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Abstract: Carbon sink trading is an important aspect of carbon trading in China, and can have
important significance in offsetting carbon emissions and improving ecological compensation.
The use of unmanned aerial vehicles (UAVs) offers new opportunities for shrub carbon sink and
accounts as a substitute for time-consuming and expensive plot investigations to estimate the carbon
sink by using the aboveground carbon stock monitored by UAV. However, the UAV-based estimation
of the aboveground carbon stock of densely planted shrubs still faces certain challenges. The specific
objectives of this research are as follows: (1) to test the statistical relationship between the aboveground
carbon stock and volume of a densely planted shrub belt, and (2) to develop a model to estimate
aboveground carbon stock by monitoring the volume of the densely planted shrub belt using a UAV.
The study showed that (i) the aboveground carbon stock would increase with the increase in the
volume of the shrub belt, (ii) an estimation model of the aboveground carbon stock of the densely
planted shrub belt was developed (R2 = 0.89, P < 0.01), and (iii) the validation assessment to estimate
aboveground carbon stock by using the UAV-based estimation model produced a coefficient of
determination of R2 = 0.74 and an overall root mean square error of 18.79 kg CO2e. Good prediction
ability of the model was determined using leave-one-out cross-validation (LOOCV). This output
information is valuable for the design of operations in the framework of precise carbon-sink accounting
of shrubs. In addition, a method using an UAV was developed and validated for the quick estimation
of aboveground carbon stock for densely planted shrubs, thereby providing a potential alternative to
time-consuming and expensive plot investigations of aboveground carbon-stock accounting, which is
necessary for shrub projects in the carbon trading market in China.

Keywords: unmanned aerial vehicle; estimation model; carbon sink; aboveground carbon stock;
carbon trade; densely planted shrub; China

1. Introduction

To maintain global warming below 1.5 ◦C to avoid dangerous climate change, CO2 must be
removed from the atmosphere and emissions must be reduced [1]. China is the largest emitter of
greenhouse gases and has been determined to reach its peak emissions by 2030, according to the
Nationally Determined Contribution under the Paris Agreement [2]. To achieve these goals efficiently,
carbon trade plays a critical role in inspiring mitigation actions. More than 20 carbon-emission-trading
systems (ETSs) are in operation by governments worldwide such as the European Union (EU),
United States, Canada, South Korea, and New Zealand. Jurisdictions making up 37% of the global GDP
are using emissions trading [3]. Since June 2013, seven Chinese ETS pilot projects as well as the Fujian
regional ETS have entered operation for the national ETS. As of July 5, 2017, there were 96 carbon
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sink-related Chinese Certified Emission Reduction projects, and the accumulated trading volume of
the spot market in all pilots reached 5258 tons CO2 equivalent (tCO2e) [4]. The Intergovernmental
Panel on Climate Change (IPCC) has proposed that increasing the total area of the world’s forests
could sequester nearly 25% of CO2 emissions [5]. Therefore, carbon sink trading is an important part
of the carbon trade in China, and can have important significance in offsetting carbon emissions.

China is seriously affected by desertification [6]. To prevent desertification, the Sand Source
Control Project (SSCP) conducted by the Chinese government has completed about 8.86 million ha of
afforestation in 138 counties in Inner Mongolia, Shanxi, Hebei, Beijing, and Tianjin in the past 20 years.
By considering tolerance for extreme environments, shrubs, which are a dominant species in desert
areas, have been widely favored and selected in the project. Shrub biomass is a net sink that accounts
for about 30% of the forest sink in China [7,8]. Among the shrub species, temperate semi-shrubs and
dwarf semi-shrubs have the highest carbon-storage capacities [9]. One idea is to incorporate shrubs into
carbon trading to obtain ecological compensation from marketing mechanisms. However, only a few
shrub-based carbon-trading projects have been implemented. Researchers studying carbon estimation
have mainly focused on tree species, but not on carbon stock estimates for shrub species; this is probably
because individual shrubs are small and less dominant in carbon sequestration [10]. Another major
obstacle for shrub carbon trading is the time-consuming and expensive nature of plot investigations for
carbon-sink accounting. The IPCC recommends ground-based surveys and allometric equations for
carbon-stock accounting [11]. The limitation of ground-based surveys is that at least one sample plot is
required per 50 ha and must be investigated extensively based on individual field measurements [12].
How to reduce the monitoring cost is an important problem for shrub-based carbon sink projects with
a small carbon stock density and huge project area.

