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Abstract: Hyperspectral unmixing is a key preprocessing technique for hyperspectral image analysis.
To further improve the unmixing performance, in this paper, a nonlocal low-rank prior associated
with spatial smoothness and spectral collaborative sparsity are integrated together for unmixing
the hyperspectral data. The proposed method is based on a fact that hyperspectral images have
self-similarity in nonlocal sense and smoothness in local sense. To explore the spatial self-similarity,
nonlocal cubic patches are grouped together to compose a low-rank matrix. Then, based on
the linear mixed model framework, the nuclear norm is constrained to the abundance matrix of
these similar patches to enforce low-rank property. In addition, the local spatial information and
spectral characteristic are also taken into account by introducing TV regularization and collaborative
sparse terms, respectively. Finally, the results of the experiments on two simulated data sets
and two real data sets show that the proposed algorithm produces better performance than other
state-of-the-art algorithms.

Keywords: hyperspectral images; sparse unmixing; nonlocal self-similarity; low-rank

1. Introduction

Hyperspectral remote sensing generally uses an imaging spectrometer to collect spatial and spectral
information. Hyperspectral images can obtain tens or even hundreds of consecutive narrow-band
information (generally less than 10 nm) of each pixel in a spectral domain, and each pixel can extract
a continuous spectral curve [1]. Therefore, hyperspectral images have the property of high spectral
resolution, which greatly improves the ability to detect the property of the material. It has been actively
discussed by researchers and widely applied in many fields, such as agricultural production, geological
survey, urban planning, and environmental monitoring [2,3]. However, because of the limitations of
optical instrument’s performance and imperfect spectral acquisition techniques, the spatial resolution
of hyperspectral images is low, which results in a pixel that may contain more than one type of ground
object signature, called a mixed pixel [4,5]. Because of the existence of many mixed pixels, the accuracy
of hyperspectral image processing has been greatly affected. Therefore, hyperspectral unmixing is a
key preprocessing technique for hyperspectral image analysis.

The goal of hyperspectral unmixing is to extract the pure spectral signatures (called endmembers)
in the scene [6] at first and then estimate the corresponding proportions (called abundances) of these
endmembers [7]. There are two main models of hyperspectral unmixing: linear mixture model
(LMM) [8,9] and nonlinear mixture model (NLMM) [10–12]. Different from the NLMM, the LMM has
the advantages of simplicity, high efficiency, and clear physical meaning. The LMM also can describe
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better the actual spectral mixing phenomenon of hyperspectral images with spatial resolution under
the meter level. Therefore, the LMM is applied for hyperspectral unmixing widely and it assumes that
the observed spectral signal of each mixed pixel can be approximated as a linear mixture of all pure
endmembers in that pixel.

With the LMM, there are many endmember extraction algorithms based on the statistical and
geometry methods that have been proposed for hyperspectral images, such as the vertex component
analysis (VCA) [13], pixel purity index [14], and N-FINDR [15] algorithms. These algorithms only
require a small amount of prior knowledge of the hyperspectral image. Nevertheless, they need the
assumption of pure pixel’s existence in the scene, which does not hold in many datasets. Thus, some
researchers proposed algorithms that do not require this assumption, such as minimum volume simplex
analysis (MVSA) [16] and iterative constrained endmembers (ICE) [17]. Several nonnegative matrix
factorization (NMF) methods have been proposed for hyperspectral unmixing, such as minimum
volume constrained nonnegative matrix factorization (MVC-NMF) [18] and robust collaborative
nonnegative matrix factorization (R-CoNMF) [19]. There are also some algorithms for hyperspectral
image unmixing by using the support vector machine (SVM) [20–22]. In addition, the convolutional
neural network (CNN), a deep learning method, has been applied to semi-supervised learning, target
detection, and other fields [23–28]. Hence, Licciardi et al. [29] proposed an auto-associative neural
network for pixel unmixing based on CNN. Chen et al. [30] used CNN to extract deep characteristics
of the hyperspectral image for classification. However, these algorithms perform poorly with highly
mixed or noisy hyperspectral image data [31] and NMF methods may obtain virtual endmembers
without physical meaning [32].

