tensor into a compressed tensor multiplied
by orthogonal factor matrices. Specifically, we sequentially compute low rank factor matrices from
the Tucker-1 model optimization problems via an alternating least squares approach. Experiments
with real world hyperspectral imaging revealed that the proposed algorithm could compute the
compressed tensor with a higher computational speed, but with no significant difference in accuracy
of compression compared to the other tensor decomposition-based compression algorithms.
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1. Introduction

Hyperspectral imaging (HSI) allows one to provide information on the spatial and spectral
distributions of a target scene simultaneously by acquiring up to hundreds of narrow and adjacent
spectral band images ranging from ultraviolet to far-infrared electromagnetic spectrum [1,2]. To do
this, an imaging sensor such as a charged coupled device collects the different wavelengths dispersed
from the incoming light. Then, the signals captured by the imaging sensor are digitized and arranged
into pixels of a two-dimensional image T = RI×λ, where I denotes the size of X-directional spatial
information, and λ is the number of quantized spectra of the signals. The procedure of capturing the
pixels as an X-directional single line continues until the spatial range reaches J, which is the Y-directional
size of the entire target scene. Finally, HSI constructs a three-dimensional data T ∈ RI×J×λ. Once the
HSI data are obtained, they can be used in many applications, such as detecting and identifying objects
at a distance in environmental monitoring [3] or medical image processing [4], finding anomaly in
automatic visual inspection [5], or detecting and identifying targets of interest [6,7]. However, as the area
of the target scene I × J or the number of quantized spectra λ increase, the manipulation of T demands
prohibitively large computational resources and storage space. To overcome this, efficient compression
techniques must be employed as preprocessing for applications to filter out some redundancy along
their adjacent spectral bands or spatial information, thereby reducing the size of T .

Owing to the shape of HSI data, the typical mathematical basis for compression techniques is
based on tensor decompositions, because it facilitates the simultaneous preservation and analysis
of the spatial and spectral structures of data [8]. Fang et al. used canonical polyadic decomposition
(CPD) for dimension reduction of HSI data, where CPD decomposes a tensor into several rank-one
tensors [9,10]. De Lathauwer et al. suggested a Tucker decomposition-based low rank approximation
algorithm of a tensor, where Tucker decomposition decomposes a tensor into a smaller sized core

Remote Sens. 2019, 11, 2932; doi:10.3390/rs11242932 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs11242932
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 2932 2 of 19

tensor multiplied by a factor matrix along each mode [11]. In this study, we considered Tucker
decomposition for compressing HSI data. Specifically, we focused on developing an efficient algorithm
to compute a higher order singular value decomposition (HOSVD), which is a special case of Tucker
decomposition with orthogonal constraints on the factor matrices. Subsequently, we applied it to
compression problems from real world HSI data.

The remainder of this paper is organized as follows. Section 2 defines the notations and
preliminaries frequently used in this paper. Section 3 briefly explains the well-known algorithms for
computing HOSVD for a compression. Section 4 introduces the algorithm we propose. Section 5
provides the experimental results, and Section 6 concludes the paper.

2. Notations and Preliminaries

Here, we define the symbols and terminology for the simplicity of notation and presentation.
We use calligraphic letters to denote tensors, e.g., A; boldface capital letters for matrices, e.g., A;
boldface lowercase letters for vectors, e.g., a; and lowercase letters for scalars, e.g., a. We define an
operation of tensor-matrix multiplication between an arbitrary N-th order tensor A ∈ RI1×I2 ...×IN and
a matrix B ∈ RK×In , 1 ≤ n ≤ N along mode-n, such that

C = A×n B,

where C ∈ RI1×...×In−1×K×In+1×...×IN and the (i1...in−1, k, in+1...iN)-th element of C is computed by

Ci1...in−1,k,in+1...iN =
In

∑
in=1

ai1,i2...iN bk,in ,

for arbitrary 1 ≤ in ≤ In and 1 ≤ k ≤ K. Note that the values ai1,i2...iN and bk,in are the elements of A
and B, respectively [12].

A tensor A can be matricized with mode-n, after rearranging each element of A appropriately.
For example, a third order tensor A ∈ RI1×I2×I3 is matricized along each mode, as shown in Figure 1.

Figure 1. Example of third order tensor matricization along each mode.