The use of unmanned aerial vehicles (UAVs) offers new opportunities for shrub-based carbon
sink accounting through the estimation of carbon stock using aboveground carbon stock monitored
by UAVs [13]. Actually, most of shrub was planted by seeds in the SSCP. The aboveground carbon
stock is theoretically equal to the aboveground carbon sink because the baseline of carbon sink
accounting is close to zero. An UAV can acquire real-time high-resolution images as well as offset the
fixed acquisition cycle of optical-sensor satellite remote sensing and sensitivity to weather conditions
(e.g., cloudiness) [14]. There are two remote sensing techniques that are suitable for application on a UAV
platform: airborne laser scanning (ALS) and structure from motion (SfM). The SfM photogrammetric
technique underperforms in terms of accuracy, whereas ALS can provide more accurate estimates
of the vertical structure of plants [15]. However, the SfM is more accessible than ALS, which is too
expensive for shrub owners in developing countries [16]. Therefore, the use of UAVs with the SfM
technique allows for the detection of surface data at acceptable spatial and temporal resolutions, and is
a more cost-effective solution [13].

Caragana intermedia (C. intermedia) is a perennial leguminous shrub that has strong drought
tolerance and wind-proof and sand-fixation properties [17]. It is widely distributed in the desert steppe
area of the Mongolian Plateau [18]. Conventional methods measure the height and crown of single
C. intermedia plants and calculate the carbon stock through specific allometric equations. However,
in the SSCP, C. intermedia were densely planted in strips to achieve sand fixation. In addition, the UAV
faced serious challenges to calculate the aboveground carbon stock of densely planted and banded
shrubs in desertification-prevention projects. The specific objectives of this research are as follows:
(1) to test the statistical relationship between aboveground carbon stock and the volume of the densely
planted shrub belt, and (2) to develop an estimation model of aboveground carbon stock by monitoring
the volume of the densely planted shrub belt using an UAV. This output information is valuable for
the design of operations in the framework of precision carbon-sink accounting of shrubs. A quick
aboveground carbon-stock-estimation method using a UAV was developed for densely planted shrubs
to promote the development of shrub-based carbon trading projects.
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2. Data and Methods

2.1. Study Area

The study area is located in the Chahar Right Back Banner (41◦10′13.133”N–41◦9′8.492”N,
112◦42′13.585”E–113◦9′56.475”E) in the central area of Inner Mongolia, China (Figure 1).
Within an overall temperate continental climate, the region is characterized by an arid and semiarid
climate. The average annual temperature is 6.58 ◦C, while the average annual precipitation is 300 mm
with up to 75% of annual rainfall occurring in summer [19]. The average annual evaporation is 2448 mm
and the relative humidity is 55%. The average annual wind speed is approximately 2.7–3.1 m/s, and
the maximum wind speed can reach 17.0 m/s. The frost-free period is 130–140 days [20].
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Figure 1. (a) Overview of the Chahar Right Back Banner (CRBB) located in Central Inner Mongolia,
China; (b) study area in the CRBB; and (c) field plots (red squares G1, G2, and G3) in an orthophoto of
the study area.

Considering the precipitation and temperature gradient, the area is dominated by grasslands and
typical steppes [21,22]. The study area predominantly contains herbaceous vegetation with a vegetation
cover of 25%–100%, and is characterized by Stipa krylovii, Stipa grandis, Carex duriuscula, Leymus chinensis,
and Artemisia frigida [23]. The shrub species in this area includes C. intermedia, Filii auream rursus
phasianae, and Lycium. In the periphery of the study area, approximately 20,000 ha of C. intermedia were
artificially planted for desertification preservation (Figure 1).

2.2. Aboveground Carbon-Stock Accounting of the Densely Planted Shrub Belt

(1) Sampling Scheme Design and Plant Sampling

Field data were collected on August 16, 2018 for three plots (G1, G2, and G3) of 20 m × 20 m
stretching across three densely planted shrub belts. The plots consisted of nine distributed belts
(B1–9; Figure 2). The square border was outlined and different belts were distinguished using a red line.
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The field survey recorded the number of shrubs in each belt along with the height and crown width of
each shrub. The crown width was measured at the north–south and east–west diameter of the canopy.

Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 18 

 

of each shrub. The crown width was measured at the north–south and east–west diameter of the 

canopy.  