In practice, the diversity and complexity of the ground objects increase the difficulty of endmember
extraction, that is to say, the endmember matrix extracted from the observed hyperspectral image is
not accurate enough. To avoid the problem of unreliable abundance estimates caused by inaccurate
endmember extraction during the unmixing processing, sparse unmixing, based on compressed sensing
and sparse representation [33,34], has attracted more and more researchers’ attention. The advantage
of the sparse unmixing technology is that it does not require endmember extraction, but directly uses
the spectral characteristics in a given spectral library, released by United States Geological Survey
(USGS) [35], to constitutes endmember matrix, and then estimates abundance coefficients. In general,
the number of spectral characteristics in the spectral library is usually far more than the number of
endmembers in a given real hyperspectral scene. Therefore, the abundance coefficient vector, related
with the spectral library, of each observed mixed pixel spectral signature is sparse [36]. To increase the
accuracy of unmixing result, sparse unmixing introduces additional information as a priori knowledge
to a hyperspectral unmixing model, which is called a regularization term.

For sparse unmixing, some researchers focus on exploring the prior information of the spectrum.
Iordache et al. [31] proposed the sparse unmixing by variable splitting and augmented Lagrangian
(SUnSAL) algorithm, which applies a sparse regularization term to an abundance matrix. They
replaced the L0 norm with L1 norm and used alternating direction multiplier method (ADMM) [37]
to obtain a sparse solution of the abundance matrix under the L1 norm. The collaborative SUnSAL
(CLSUnSAL) [38] algorithm utilizes the row sparsity characteristic of abundance coefficient for the
abundance matrix, which can obtain the sparsity of abundance matrix more effectively than the L1

norm. However, its performance degrades especially when an endmember is contained only in local
homogeneous regions rather than the whole scene. Tang et al. [39] proposed a sparse unmixing
using a priori information of the spectrum, which assumes that a part of the spectral signatures in a
hyperspectral image are available before unmixing. Although unmixing results can be improved, this
assumption cannot always hold. Zhang et al. [40] adopted the local collaborative sparse regression
(LCSU) algorithm. They assume that endmembers are usually distributed in local homogeneous
regions rather than the full image, which overcomes the limitations of CLSUnSAL.

These sparse unmixing algorithms only consider the sparseness of the spectrum, however, the
spatial correlation of hyperspectral images can also improve the performance of unmixing [41].
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The SUnSAL with total variation (SUnSAL-TV) [42] algorithm, proposed by Iordache et al. uses the
anisotropy total variation (TV) to characterize the local spatial clustering properties of adjacent pixels,
which promoted the smoothness between pixels. But this algorithm has a limitation that may cause
over-smoothing in edge regions. Sun et al. proposed the L1-L2 SUnSAL-TV algorithm [43], which
promoted the sparseness of the spectrum better than L1 norm.

In recent years, the low-rank property of hyperspectral images has been taken into account
to characterize the spatial correlation. The low-rank property means that in hyperspectral images,
there are many regions with high similarity, in which the corresponding abundance vectors of the
pixels in these regions have a high linear correlation [44], that is, the abundance matrix composed
of these abundance vectors has low-rank property. In the fields of hyperspectral image restoration
and denoising, some algorithms have achieved superior results by using low-rank property [45–51].
Yang et al. [52] proposed a low-rank constraint to couple sparse unmixing and denoising. They first
performed unmixing and then denoising in each iteration. But, the result of unmixing depends more
on the quality of the denoising task. Giampouras et al. [53] utilized sparse and low-rank properties
simultaneously and proposed ADSpLRU algorithm. They imposed a low-rank constraint on the small
sliding window over a hyperspectral image. Mei et al. [54] utilized superpixel segmentation and
low-rank representation to unmix hyperspectral images. However, they focused on the generalized
bilinear model, which is a nonlinear mixture model. Rizkinia and Okuda [55] proposed a joint local
abundance sparse unmixing (J-LASU) algorithm. They used a small three-dimensional (3D) block
and sliding on the 3D abundance data, which converted an abundance matrix and imposed low-rank
constraint to the abundance data in this small 3D block.