The Frobenius norm of a tensor A ∈ RI1×I2×...×IN is the square root of the sum of the squares of
all elements in A, such that

‖A‖F =

√√√√ I1

∑
i1=1

I2

∑
i2=1

...
IN

∑
iN=1

a2
i1i2...iN

.
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3. Related Works

We briefly revisit here, well-known algorithms to compute HOSVD of a tensor. HOSVD, which
is a special case of Tucker decomposition that has an orthogonal constraint, decomposes an N-th
order tensor T ∈ RI1×I2 ...×IN into factor matrices Un ∈ RIn×Rn , 1 ≤ n ≤ N and a core tensor G ∈
RR1×R2 ...×RN such that

T = G ×n=1 to N Un, (1)

while satisfying a constraint UT
n Un = I, where a matrix I ∈ RRn×Rn represents an identity matrix [11] .

Here, a factor matrix Un is considered as the principal components in each mode, and elements of a
core tensor G reveal the level of interactions between the different components. Note that Rn ≤ In, and
we denote (R1, R2, . . . , RN) as multilinear ranks of T . The representation of T with the form of (1) is
not unique. Thus, there are many algorithms to compute (1). One of the simplest methods to obtain
Un and G is computing leading singular vectors of each unfolding matrix of T such that

Tn = UnΣnVT
n , (2)

where Tn indicates the mode-n unfolding matrix of T . Then a core tensor G is obtained from G =

T ×n=1 to N UT
n , and G is regarded as a compressed tensor of T . Despite its simple procedure of

computation, a single step of applying singular value decomposition (SVD) is insufficient to improve
approximations of T in many contexts. De Lathauwer et al. proposed a more accurate algorithm
of computing HOSVD via iterative computations of SVD, called higher order orthogonal iterations
(HOOI) [13]. HOOI is designed to solve the optimization problem of finding Un and G, such that

minG,Un ,n=1 to N‖T − G ×n=1 to N Un‖F, subject to UT
n Un = I. (3)

Since ‖T −G ×n=1 to N Un‖F = ‖T ‖F−‖G‖F, the minimization problem (3) is identical to finding
max‖G‖F; thus, by definition,

max‖T ×n,n=1 to N UT
n‖F. (4)

Therefore, HOOI obtains each factor matrix Un independently from the Rn, leading singular
vectors of the unfolding matrix matricized from T ×n=1 to N,n 6=k Un along mode-k while fixing the
other factor matrices. The iterations continue until the output converges. The procedure of HOOI is
summarized in Algorithm 1 for N = 3. In practice, HOOI produces more accurate outputs than those
from the algorithm based on (2); it is considered one of the most accurate algorithms for obtaining
HOSVD from a tensor. Therefore, many hyperspectral compression techniques have been developed
based on HOOI. For example, Zhang et. al applied HOOI to the compression of HSI [14]. An et al.
suggested the method based on [11] with an adaptive, multilinear rank estimation, and applied it to
HSI compression [15]. However, iterative computations of SVD require huge computational resources.
Additionally, the number of iterations for convergence is difficult to predict.

To overcome these limitations, Elden et al. proposed a Newton–Grassman based algorithm
that guaranteed quadratic convergence and fewer iteration steps than HOOI [16]. However a single
iteration of the algorithm is much more expensive owing to the computation of the Hessian. Sorber et al.
introduced a quasi-Newton optimization algorithm that iteratively improves the initial guess by using
a quasi-Newton method from the nonlinear cost function [17]. Hassanzadeh and karami proposed a
block coordinate descent search based algorithm [18], which updates the factor matrices initialized by
using compressed sensing. Instead of employing SVD for unfolding matrices, Phan et al. proposed a
fast algorithm based on a Crank–Nicholson-like technique, which has a lower computational cost in
a single step compared with HOOI [19]. Lee proposed a HOSVD algorithm based on an alternating
least squares method that recycles the intermediate results of computations for one factor matrix to the
other computations [20]. In contrast to the algorithm proposed by [20], which computes the Tucker-1
model optimization individually along each mode, the proposed algorithm considers sub-problems of
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computing a factor matrix simultaneously in a single iteration. This approach enables more accurate
computation of the intermediate results in each iteration.