 

Figure 2. Distribution of plots and belts. Three C. intermedia plots were uniformly distributed from 

left to right, namely G1, G2, and G3, respectively. Similarly, each plot had three belts from left to right, 

namely B1, B2, B3, B4, B5, B6, B7, B8, and B9, respectively. 

(2) Aboveground Carbon-Stock Accounting Using an Allometric Equation 

Aboveground carbon stock accounting is based on plant biomass. In terms of the estimation of 

shrub biomass, previous studies have proposed an allometric equation based on field measurements. 

Different input parameters are required for various local allometric equations [25,26] including plant 

height, crown width, and number of branches. Some allometric equations require aboveground and 

underground biomass parameters, and the total biomass is the sum of the aboveground and 

underground parts [27,28]. The allometric equation of C. intermedia adopted in this study was 

constructed by Dang et al. [26]; it estimates the aboveground biomass by using the plant height and 

crown width measured in a field survey. The model was constructed based on the two morphological 

factors of plant height and crown width as the independent variables and shrub biomass as the 

dependent variable, as follows: 

𝑊 = 1.245 (𝐶 × 𝐻)0.826 (1) 

where W is the aboveground biomass (kg); C is the crown width (m); and H is the plant height (m). 

Variables C and H were obtained from field measurements.  

The aboveground carbon stock was calculated using biomass and carbon content [28], as follows: 

𝐶𝑠𝑡𝑜𝑐𝑘 = 𝑊 × 𝐶𝑐𝑜𝑛𝑡𝑒𝑛𝑡  ×
44

12 
 (2) 

where 𝐶𝑠𝑡𝑜𝑐𝑘 is the aboveground carbon stock of the shrub (kg); 𝑊 is the biomass (kg); 𝐶𝑐𝑜𝑛𝑡𝑒𝑛𝑡 is 

the carbon content (0.5) [28]; and 
44

12 
 is the ratio between CO2 and carbon. 

2.3. Shrub Belt Volume Estimation by Using UAV Data 

(1) Data Acquisition 

To estimate the shrub–belt–volume, a DJI Phantom 4 Pro UAV was used, which is a quadcopter 

with four electric motors and equipped with a CMOS (Complementary Metal-Oxide Semiconductor) 

camera (ZENMUSE X3) with a focal length of 35 mm and effective pixel in one-inch CMOS of 20 

G1 

B1 B2 B3 

B4 B5 B6 

G2 
G3 

B7 B8 B9 

Figure 2. Distribution of plots and belts. Three C. intermedia plots were uniformly distributed from left
to right, namely G1, G2, and G3, respectively. Similarly, each plot had three belts from left to right,
namely B1, B2, B3, B4, B5, B6, B7, B8, and B9, respectively.

(2) Aboveground Carbon-Stock Accounting Using an Allometric Equation

Aboveground carbon stock accounting is based on plant biomass. In terms of the estimation of
shrub biomass, previous studies have proposed an allometric equation based on field measurements.
Different input parameters are required for various local allometric equations [24,25] including plant
height, crown width, and number of branches. Some allometric equations require aboveground
and underground biomass parameters, and the total biomass is the sum of the aboveground and
underground parts [26,27]. The allometric equation of C. intermedia adopted in this study was
constructed by Dang et al. [25]; it estimates the aboveground biomass by using the plant height and
crown width measured in a field survey. The model was constructed based on the two morphological
factors of plant height and crown width as the independent variables and shrub biomass as the
dependent variable, as follows:

W = 1.245(C×H)0.826 (1)

where W is the aboveground biomass (kg); C is the crown width (m); and H is the plant height (m).
Variables C and H were obtained from field measurements.

The aboveground carbon stock was calculated using biomass and carbon content [27], as follows:

Cstock = W ×Ccontent ×
44
12

(2)

where Cstock is the aboveground carbon stock of the shrub (kg); W is the biomass (kg); Ccontent is the
carbon content (0.5) [27]; and 44

12 is the ratio between CO2 and carbon.
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2.3. Shrub Belt Volume Estimation by Using UAV Data