Although these sparse unmixing algorithms show superiority to some extent, they have their own
limitations. For example, CLSUnSAL only considers the sparseness of the spectrum, SUnSAL-TV may
cause over-smoothing in the edge regions and J-LASU only considers the similarity of the image in a
local region. Therefore, in this study, we propose a nonlocal low-rank prior to the sparse unmixing
problem (NLLRSU). Considering that a hyperspectral image is a natural image, it has self-similarity
in nonlocal regions. Thus, we propose a nonlocal low-rank regularization term to utilize nonlocal
self-similarity property. First, we convert an abundance matrix to a 3D abundance cube and use a
small 3D patch sliding on this abundance cube. For each small 3D patch, we find several small patches
similar to this 3D patch by utilizing a block matching algorithm [56]. Then, we generate a patch
group with these similar patches and use the nuclear norm to enforce the low-rank property to this
patch group. In addition, we take the spectral and spatial information into account by introducing
collaborative sparse and TV regularization terms, respectively. Figure 1 shows the flow chart of the
proposed unmixing algorithm.

This study has four advantages.

(1) The non-local low-rank regularization can help to preserve the details of the image better than
the state-of-the-art algorithms. In addition, the proposed algorithm utilizes both spectral and
spatial information simultaneously to obtain better unmixing results.

(2) In order to improve unmixing performance, a large spectral library is used as an endmember
matrix instead of extracting endmembers from the hyperspectral image directly.

(3) The optimization problem of the proposed algorithm with all convex terms is solved by the
alternating direction multiplier method (ADMM).

(4) Extensive experiments on both simulated and real data sets validate the superiority of the
proposed method in unmixing hyperspectral images.

The rest of this paper is organized as follows. In Section 2, we discuss the linear spectral unmixing
and sparse unmixing problem. In Section 3, we describe the proposed NLLRSU algorithm and
optimization. In Section 4, we test the proposed algorithm and other sparse unmixing algorithms with
two simulated data sets and two real hyperspectral data sets. Finally, we summarize this paper in
Section 5.
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Figure 1. The flow chart of the proposed unmixing algorithm.

2. Related Works

2.1. Linear Spectral Unmixing

The linear mixed model (LMM) assumes that each pixel spectrum can be linearly combined by all
endmembers and corresponding abundances exist in the pixel [57]. The linear model can be described
as follows:

y =

q∑
i=1

miαi + n = Mα+ n, (1)

where y ∈ Rl×1 is a column vector which represents a mixed pixel and l is the number of bands,
M ∈ Rl×q is an endmember matrix and q is the number of endmembers, α ∈ Rq×1 represents the
abundance vector of the endmembers, n ∈ Rl×1 is the model error and noise that are generated during
the observation process.

To ensure that the solution of the abundance has the physical meaning, the LMM introduces two
constraints, named the abundance non-negativity constraint (ANC) and the abundance sum-to-one
constraint (ASC) [58], which are expressed as:

ANC : αi ≥ 0 (i = 1, 2, . . . , q), (2)

ASC :
q∑

i=1

αi = 1 (3)

In a hyperspectral scene, let Y ∈ Rl×s be the observed hyperspectral image data and X ∈ Rq×s be
the abundance matrix, where s is the number of pixels in the hyperspectral image. Equation (1) can be
rewritten as:

Y = MX + N, (4)

where N ∈ Rl×s represents noise and model error.
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2.2. Sparse Unmixing

The sparse unmixing utilizes a large spectral library A ∈ Rl×t instead of the endmember matrix,
where t is the number of spectral signatures of ground material in the spectral library A. The model
can be described as:

Y = AX + N, (5)

where X ∈ Rt×s is the abundance matrix corresponding to the spectral library A.
The number of spectral characteristics in the spectral library A is usually far more than the number

of endmembers in a given real hyperspectral scene. Thus, the abundance matrix X contains many zero
values, so the abundance matrix is considered as sparse. Therefore, the sparse unmixing model can be
expressed as:

min
X

1
2
||AX−Y||2F + λ||X||0 s.t . X ≥ 0, (6)

where ||AX − Y||2F represents the reconstruction error of the model and ||X||F ≡
√

trace
{
XXT

}
is the

Frobenius norm of the X, ||X||0 is the L0 norm of the abundance matrix X, which denotes the number of
non-zero elements in X. Here, we do not introduce the ASC constraint to Equation (6) because ASC has
received extensive criticism from scholars [31].