Algorithm 1 HOOI

Input:T ,G0, U1, U2, U3, ε
Output:U1, U2, U3,G l

1: for l = 1,2,3,... do

2: for n=1,2,3 do

3: k = [n, 1 : n− 1, n + 1 : 3]
4: S = T ×k UT

k
5: Un = Rn leading singular vectors of Sn
6: end for
7: G l = T ×n=1,2,3 UT

n
8: if ‖G l − G l−1‖F/‖G l−1‖F ≤ ε then

9: break
10: end if
11: end for

4. Sequential Computations of Alternating Least Squares for Efficient HOSVD

In the proposed algorithm, we sequentially compute low multilinear rank factor matrices from
the Tucker-1 model optimization problems via an alternating least squares approach. For simplicity,
and to consider the shape of a HSI data, we only used a third order tensor in this study. However,
the extension of the algorithm for application to any dimensional tensors without loss of generality
is straightforward.

Assume that we have a third order tensor T ∈ RI1×I2×I3 . Our goal is to decompose T to

T ≈ G ×n=1 to 3 Un, (5)

where Un ∈ RIn×Rn represents an orthogonal factor matrix along mode-n, Rn is the appropriate
truncation level or n-multilinear rank, and G ∈ RR1×R2×R3 denotes the core tensor. Then, we rewrite
the formulation of the optimization problem of finding Un, n = 1, 2, 3 and G in (3) as

minG,Un ,n=1,2,3‖T − G ×n=1,2,3 Un‖2
F subject to UT

n Un = I. (6)

Before starting the explanation, we note that the order of computation for each factor matrix
does not need to be fixed. However, for convenience we will present the procedure for solving our
optimization problems from the order of (1,2,3) mode. Let S1 = G ×n=2,3 Un. Then, the problem
of finding U1 in (6) is equivalent to the problem of finding the solution from the Tucker-1 model
optimization of T , such that

minU1,S1‖T − S1 ×1 U1‖2
F subject to UT

1 U1 = I, (7)

where I ∈ RR1×R1 denotes an identity matrix. Here, we can see that the tensor S1 is a Tucker-2 model,
but it can be used to formulate another Tucker-1 optimization problem of finding U2, such that

minU2,S2‖S1 − S2 ×2 U2‖2
F subject to UT

2 U2 = I, (8)

where S2 = G ×3 U3. Similarly, to find U3, we use the optimization problem of Tucker-1 model, which
is given by

minU3,G‖S3 − G ×3 U3‖2
F subject to UT

3 U3 = I. (9)
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We illustrate the sequential procedure for the Tucker-1 model optimization problems in Figure 2.
Let us consider the optimization problems (7)–(9) simultaneously. Then, the optimal factor matrices of
the tensor T are computed by solving the minimization problem of the cost function C(Uk, k = 1, 2, 3),
which is defined as

C(Uk, k = 1, 2, 3) = ‖T − S1 ×1 U1‖2
F + ‖S1 − S2 ×2 U2‖2

F

+ ‖S3 − G ×3 U3‖2
F + ∑

n=1,2,3
λntr(UT

n Un − I), (10)

where the parameters λn represent the Lagrangian multipliers, and the function tr(A) computes
the trace of an arbitrary matrix A. Because the cost function C(Uk, k = 1, 2, 3) in (10) has too many
unknown variables, an alternating least squares method that optimizes one variable while leaving the
others fixed, is a proper approach. First, by taking a derivative of C(Uk, k = 1, 2, 3) with respect to U1

while regarding the other variables as constant values, and matricizing those along mode-1, we obtain

∂C(Uk, k = 1, 2, 3)
∂U1

= −1
2
(T1 −U1S11)S

T
11
+

1
2

λ1U1 = 0, (11)

where S11 is the unfolding matrix of S1 along mode-1. Thus, from (11), we can compute U1 as follows:

U1 = T1ST
11
(λ1I + S11 ST

11
)−1. (12)

Figure 2. Sequential computations of factor matrices from Tucker-1 model optimization problems.

After U1 is obtained, the next step is to compute S1 while fixing U1 and the others to recycle the
intermediate results for computing the others. After updating U1 in (12) and by taking a derivative
to (10) with respect to S1, we can compute S1 such that

S1 = (T ×1 U1 + S2 ×2 U2)×1 (I + UT
1 U1)

−1.

Because the orthogonal constraint must be satisfied, we reorthogonalize U1 by simply applying
QR-decomposition.