(1) Data Acquisition

To estimate the shrub–belt–volume, a DJI Phantom 4 Pro UAV was used, which is a quadcopter
with four electric motors and equipped with a CMOS (Complementary Metal-Oxide Semiconductor)
camera (ZENMUSE X3) with a focal length of 35 mm and effective pixel in one-inch CMOS of 20 million
(Figure 3). The maximum speed and flight time of the UAV were 22 m/s and 12–18 min, respectively.
The UAV data were acquired on 16 August, 2018, and the flight schedule was planned on a dry,
nonwind day to avoid distortions caused by UAV camera undulations [28]. The flight longitude
ranged from 113◦15′14.218”E to 113◦15′46.286”E and the flight latitude ranged from 41◦26′15.347”N to
41◦26′44.472”N. The study area covered 52.72 ha, where the C. intermedia shrubs covered approximately
16.16 ha and accounted for 30.65% of the total flight area.
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Figure 3. DJI Phantom 4 Pro UAV: a quadcopter with four electric motors, equipped with a CMOS
camera (ZENMUSE X3).

Autonomous flight planning was conducted for the study area, and the flight path was designed
toward the north–south direction with a speed of 11 m/s by two flights of approximately 12 min each.
The camera was set to an F-stop of 2.8, shutter speed of 1/2000 s, and ISO-values that were automatically
adapted to the given lighting situations between 100 and 1600 ISO. The images were obtained from
a height of 60 m with 70% side overlap, 90% forward overlap, and an optical GSD of 3 cm. During the
flight, the UAV automatically triggered the camera every 7 m, simultaneously recording the position by
using an internal GPS/GLONASS dual-mode satellite positioning system. Fifty-eight ground control
points were marked and measured using real-time kinematic (RTK) equipment in field plots. The safe
mode and a camera angel of −90◦ was preferred during the UAV image acquisition [29]. The sensor
produced three 20-MP images in the red, green, and blue (RGB) wavelengths [13]. During the survey,
808 RGB images were obtained (Figure 4).
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(2) Shrub Volume Accounting Using Photogrammetry

The workflow of the SfM approach consists of two major steps: image alignment and geometry
building. The 3D point cloud was generated using Agrisoft Photoscan Professional Edition software
(Agisoft LLC, Russia) [30]. First, the camera position for each image and common points in the images
were located and matched; this facilitated the fitting of calibration parameters of the camera. Second,
the point cloud was built based on the estimated camera positions and images themselves [31]. A digital
surface model (DSM), digital terrain model (DTM), and an orthomosaic were also generated [16].
The 3D point cloud DSM and orthophoto are shown in Figure 5a.

The volume of shrub belts can be approximated as the volume of canopy height model
(CHM). In theory, a CHM can be obtained by subtracting the DTM from DSM, as recommended
by González-Jaramillo et al. [32]. However, it is difficult to extract a DTM from the UAV-derived
DSM because the camera cannot survey the terrain surface through the canopy [33]. First, to obtain
a complete DTM, the shrub belt boundary area was extracted using manual visual interpretation in
each plot (Figure 5b). Second, kriging interpolation was used to estimate the missing surface of the
DTM sheltered by the shrub canopy by using ArcGIS (ESRI, US) with a pixel size of 10 cm × 10 cm.
The control points of the kriging interpolation were selected at the 1-m buffer outside the boundary of
the shrub belt (Figure 5b). To avoid boundary effects of the interpolation surface, the outer border
of the interpolation surface was considered as the 5-m buffer of the shrub plot (Figure 5b). It is vital
to ensure the fitting accuracy between the kriging surface and DSM. Third, the points outside the
1-m shrub buffer in the plot were selected to verify the fitting accuracy of the kriging surface and
DTM. Finally, the CHM was extracted by the kriging surface from the DSM, displaying the difference
between the kriging surface and DSM. For consistency with the spatial resolution of DTM, DSM and
CHM were resampled into 0.1 m × 0.1 m by using ArcGIS.

Estimating the volume of shrub can be regarded as double integral to calculate the volume of the
curved-surface body. Assuming that f (x, y) is continuously integrable in the closed region of shrub
belt, and initially assumed that f (x, y) ≥ 0. The surface S given by shrub belt f (x, y) over the domain
D. D was divided into a series of smaller rectangles and the area of the ith smaller rectangle was
∆σi. Take any point in every smaller rectangle and whose height is given by f (ξi, ηi). Over each of
these smaller rectangles, prisms will be constructed. Therefore, the volume of each of the prisms is

f (ξi, ηi)∆σi (i = 1, 2, . . . , n), and the total volume is
n∑

i=1
f (ξi, ηi)∆σi. If ∆σi tends to be 0, the volume

under the surface S is

Vshrub belt =
x

D

f(x, y)dσ (3)