Since the L0 norm is non-convex, the problem of minimization of Equation (6) is difficult to solve.
Recently, one theory proved that when the spectral library matrix A satisfies the restricted isometry
property (RIP) condition [59], the L0 norm problem can be equivalently converted to the L1 norm
problem, which is a convex optimization problem and easier to solve. Therefore, we can replace the L0

norm by the L1 norm to transform the nonconvex optimization problem into a convex one. Accordingly,
Equation (6) can be rewritten as:

min
X

1
2
||AX−Y||2F + λ||X||1 s.t. X ≥ 0, (7)

where ||X||1 ≡
∑t

i=1
∑s

j=1 |xi j| is the L1 norm which calculates the sum of the elements in the abundance
matrix X.

In practice, one hyperspectral scene often has only a few endmembers out of a large spectral library.
CLSUnSAL algorithm enforces the column (pixels) of the abundance matrix X share the same active
set of endmembers, so X has only a few nonzero rows (endmembers). That is, X has the characteristics
of sparse among the rows. To utilize this prior, CLSUnSAL replaces the L1 norm by L2,1 norm which is
sparser than the L1 norm. The equation of CLSUnSAL algorithm is expressed as follows:

min
X

1
2
||AX−Y||2F + λ||X||2,1 s.t. X ≥ 0, (8)

where ||X||2,1 ≡
∑t

i=1 ||xi||2 ≡
∑t

i=1

√∑s
j=1 |xi j|2 is the L2,1 norm of the abundance matrix X and xi

represents the i-th row of X.
In addition to utilizing the properties of the spectrum, the spatial correlation of hyperspectral

images is also beneficial for improving the result of the unmixing. Each pixel and its neighboring
pixels usually contain similar material, so the spectral characteristic between these pixels are very
similar. To promote smoothness between adjacent pixels, the TV regularization term, which describes
spatial correlation, can be applied to Equation (7). Then, the model is:

min
X

1
2
||AX−Y||2F + λ||X||1 + λTVTV(X) s.t. X ≥ 0, (9)

where
TV(X) ≡

∑
{i, j}∈ε

||xi
− x j
||1, (10)
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represent nonisotropic TV, xi and x j are i-th and j-th columns of X, respectively, ε denotes the set that
contains horizontal and vertical neighbors in a hyperspectral image [42].

Let Hh : Rt×s
→ Rt×s and Hv : Rt×s

→ Rt×s represent the horizontal and vertical differential linear
operators of adjacent pixels in the abundance matrix X, respectively. HhX = [d1, d2, . . . , ds] calculates
the difference of the X and horizontal neighboring pixels, where di = xi

− xih, xi is a column vector and
xih is the horizontal neighboring column vector of xi. Similar to HhX, HvX = [v1, v2, . . . , vs] calculates
the vertical difference, where vi = xi

− xiv, xi is a column vector and xiv is the vertical neighboring
column vector of xi. By horizontal and vertical operations, we can obtain HX ≡ [HhX; HvX] [42,60].
Therefore, Equation (9) can be rewritten as:

min
X

1
2
||AX−Y||2F + λ||X||1 + λTV ||HX||1 s.t. X ≥ 0, (11)

However, CLSUnSAL only considers the sparsity of the abundance from a perspective in the
spectral domain. SUnSAL-TV only exploits the local smoothness in the spectral domain, it may cause
over smoothing in the edge regions. There is still much room for improving the unmixing performance.
Therefore, we propose a nonlocal low-rank prior to the sparse unmixing (NLLRSU) algorithm to obtain
more precise spatial information by exploiting the nonlocal self-similarity.