Next, we find U2. After updating S1 and U1, we take a derivative of C(Uk, k = 1, 2, 3) with respect
to U2 and rearrange the terms similar to the procedure of computing U1. Then, we obtain

U2 = S12 ST
22
(λ2I + S22 ST

22
)−1, (13)
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where S12 and S22 are the unfolding matrices of S1 and S2 along mode-2, respectively. Then, we can
compute S2 with fixed U2 such that

S2 = (S1 ×2 U2 + G ×3 U3)×2 (I + UT
2 U2)

−1.

Finally, U3 is obtained by solving

U3 = S23 GT
3 (λ3I + G3GT

3 )
−1, (14)

where S23 and G3 are the unfolding matrices from the tensor S2 and G along mode-3, respectively.
Algorithm 2 summarizes the procedure explained in this section. Note that the function Ai =

unfolding(A, i) in steps 6, 10, and 14, returns the unfolding matrix Ai from an arbitrary tensorA along
mode-i, and the function C = Reorth(B) in steps 9, 13, and 16 returns the reorthogonalized matrix
C from B by applying QR decomposition. If we assume that the size of an input tensor is (I, I, I),
and its initial multilinear rank is (R, R, R), then the most expensive step in Algorithm 2 occurs at the
computation of TiST

ii in step 7, and its computational complexity is approximately O(I3R) operations,
which is similar to those of the other HOSVD algorithms. Additionally, unlike HOOI, we eliminate
independence from the computation of each factor matrix by reusing intermediate tensors and factor
matrices to find a specific factor matrix. Thus, we expected the proposed algorithm to achieve better
convergence to the solution.

Algorithm 2 HOSVD_ALS

Input:T ,G0, U1, U2, U3, λ1, λ2, λ3, ε
Output:U1, U2, U3,G l

1: for l = 1,2,3,... do

2: for n = 1 to 3 do

3: Rearrange the order [i, j, k] such that [n, 1 : n− 1, n + 1 : 3]
4: Sj = G l−1 ×k Uk

5: Si = Sj ×j Uj

6: Ti = unfolding(T , i), and Sii = unfolding(Si, i)
7: Ui = TiST

ii (λiI + SiiST
ii )
−1

8: Si = (T ×i Ui + Sj ×j Uj)×i (I + UT
i Ui)

−1

9: Ui = Reorth(Ui)

10: Sij = unfolding(Si, j), and Sjj = unfolding(Sj, j)
11: Uj = SijST

jj(λjI + SjjST
jj)
−1

12: Sj = (Si ×j Uj + Gk−1 ×k Uk)×j (I + UT
j Uj j)−1

13: Uj = Reorth(Uj)

14: Sjk = unfolding(Sj, k), and Gk = unfolding(G l−1, k)
15: Uk = SjkGT

k (λkI + GkGT
k )
−1

16: Uk = Reorth(Uk)

17: G l = T ×m=1,2,3 UT
m

18: if ‖G l − G l−1‖F/‖G l−1‖F ≤ ε then

19: break
20: end if
21: end for
22: end for
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5. Experiments

We begin this section by introducing the experimental settings. Then, we compare the performance
of Algorithm 2 to those of the other well-known HOSVD algorithms by showing an application to
real-world HSI data.

5.1. Experimental Settings

Our experiments were performed on Intel i9 processor with 32 GB of memory. We developed the
software for the experiments using MATLAB version 9.6.0.1135713. For the real-world HSI dataset, we
used three datasets which are widely used for testing classification or compression performance of
HSI data. Details on these datasets are as follows.

– Jasper Ridge: Jasper Ridge dataset was captured by an airborne visible/infrared imaging
spectrometer (AVIRIS) sensor by the Jet Propulsion Laboratory. The spatial size of the dataset
is 100× 100 with 224 channels, in which its quantized spectra range is from 380 nm to 2500 nm.
There are four endmembers in this dataset, which include “road,” “soil,” “water,” and “tree.”
Detailed information regarding Jasper Ridge dataset is provided in [21].

– Indian Pines: Indian pine dataset was captured by AVIRIS sensor over the Indian pine test site
in North-western Indiana. The scenery is comprised of agriculture, forest or natural perennial
vegetation. The spatial size of the dataset used in the experiments was 145× 145 with 224 channels
ranging from 400 nm to 2500 nm. Detailed information of Indian Pines dataset is provided in [22].

– Urban: Urban dataset was recorded by a hyperspectral digital image collection experiment
(HYDICE) sensor; its location is an urban area at Copperas Cove in Texas. The spatial size of the
dataset is 307× 307 with 221 channels, in which its quantized spectral range is from 400 nm to
2500 nm. There are four endmembers to be classified; namely, “asphalt,” “grass,” “tree,” and
“roof.” More information about Urban dataset is provided in [21].