In this study, the curved-surface prism of shrub was irregular, so the approximate calculation
method was adopted. The CHM of the shrub belt was treated as a curved-surface body consisting of
many flat-top quadrangular prisms. To calculate the volume of the CHM, each pixel of the CHM was
approximated as a flat-top quadratic prism, where the volume equals the base area (0.1 m × 0.1 m)
multiplied by the height (canopy height). The total volume of the shrub belt is formulated as follows:

Vshrub belt =
n∑

i=1

Sbase,i ×Hcanopy,i, (4)

where Vshrub belt is the volume of the shrub belt (m3); Sbase,n is the base area of the nth quadrangular
prism (m2); Hcanopy,n is the height of the nth quadrangular prism (m); and n is the number of the
quadrangular prisms within the shrub belt.



Remote Sens. 2019, 11, 2914 8 of 18
Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 18 

 

 
(a) 

 

(b) 

Figure 5. (a) 3D point cloud of the shrub belts and (b) the points for kriging interpolation to estimate 

the missing surface of the digital terrain model sheltered by the shrub canopy in the shrub plot. The 

green line is the shrub belt boundary. The dark dotted line shows the control points selected at the 1-

m buffer outside the shrub boundary. The yellow dotted line is the spatial extent of the interpolation 

surface, forming a 5-m buffer around the shrub plots. The white points are the ground control points 

from RTK (Real - time kinematic). 

2.4. Estimated Empirical Equation and Verification 

Figure 5. (a) 3D point cloud of the shrub belts and (b) the points for kriging interpolation to estimate the
missing surface of the digital terrain model sheltered by the shrub canopy in the shrub plot. The green
line is the shrub belt boundary. The dark dotted line shows the control points selected at the 1-m buffer
outside the shrub boundary. The yellow dotted line is the spatial extent of the interpolation surface,
forming a 5-m buffer around the shrub plots. The white points are the ground control points from RTK
(Real - time kinematic).
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2.4. Estimated Empirical Equation and Verification

In general, the aboveground carbon stock will increase with the increase in the shrub belt volume.
The volume and field-surveyed carbon stock of shrub belts in plots G1 and G2 were treated as training
data. Based on the study by Williams [34], a simple linear model was used to link the aboveground
carbon stock with the shrub belt volume, as follows:

Cstock = b[Vshrub belt] + a(±S), (5)

where a and b are model coefficients; [Vshrub belt] is the shrub belt volume; and S is the standard error in
fitting the model to the observations. This study considered nine shrub belts: six were set as training
belts and three were set as validation belts. The accuracy of the obtained results, namely the Cstock
of three verification belts from the field survey and empirical equation, were determined using the
coefficient of determination (R2) and the root mean square error (RMSE), which are calculated are
as follows:

R2 =

∑n
i=1(xi − x)2(yi − y)2∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2 (6)

RMSE =

√∑n
i=1(xi − yi)

2

n
(7)

where xi and yi are the estimated and measured values, respectively; x and y are the average estimated
and measured values, respectively; and n is the total number of existing values with respect to the
compared parameters.

In order to avoid the model instability caused by small samples, leave-one-out cross-validation
(LOOCV) was used to evaluate model performance. One set of data was used for testing (testing data),
and the aboveground carbon stocks model was fit on the remaining data (training group). The fitted
aboveground carbon stocks were then used to predict the testing data and repeated until the predictions
for all data were generated. The accuracy and prediction ability of the model were assessed using the
root-squared error of LOOCV (RMSELOOCV), mean-squared error (MSE), and based R2 (R2

MSE).

RMSELOOCV =

√√
1
n

n∑
i=1

(
yi −

ˆ
yi

)2
(8)

MSE =
1
n

n∑
i=1

(yi − y)2 (9)

R2
MSE = max(0, 1−

RMSE
MSE

) (10)

where n is the number of data; MSE denotes the mean-squared error of data; yi is the date of observation;
ˆ
yi is the data of prediction; and y is the mean of observation. The R2

MSE is the measure of fit to the 1:1 line.