3. Proposed Algorithm

3.1. Nonlocal Self-Similarity

Treated as a natural image in each band, hyperspectral images are smooth in local regions between
adjacent pixels and bands, meanwhile, they are self-similar in nonlocal regions. The adjacent pixels
have smooth property. Therefore, there is a high correlation between the pixels of the local regions
in the hyperspectral images, that is, the pixels are very likely to contain the same material in a local
region. In addition, there are a large number of similar structural information in different regions in
the hyperspectral images. These similar structures consist of smooth regions, texture regions, and
edge regions. For any local region, we can find many similar regions in the image. That is to say, the
information of the hyperspectral image itself is redundant and the pixels in these similar regions are
also very likely to contain the same material. Qu et al. [44] indicated that this high spatial correlation
of hyperspectral images means that there is also a high correlation in the abundance matrix, which is
reflected by the linear correlation between the abundance vectors. Based on this prior, the abundance
matrix can be reconstructed by the proposed nonlocal low-rank algorithm.

In order to take advantage of the nonlocal low-rank property, we need to search for similar
structural texture regions in the abundance matrix. Therefore, we convert the abundance matrix to 3D
abundance cube, which restores the position of the pixels and spectral bands in the abundance matrix
to the corresponding position in the original 3D abundance cube, then we use a small 3D sliding patch
on this abundance cube. For each small 3D patch, denoted by a key patch, we can find several small
patches similar to this key patch in the abundance cube by utilizing a block matching algorithm [56].
Then, we stack the key patch and these similar patches to generate a patch group and use the nuclear
norm to enforce the low-rank property to this patch group. To sum up, the small 3D patch slides
across all dimensions of the abundance cube and the proposed nonlocal low-rank regularization term
employs the nuclear norm to enforce the low-rank property of each patch group.

In addition, the results of sparse unmixing are affected by the correlation between spectral
characteristics in the spectral library [61]. In general, a spectral library contains many spectral
characteristics of the same ground materials in different situations. The similarity between these
spectral signatures is very high, which leads to the conclusion that the solution of the sparse unmixed
model is not unique. To overcome this disadvantage, we need to ensure that the linear correlation
between the spectral characteristics in the spectral library is as small as possible. Therefore, we use a
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strategy to precondition the spectral library. Given a spectral library A, we calculate the spectral angle
θi, j between any two different spectral characteristics Ai and A j. The θi, j is defined as follows:

θi, j = cos−1

 AT
i A j

|Ai||A j|

, (12)

Any two spectral characteristics in spectral library A are regarded as linear correlation if the
spectral angle θi, j of the two spectral characteristics is less than a given threshold. We reserve
one of these linear correlation spectral characteristics and discard the remaining linear correlation
spectral characteristics. With this operation, we obtain a pruned spectral library which is utilized for
sparse unmixing.

3.2. Nonlocal Low-Rank Regularization

In the former section, we explained how the abundance matrix is converted to 3D form to find
similar structural information. Let X̂ ∈ Rsr×sc×t be the 3D form of the abundance data, where sr and
sc represent the number of rows and columns, respectively, and s = sr× sc is the number of pixels in
the abundance matrix and t is the number of signatures in the spectral library. Assuming that the
number of patches is P in X̂ and X̂p ∈ Rsp×sp×tp is the p-th patch, where p = 1, 2, . . . , P. Taking the p-th
patch as an example, we use a block matching algorithm [56] to find the r nonlocal patches which
are similar to the p-th patch. Then, with the r+1 patches together, we generate a patch group, which
is denoted by X̂r+1 ∈ Rsp×sp×u and u = tp× (r + 1). For each spectral dimension in the patch group,
denoted by X̂i,r+1 ∈ Rsp×sp, where i = 1, 2, . . . , u, we convert it to a vector, denoted by x̂i,r+1 ∈ Rw,
where w = sp× sp. Figure 2 illustrates this process. Finally, we obtain the abundance matrix of the
patch group by:

DX̂r+1
= (x̂1,r+1, x̂2,r+1, . . . , x̂u,r+1) ∈ Ru×w (13)
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we stack all r+1 patches to a patch group and convert this patch group into the vectors to obtain the
abundance matrix.