Figure 3 depicts the average intensities of pixels throughout the spectrum. The datasets are
represented as tensors; for example, the Jasper Ridge dataset is denoted by T ∈ R100×100×224.
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Figure 3. Real-world HSI dataset for performance comparison of the proposed algorithm. Images
display the average intensities of pixels throughout the spectrum.

To compare the performances of the proposed algorithm with previous algorithms, we evaluated
the relative errors and the execution times with the algorithm from HOOI, a Crank–Nicholson-like
algorithm for HOSVD (CrNc henceforce) [19]; a quasi-Newton-based nonlinear least squares algorithm
(henceforce HOSVD_NLS) [17]; and a method based on block coordinate descent search [18] which is a
slight modification of the algorithm described in [23] (henceforth BCD-CD). Here, the relative errors,
denoted as relerr, are defined such that

relerr =
‖Tgt − Toutput‖F

‖Tgt‖F
,



Remote Sens. 2019, 11, 2932 8 of 19

where Tgt and Toutput are the tensors before and after applying compression algorithms, respectively.
The programs implementing HOOI and HOSVD_NLS algorithms, are from [24]. Note that the stopping
criterion of all the algorithms in the comparison is equal, and it is defined as

‖Gn+1 − Gn‖F
‖Gn‖F

≤ ε, (15)

where ε indicates a user-defined threshold. The maximum iteration number is 100. To measure the
execution time of each algorithm, we repeat the experiments 10 times and take the average from
the results.

The initial factor matrices with low multilinear ranks of all algorithms are computed from
SVD-based HOSVD algorithm described in (2) (henceforth, HOSVD) when the truncation level Rn in
mode-n, 1 ≤ n ≤ 3, satisfies the condition√√√√‖Tn‖2

F −
Rn

∑
i=1

σi ≤ γ,

where σi represents the i-th largest singular value of the mode-n unfolding matrix Tn from T , and γ is
the user-defined threshold to adjust the compression rate of the spectral and spatial dimensions of T .
Specifically, we set the value γ to 0.05, 0.1, 0.2, and 0.3. Table 1 lists the low multilinear ranks in each
case after applying HOSVD. Note that the sizes of the core tensors from all algorithms are identical.

Table 1. Multilinear ranks of the initial factor matrices computed from HOSVD when γ = 0.05, 0.1, 0.2,
and 0.3, respectively.

Dataset γ = 0.05 0.1 0.2 0.3

Jasper Ridge (71,75,5) (48,54,3) (28,32,2) (17,20,2)
Indian Pines (97,117,8) (44,51,2) (11,10,2) (3,3,2)
Urban (292,227,13) (265,165,5) (186,93,3) (108,52,3)

5.2. Experimental Results

The first experiment measured the performances of the algorithms when the user-defined
threshold ε in (15) was 1.0× 10−6. We measured relerrs and the execution times while changing
the value of γ to 0.05, 0.1, 0.2, and 0.3. When γ = 0.3 we set the Lagrangian multipliers
λ1 = λ2 = λ3 = 1.0× 10−8 in (10), and set 0 to the other cases of γ. The experimental results are
given in Tables 2–4. For an unknown reason, HOOI failed to converged to the solutions occasionally;
for example, when γ = 0.05, as shown Table 2. From these results, we can see that the overall execution
speed of the proposed algorithm is the fastest with fewer iteration numbers, while its relative errors
are very close to those of HOOI, which is the most accurate algorithm in this experiment. CrNc
converged to the solutions with the fewest iteration numbers and produced the outputs with the
fastest times occasionally; however, its relative errors are inaccurate compared to the other algorithms.
HOSVD_NLS produced the closest relative errors to HOOI; however, its execution time was the slowest
among all algorithms. The overall performance of BCD-CD appears to be unsatisfactory in all cases,
especially with regard to convergence speed and relative errors. Excluding one case presented in
Table 3, BCD-CD failed to converge to the solutions within the predefined maximum iteration number.

The second experiment measured the performances of the algorithms when ε in (15) was
1.0× 10−8. We provide the results of this experiment in Tables 5–7. Similar to the results from the first
experiment, the proposed algorithm computes the compressed tensor more efficiently compared to the
other algorithms.