3. Results

3.1. Aboveground Carbon Stock of Surveyed Shrub Belts

The crown and height of 209 shrubs were measured through field survey in three plots. The shrub
number varied between 16 to 28 in different belts. The average crown and height ranged between
1.41–1.71 m and 1.58–1.95 m, respectively. The biomass and aboveground carbon stock of C. intermedia
in the nine belts were calculated according to Equations (1) and (2). The aboveground carbon stock
varied between 174.34 and 294.49 kg (Table 1).
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Table 1. Plant number, average crown, average height, and aboveground carbon stock.

Plot Belts Shrub
Number

Average
Crown

(m)

Average
Height

(m)

Aboveground
Carbon Stock

(kg CO2e)

G1 Belt-1 16 1.92 ± 0.74 1.93 ± 0.46 203.23 ± 4.46
Belt-2 21 1.71 ± 0.64 1.81 ± 0.59 241.31 ± 6.24
Belt-3 25 1.70 ± 0.55 1.91 ± 0.49 294.49 ± 5.30

G2 Belt-4 26 1.49 ± 0.33 1.95 ± 0.24 270.88 ± 2.44
Belt-5 24 1.62 ± 0.39 1.81 ± 0.36 255.20 ± 3.28
Belt-6 25 1.49 ± 0.46 1.88 ± 0.61 260.28 ± 4.37

G3 Belt-7 28 1.41 ± 0.41 1.72 ± 0.50 256.57 ± 3.92
Belt-8 16 1.59 ± 0.34 1.82 ± 0.34 174.34 ± 2.85
Belt-9 28 1.41 ± 0.28 1.58 ± 0.50 239.22 ± 2.46

3.2. Plant Volume Accounting for Shrub Belts Detected by a UAV

The kriging surface was interpolated by 5754 control points around the shrub belts, shown as
the green surface in Figure 6. There were 897,064, 1,048,575, and 1,154,800 testing points selected
from G1, G2, and G3, respectively, to test the fitting accuracy between the kriging surface and DTM.
Figure 6 shows the scatter plots between the kriging surface and DSM, and the Pearson correlation
between these two factors is shown in Table 2. The three Pearson correlation coefficients were no less
than 0.99 (P < 0.01) with a large sample size, indicating that the kriging surface and DTM had good
fitting accuracy.
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Table 2. Pearson correlation coefficient between the points of the DTM and kriging surface.

Plots Pearson Correlation Coefficient P N

G1 0.99 0.00 897,064
G2 0.99 0.00 1,048,575
G3 0.99 0.00 1,154,800

Figure 7a shows the CHM obtained by subtracting the kriging surface from the DSM, which clearly
described the belt boundaries. According to Equation (4), the volume of the shrub belt is calculated as
the total volume of all quadrangular prisms based on the bottom area (choose pixel size, 0.1 m × 0.1 m)
multiplied by the height (canopy height), as shown in Table 3.

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 18 

 

Figure 6. Scatter plots for (a) G1, (b) G2, and (c) G3. The x coordinate represents the testing points of 

the DTM for surface height and the y coordinate represents the testing points of the kriging surface. 

Table 2. Pearson correlation coefficient between the points of the DTM and kriging surface. 

Plots Pearson correlation coefficient P N 

G1 0.99 0.00 897,064 

G2 0.99 0.00 1,048,575 

G3 0.99 0.00 1,154,800 

Figure 7a shows the CHM obtained by subtracting the kriging surface from the DSM, which 

clearly described the belt boundaries. According to Equation (4), the volume of the shrub belt is 

calculated as the total volume of all quadrangular prisms based on the bottom area (choose pixel size, 

0.1 m × 0.1 m) multiplied by the height (canopy height), as shown in Table 3.  

 
(a) 

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 18 

 

 
(b) 

Figure 7. (a) Canopy height model obtained by subtracting the kriging surface from the DSM (m). (b) 

Volume of the shrub belt calculated using Equation (4). 

Table 3. Volume of the shrub belts detected by the UAV. 