The nuclear norm is then imposed to enforce the low-rank property of the abundance map DX̂r+1

of the patch group X̂r+1:

||DX̂r+1
||∗ =

rank(DX̂r+1
)∑

j=1

σ j(DX̂r+1
), (14)

where σ j represents the j-th singular value, where j = 1, 2, . . . , rank(DX̂r+1
). Therefore, the estimated

abundance matrix of this patch group can be enforced by the low-rank constraint. At last, we aggregate
the estimated abundance matrix to the corresponding position of each patch in the patch group.
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Similarly, we conduct this operation for all P number of patches. For the whole abundance matrix X,
we use ||X||NL∗ to represent the nonlocal low-rank regularization term.

3.3. Proposed Model and Optimization

Based on the sparse unmixing model, the proposed NLLRSU algorithm has three regularizers,
named collaborative sparsity, TV, and nonlocal abundance low-rankness. The model is formulated
as follows:

min
X

1
2
||AX−Y||2F + λ||X||2,1 + λTV ||HX||1 + λNL||X||NL∗ + lR+(X), (15)

where λ,λTV,λNL are the parameters of the collaborative sparsity, TV, and nonlocal low-rank
regularization terms, respectively. lR+(x) is an indicator function, when x ≥ 0, lR+(x) = 0; otherwise
lR+(X) = +∞, it is utilized to ensure ANC constraint.

It is difficult to optimize the model (15) directly, so we employ the ADMM [37] to solve it. The core
idea of ADMM is that a difficult problem can be transformed into several simple subproblems by
introducing some new variables cautiously. The subproblems are solved one by one and alternately
updated. Here, we introduce the variables V1, V2, V3, V4, V5, V6. Then the Equation (15) can be
rewritten as:

min
X,V1,V2,V3,V4,V5,V6

1
2 ||V1 −Y||2F + λ||V2||2,1 + λTV ||V4||1 + λNL||V5||NL∗ + lR+(V6)

s.t.V1 = AX
V2 = X
V3 = X

V4 = HV3

V5 = X
V6 = X

(16)

The Lagrangian function of the Equation (16) is:

L(X, V1, V2, V3, V4, V5, V6, D1, D2, D3, D4, D5, D6)

= 1
2 ||V1 −Y||2F + λ||V2||2,1 + λTV ||V4||1 + λNL||V5||NL∗

+lR+(V6) +
µ
2 ||V1 −AX + D1||

2
F +

µ
2 ||V2 −X + D2||

2
F

+
µ
2 ||V3 −X + D3||

2
F +

µ
2 ||V4 −HV3 + D4||

2
F

+
µ
2 ||V5 −X + D5||

2
F +

µ
2 ||V6 −X + D6||

2
F

(17)

where D1, D2, D3, D4, D5, D6 are Lagrangian multipliers and µ is the Lagrangian parameter.
Algorithm 1 gives the pseudocode for the NLLRSU solution process. In each iteration, with the

ADMM, we optimize X, V1, V2, V3, V4, V5, V6 in sequence, then we update the Lagrangian multipliers
D1, D2, D3, D4, D5, D6.

Next, we discuss the details of step 3 in Algorithm 1, which is utilized to compute the value of
variable X at each iteration. In this step, we fix other variables and update X only. The optimization
problem for step 3 can be written as:

X(k+1)
← argmin

X

µ
2 ||V

(k)
1 −AX + D(k)

1 ||
2
F +

µ
2 ||V

(k)
2 −X + D(k)

2 ||
2
F

+
µ
2 ||V

(k)
3 −X + D(k)

3 ||
2
F +

µ
2 ||V

(k)
5 −X + D(k)

5 ||
2
F +

µ
2 ||V

(k)
6 −X + D(k)

6 ||
2
F

(18)

The solution of Equation (18) is:

X(k+1)
← (ATA + 4I)

−1
(ATξ1 + ξ2 + ξ3 + ξ5 + ξ6) (19)
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where AT is the transpose of A, I is the identity matrix, and ξ1 = V(k)
1 + D(k)

1 ,ξ2 = V(k)
2 + D(k)

2 ,

ξ3 = V(k)
3 + D(k)

3 , ξ5 = V(k)
5 + D(k)

5 , ξ6 = V(k)
6 + D(k)

6 .