Remote Sens. 2019, 11, 2932 9 of 19

Table 2. Experimental results of algorithms when the Jasper Ridge dataset was used and ε = 1.0× 10−6.

γ HOOI CrNc HOSVD_NLS BCD-CD Algorithm 2

0.05 iteration 100 2 29 100 2
relerr 0.0291179 0.0291398 0.0291181 0.155959 0.0291264
time (s) 8.1602 0.2674 8.3305 4.6889 0.1905

0.1 iteration 5 2 26 100 2
relerr 0.0591755 0.0592419 0.0591757 0.152589 0.0591861
time (s) 0.3509 0.2197 4.4906 3.4722 0.1401

0.2 iteration 8 4 68 100 6
relerr 0.118573 0.118831 0.118572 0.161462 0.118703
time (s) 0.4058 0.2921 6.3683 2.4399 0.2031

0.3 iteration 6 6 23 100 6
relerr 0.141258 0.141271 0.141258 0.179646 0.141280
time (s) 0.2339 0.2978 1.9192 3.4341 0.1442

Table 3. Experimental results of algorithms when the Indian Pines dataset was used and ε = 1.0× 10−6.

γ HOOI CrNc HOSVD_NLS BCD-CD Algorithm 2

0.05 iteration 100 2 57 100 4
relerr 0.0303899 0.0304928 0.0303906 0.071481 0.0303906
time (s) 20.6298 0.5488 45.4292 12.0304 0.7744

0.1 iteration 6 2 36 100 2
relerr 0.0527313 0.0528268 0.0527315 0.073079 0.0527553
time (s) 0.6524 0.2927 7.5470 4.6133 0.2011

0.2 iteration 7 4 48 100 6
relerr 0.0768619 0.0770075 0.0768605 0.124355 0.0769648
time (s) 0.2839 0.2696 6.1851 2.0955 0.1630

0.3 iteration 2 2 9 50 2
relerr 0.105915 0.105915 0.105915 0.127037 0.105915
time (s) 0.0814 0.1522 1.1482 0.6996 0.0662

Table 4. Experimental results of algorithms when the Urban dataset was used and ε = 1.0× 10−6.

γ HOOI CrNc HOSVD_NLS BCD-CD Algorithm 2

0.05 iteration 100 2 47 100 2
relerr 0.0310416 0.0311142 0.0310424 0.298475 0.0310626
time (s) 84.2434 1.8922 303.6298 63.0052 1.9077

0.1 iteration 100 2 91 100 5
relerr 0.0617698 0.0621153 0.0617709 0.290838 0.0617950
time (s) 63.7905 1.5078 242.1523 45.4830 2.9882

0.2 iteration 12 4 42 100 6
relerr 0.120992 0.121752 0.120992 0.299642 0.12102
time (s) 4.7328 1.8160 39.5247 27.2452 1.8032

0.3 iteration 12 6 44 100 8
relerr 0.180622 0.181341 0.180624 0.295660 0.180645
time (s) 3.0067 1.7068 27.0944 1.8032 27.2452
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Table 5. Experimental results of algorithms when Jasper Ridge dataset was used and ε = 1.0× 10−8.

γ HOOI CrNc HOSVD_NLS BCD-CD Algorithm 2

0.05 iteration 100 2 81 100 6
relerr 0.0291179 0.0291398 0.0291179 0.155959 0.0291195
time (s) 8.1761 0.2747 22.4445 4.7015 0.4218

0.1 iteration 10 2 63 100 11
relerr 0.0591755 0.0592419 0.0591755 0.152589 0.0591765
time (s) 0.6939 0.2399 10.3936 3.4566 0.5311

0.2 iteration 97 6 100 100 39
relerr 0.118564 0.118782 0.118571 0.174686 0.118575
time (s) 4.4129 0.6047 9.3648 2.4832 1.1770

0.3 iteration 9 15 39 100 15
relerr 0.141258 0.141259 0.141258 0.179646 0.141259
time (s) 0.3618 0.5357 3.1429 1.8633 0.3152

Table 6. Experimental results of algorithms when Indian Pines dataset was used and ε = 1.0× 10−8.