Plot Belts 
Shrub Volume 

(m3) 

Surveyed carbon stock (kg 

CO2e) 

Predicted carbon stock (kg 

CO2e) 

Training data 

G1 
Belt-

1      
42.44 ± 0.46 203.23 ± 4.46 - 

 
Belt-

2 
54.03 ± 0.49 241.31 ± 6.24 - 

 
Belt-

3 
62.04 ± 0.45 294.49 ± 5.30 - 

G2 
Belt-

4 
60.89 ± 0.47 270.88 ± 2.44 - 

 
Belt-

5 
51.45 ± 0.44 255.20 ± 3.28 - 

 
Belt-

6 
55.24 ± 0.43 260.28 ± 4.37 - 

Validation 

data 

G3 
Belt-

7 
57.41 ± 0.44 256.57 ± 3.92 266.72 

 
Belt-

8 
36.78 ± 0.38 174.34 ± 2.85 182.56 

 
Belt-

9 
43.36 ± 0.33 239.22 ± 2.46 209.39 

3.3. Estimated Empirical Equation and Verification  

According to Figure 8a, the aboveground carbon stock will increase with the increase in the 

volume of the shrub belt. Based on our calculation (for detailed methods, please refer to [35], an 

empirical equation was established using data pairs of the aboveground carbon stock and shrub belt 

volume from six belts in plots G1 and G2 (Figure 8a). The R2 value was 0.89 (P < 0.01; N = 6). The 

aboveground carbon stock is estimated as follows:  

𝐶𝑠𝑡𝑜𝑐𝑘 = 4.0804𝑉𝑠ℎ𝑟𝑢𝑏 𝑏𝑒𝑙𝑡 + 32.473,   (𝑅2 = 0.89, 𝑃 < 0.01) (11) 

Figure 7. (a) Canopy height model obtained by subtracting the kriging surface from the DSM (m).
(b) Volume of the shrub belt calculated using Equation (4).



Remote Sens. 2019, 11, 2914 13 of 18

Table 3. Volume of the shrub belts detected by the UAV.

Plot Belts Shrub Volume
(m3)

Surveyed
Carbon Stock

(kg CO2e)

Predicted
Carbon Stock

(kg CO2e)

Training data

G1 Belt-1 42.44 ± 0.46 203.23 ± 4.46 -
Belt-2 54.03 ± 0.49 241.31 ± 6.24 -
Belt-3 62.04 ± 0.45 294.49 ± 5.30 -

G2 Belt-4 60.89 ± 0.47 270.88 ± 2.44 -
Belt-5 51.45 ± 0.44 255.20 ± 3.28 -
Belt-6 55.24 ± 0.43 260.28 ± 4.37 -

Validation data
G3 Belt-7 57.41 ± 0.44 256.57 ± 3.92 266.72

Belt-8 36.78 ± 0.38 174.34 ± 2.85 182.56
Belt-9 43.36 ± 0.33 239.22 ± 2.46 209.39

3.3. Estimated Empirical Equation and Verification

According to Figure 8a, the aboveground carbon stock will increase with the increase in the volume
of the shrub belt. Based on our calculation (for detailed methods, please refer to [35], an empirical
equation was established using data pairs of the aboveground carbon stock and shrub belt volume
from six belts in plots G1 and G2 (Figure 8a). The R2 value was 0.89 (P < 0.01; N = 6). The aboveground
carbon stock is estimated as follows:

Cstock = 4.0804Vshrub belt + 32.473, (R2 = 0.89, P < 0.01) (11)

In other words, 89% of the change in the aboveground carbon stock could be explained by the
changes in the shrub belt volume. Thus, our results support that the aboveground carbon stock of
densely planted shrub belts is positively related to the shrub belt volume.

According to the newly established equation for estimating aboveground carbon stock
(Equation (11)), the aboveground carbon stock of the shrub belts in G3 was estimated using the
shrub belt volume obtained by the UAV. The results are shown in Figure 8b with data fitting by using
a linear model. Here, R2 = 0.74 (P < 0.05; N = 3) and RMSE = 18.79 kg CO2e. The LOOCV results
for the aboveground carbon stock model performed well. The RMSELOOCV was 17.26 kg CO2e and
R2

MSE was 0.74, indicating that the model performance was good for making aboveground carbon stock
predictions (Table 4).

Table 4. Performance of the prediction model for aboveground carbon stock.

Prediction Model RMSE
(kg CO2e) R2 RMSELOOCV

(kg CO2e) R2
MSE

Aboveground
carbon stock 18.79 0.74 17.26 0.74
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Figure 8. (a) Aboveground carbon stock vs. volume of six shrub belts in G1 and G2. (b) Carbon stock
from field surveys vs. the estimated carbon stock through the newly established formulation of three
belts in G3. The fitted curves are indicated by a black dotted line.