γ HOOI CrNc HOSVD_NLS BCD-CD Algorithm 2

0.05 iteration 100 2 100 100 14
relerr 0.0303899 0.0304928 0.0303903 0.071481 0.0303932
time (s) 20.4660 0.5455 79.4811 11.8359 2.5751

0.1 iteration 9 8 89 100 12
relerr 0.0527312 0.0527693 0.0527312 0.073079 0.0527339
time (s) 0.9499 0.9088 18.6477 4.6742 0.8240

0.2 iteration 12 16 76 100 27
relerr 0.0768604 0.0768700 0.0768604 0.124355 0.0768864
time (s) 0.4698 0.8457 9.6352 2.1600 0.5941

0.3 iteration 4 4 18 100 6
relerr 0.105915 0.105915 0.105915 0.126850 0.105915
time (s) 0.1358 0.2284 2.2056 1.3507 0.1252

Table 7. Experimental results of algorithms when Urban dataset was used and ε = 1.0× 10−8.

γ HOOI CrNc HOSVD_NLS BCD-CD Algorithm 2

0.05 iteration 100 2 100 100 9
relerr 0.0310416 0.0311142 0.0310421 0.298475 0.0310468
time (s) 84.8450 1.9226 665.8282 63.4775 6.4988

0.1 iteration 100 8 100 100 18
relerr 0.0617698 0.0620033 0.0617706 0.290838 0.0617754
time (s) 64.3367 5.3712 268.656 45.8471 9.2198

0.2 iteration 100 13 100 100 24
relerr 0.120991 0.121355 0.120993 0.299642 0.120993
time (s) 39.3584 5.5898 95.7108 27.6234 6.8905

0.3 iteration 38 13 100 100 27
relerr 0.180622 0.180855 0.180622 0.29566 0.180625
time (s) 9.5898 3.5682 61.3466 16.7007 4.4569
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The third experiment measured the performance of the algorithms under noisy conditions.
We added white Gaussian noises with different signal-to-noise ratios to HSI imaging data such that

Tnoise = Tgt +
√

10−σ/20 ‖Tgt‖F

‖N‖F
· N ,

where σ represents the signal-to-noise ratio, andN is the randomly generated tensor. We set σ = +60 dB,
+30 dB, and +20 dB, respectively. Table 8 summarizes the outputs of the experiment, and similar to
the first experiment, it shows that the most accurate algorithm in many cases is HOOI. However,
the proposed algorithm produces outputs with relative errors very similar to those of HOOI, while
maintaining robust convergence to the solutions. In some cases, when using Indian Pines and Urban as
the input data, the proposed algorithm produces even smaller relative errors than HOOI. Note that the
numbers in the parenthesis represent the average iteration numbers required for convergence under
noisy conditions. Additionally, Figure 4 shows the first channel to be compressed when Jasper Ridge
dataset is used. There are no significant differences except the case of BCD-CD.
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Table 8. Experimental results of algorithms when HSI dataset when Gaussian white noise was used and ε = 1.0× 10−6. The numbers in the parenthesis represent the
average iteration numbers.

Dataset γ σ HOOI CrNc HOSVD_NLS BCD-CD Algorithm 2

Jasper Ridge

0.1 +60 dB 0.0591755 (5) 0.0592419 (2) 0.0591757 (26) 0.153469 (100) 0.0591861 (2)
+30 dB 0.0449392 (100) 0.0449707 (2) 0.0449392 (25.33) 0.152897 (100) 0.0449440 (2.67)
+20 dB 0.0788476 (100) 0.0788524 (2) 0.0788469 (100) 0.118547 (100) 0.0788477 (2.67)

0.3 +60 dB 0.141258 (5.67) 0.141296 (5.17) 0.141258 (23) 0.179359 (100) 0.141280 (6)
+30 dB 0.137677 (5.83) 0.137713 (4.67) 0.137677 (24.33) 0.175483 (100) 0.137699 (5)
+20 dB 0.113076 (6.33) 0.113200 (2.83) 0.113077 (32.5) 0.166953 (100) 0.113094 (4.33)

Indian Pines

0.1 +60 dB 0.0527313 (6.33) 0.0528347 (2) 0.0527315 (36) 0.0731127 (100) 0.0527554 (2)
+30 dB 0.0491485 (6.83) 0.0492972 (2) 0.0491491 (100) 0.0739519 (100) 0.0491542 (5.16)
+20 dB 0.0791087 (100) 0.0790856 (2) 0.0790949 (100) 0.0962606 (100) 0.0790843 (2.83)

0.3 +60 dB 0.105915 (2) 0.105915 (2) 0.105915 (9) 0.127037 (50) 0.105915 (2)
+30 dB 0.1053231 (2.67) 0.103234 (2) 0.103231 (11) 0.124117 (100) 0.103233 (5)
+20 dB 0.0618722 (7.33) 0.0620632 (2.5) 0.0618740 (41.83) 0.0746809 (100) 0.0619321 (2.33)

Urban

0.1 +60 dB 0.0617699 (100) 0.0621156 (2) 0.0617710 (90.67) 0.289897 (100) 0.0618057 (5)
+30 dB 0.0539840 (71.67) 0.0543273 (2) 0.0539852 (52.33) 0.296169 (100) 0.0540272 (4.5)
+20 dB 0.0853106 (70.67) 0.08527384 (2) 0.0853042 (100) 0.302653 (100) 0.0852731 (2.83)

0.3 +60 dB 0.180622 (13) 0.181286 (5.83) 0.180624 (43.5) 0.295660 (100) 0.180645 (8)
+30 dB 0.178234 (12.83) 0.179252 (4.33) 0.178236 (36.17) 0.298176 (100) 0.178262 (5.5)
+20 dB 0.158404 (68.33) 0.159271 (2) 0.158406 (20.83) 0.297824 (100) 0.158410 (7.16)
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Figure 4. The first channel image of compressed HSI when the Jasper Ridge dataset was used;
σ = +20 dB, γ = 0.3, and ε = 1.0× 10−6.

The last experiment examined how the algorithms would converge to the solutions. In the
experiment, the algorithms were forced to continue until 100 iterations without considering the
stopping criterion. Figures 5–8 depict the histories of convergences when γ = 0.05, γ = 0.1, γ = 0.2,
γ = 0.3, respectively. Additionally, Table 9 shows the relative errors of outputs after the iterations
reached 100 steps. In this experiment, even though the overall shapes of convergence histories from
CrNc appear better than the others, the outputs of CrNc seem to converge to the relatively inaccurate
local minimum, as shown in Table 9. The convergence speed of HOSVD_NLS is very slow according
to this experiment, but no-meaningful differences with HOOI in terms accuracy were generated.
Furthermore, HOOI produces unstable convergence history occasionally. In any case, Algorithm 2
produces robust outputs with stable convergence histories and with the accuracy close to that of HOOI.
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Figure 5. Convergence history of the algorithms when γ = 0.05.
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Figure 6. Convergence history of the algorithms when γ = 0.1.
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Figure 7. Convergence history of the algorithms when γ = 0.2.
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Figure 8. Convergence history of the algorithms when γ = 0.3.
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Table 9. Relative errors when algorithms continue for 100 iterations.

γ HOOI CrNc HOSVD_NLS BCD-CD Algorithm 2

0.05 Jasper Ridge 0.0291179 0.0291283 0.0291179 0.155959 0.0291179
Indian Pines 0.033899 0.0304179 0.0303900 0.071481 0.0303903
Urban 0.0310416 0.0310716 0.0310418 0.298475 0.0310421

0.1 Jasper Ridge 0.0591755 0.0591779 0.0591755 0.152589 0.0591755
Indian Pines 0.0527312 0.0527466 0.0527312 0.073079 0.0527312
Urban 0.0617698 0.0618683 0.0617698 0.290838 0.0617706

0.2 Jasper Ridge 0.118564 0.118621 0.118564 0.161462 0.118571
Indian Pines 0.0768604 0.0768700 0.0768604 0.124355 0.0768604
Urban 0.120991 0.121298 0.120991 0.299642 0.120992

0.3 Jasper Ridge 0.141258 0.141258 0.141258 0.179646 0.141258
Indian Pines 0.105915 0.105915 0.105915 0.126850 0.105915
Urban 0.180622 0.180855 0.180622 0.295660 0.180622

6. Conclusions

Hyperspectral imaging is widely used, as it enables the simultaneous manipulation of the spatial
and spectral distribution information of a target scene. Owing to the massive amount of information,
tensor compression techniques such as higher order singular value decomposition must be applied. In
this paper, we suggested an efficient computation method of higher order singular value decomposition
by using sequential computations of an alternating least squares approach. Experiments on real-world
hyperspectral imaging datasets highlight the faster computation of the proposed algorithm with
no-meaningful difference in accuracy compared to higher order orthogonal iteration, which is typically
known as the most accurate algorithm for computing higher order singular value decomposition.
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