4. Discussion

To date, shrub owners have not found the carbon trade particularly attractive, and the CCER has
not encouraged much new shrub. One important reason is that shrub projects of potential commercial
value commonly require at least 10,000 ha, with no less than 200 sampling plots (20 m × 20 m) [35],
and every five years, the survey is repeated during the 20-year project. Therefore, shrub owners
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experience significant challenge in completing the sampling work. In this study, a quick aboveground
carbon stock estimation method was proposed for densely planted shrubs using 3D point cloud and
an UAV. The core philosophy was to estimate the aboveground carbon stock, according to the volume
of the densely planted shrubs. Therefore, the quick aboveground carbon-stock-estimation method
using UAVs is a cheap and efficient method for introducing densely planted shrubs to the carbon
market in China.

Accurate information about aboveground biomass are critical parameters for carbon stock
accounting. Individual UAV-based tree detection for estimating aboveground biomass has been widely
applied, where the height and crown are measured to derive the allometric equation [33]. Figure 2
shows that it is difficult to distinguish individual densely planted shrubs from the shrub belts, let alone
measuring the height and crown of a single shrub. Therefore, in this study, a method was developed
to estimate the aboveground carbon stock by measuring the shrub belt volume by using a UAV.
According to the results shown in Figure 8a, a significant correlation exists between the aboveground
carbon stock and shrub belt volume. Thus, it could be concluded that the shrub belt volume, which
is easy to measure using UAVs, is suitable for estimating the aboveground carbon stock of densely
planted shrubs.

In theory, the object height may be calculated from the UAV imagery through photogrammetry
by subtracting the DTM from the DSM of the plant [36]. It is difficult to extract a DTM from a
UAV-derived DSM because part of the terrain surface is sheltered by plant canopy [37]. It is also
unclear if a UAV-derived DSM can estimate the elevation of an area with plants because plants have an
irregular surface [38]. There are different methods of using UAV imagery to determine a suitable DTM
for deriving vegetation height. Bendig et al. [38] and Possoch et al. [39] used the DTM of bare fields
before plant sowing. This method is not suitable for carbon trade projects because C. intermedia was
planted in 2010. Zarco-Tejada et al. [40] interpolated the ground points between trees to fill the gaps;
this method is comparable to the method in our study (Figure 5a).

There are several sources of error for the proposed aboveground carbon-stock-estimation method.
The maximum vegetation height is often not derived from UAV images because of the low density
of the upper plant layer and wind disturbance. Conversely, the UAV measurements were biased
toward lower plants than those determined in the field survey [37]. There was also uncertainty in the
interpolation process. Intervals of approximately 2 m existed between the artificially planted shrub
belts containing a sporadic growth of L. chinensis. As the growth area of L. chinensis was small and due
to the low maximum height of this grass, its height in this study was negligible. The number of plots
was relatively small, which limited the generality of the proposed estimation model. Although the
prediction ability of the model was determined using LOOCV, the model was reliable when applied
locally, but it lacked a generalization ability. Furthermore, in August 2018, the study area received
abundant rainfall and luxuriant shrub growth. In case of drought years or seasons, the number of
shrub leaves is small, and this may lead to large changes in volume estimation and have an important
impact on the model parameters. Therefore, more plots in different locations and times should be
developed in subsequent experiments, after which the model results could be more reliable.

In this study, the aboveground biomass and carbon stock was estimated through a field survey
and UAV. However, actual carbon trading requires both the aboveground and underground carbon
stock of shrubs. Based on our estimation model of the aboveground carbon stock, the root/shoot
ratio could be introduced to estimate the underground carbon sink. Dang et al. [25] proposed that the
root/shoot ratio was 1.17, as obtained through a whole root digging method. For carbon estimation
of C. intermedia, whole carbon sink estimation is achievable. Moreover, the carbon sink calculation
requires a series of UAV data to calculate the difference between carbon stocks in the baseline scenario
and the scenario with a carbon-stock increase.
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5. Conclusions

In this study, the issue of the carbon accounting of densely planted shrubs was addressed through
a field survey and by using a UAV. The statistical results showed that the aboveground carbon
stock would increase with the increase in the shrub belt volume. Accordingly, a quick aboveground
carbon-stock-estimation method using a UAV was established for densely planted shrubs. This proved
to be a potential alternative to the time-consuming and expensive plot investigations conducted to
estimate aboveground carbon stock, which is significant for shrub projects to take part in the carbon
trading market in China.
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