Algorithm 1: Pseudocode of the NLLRSU algorithm.

1. Initialization: set k = 0, choose µ,λ,λTV ,λNL, X(0), V(0)
1 , . . . , V(0)

6 , D(0)
1 , . . . , D(0)

6

2. while some stopping criterion is not satisfied do

3. X(k+1)
← argmin

X
L(X, V(k)

1 , . . . , V(k)
6 , D(k)

1 , . . . , D(k)
6 )

4. for i = 1, . . . ,6 do

5. V(k+1)
i ← argmin

Vi

L(X(k), V(k)
1 , . . . , Vi, . . . , V(k)

6 )

6. end for
7. Update Lagrange multipliers

8. D(k+1)
1 ← D(k)

1 −AX(k+1) + V(k+1)
1

9. D(k+1)
4 ← D(k)

4 −HV(k+1)
3 + V(k+1)

4

10. D(k+1)
i ← D(k)

i −X(k+1) + V(k+1)
i , i = 2, 3, 5, 6

11. Update iteration k = k + 1
12. end while

Now, we introduce solutions of the variables V1, V2, V3, V4, V5, V6 in step 5 of Algorithm 1.
To solve V1, the optimization problem for V1 can be described as:

V(k+1)
1 ← argmin

V1

1
2
||V1 −Y||2F +

µ

2
||V1 −AX(k) + D(k)

1 ||
2
F (20)

The solution of V1 is:

V(k+1)
1 ←

1
1 + µ

[Y + µ(AX(k)
−D(k)

1 )] (21)

The optimization problem of V2 is:

V(k+1)
2 ← argmin

V2

λ||V2||2,1 +
µ

2
||V2 −X(k) + D(k)

2 ||
2
F (22)

The solution of V2 is given by using the famous vect-soft threshold [62]:

V(k+1)
2 ← vect-soft(X(k)

−D(k)
2 ,

λ
µ
) (23)

where vect-soft(·,ψ) means that the vect-soft threshold function is applied row by row, and the vect-soft
threshold function is x 7→ x(max

{
||x||2 −ψ, 0

}
/max

{
||x||2 −ψ, 0

}
+ψ) , ψ is a threshold.

To compute V3, we need to solve the following problem:

V(k+1)
3 ← argmin

V3

µ

2
||V3 −X(k) + D(k)

3 ||
2
F +

µ

2
||V(k)

4 −HV3 + D(k)
4 ||

2
F (24)

The solution of V3 is:

V(k+1)
3 ← (HTH + I)

−1
(X(k)

−D(k)
3 + HT(V(k)

4 + D(k)
4 )) (25)
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where H represents a convolution. H can be applied independently in a band-by-band manner and
calculated by discrete Fourier transform diagonalization [63].

The optimization problem of V4 is:

V(k+1)
4 ← argmin

V4

λTV ||V4||1 +
µ

2
||V4 −HV(k)

3 + D(k)
4 ||

2
F (26)

The solution of V4 can be obtained by soft-threshold [64]:

V(k+1)
4 ← soft(D(k)

4 −HV(k)
3 ,

λTV

µ
) (27)

where soft(·,ψ) represents the soft-threshold function x 7→ sign(x)max
{
|x| −ψ, 0

}
.

To obtain the solution of V5, the optimization problem of (28) should be solved.

V(k+1)
5 ← argmin

V5

λNL||V5||NL∗ +
µ

2
||V5 −X(k) + D(k)

5 ||
2
F (28)

For the abundance matrix DX̂r+1
of each patch group, we apply singular value shrinkage to obtain

the reconstructed abundance matrix. The solution of V5 can be expressed as:

V(k+1)
5 ← shrinkage

(
X(k)
−D(k)

5 ,
λNL

µ

)
(29)

where shrinkage(·,ψ) is the singular value shrinkage x 7→ diag(max
{
SVD(x) −ψ, 0

}
) of abundance

matrix DX̂r+1
.

Finally, the optimization problem of V6 is as follows:

V(k+1)
6 ← argmin

V6

lR+(V6) +
µ

2
||V6 −X(k) + D(k)

6 ||
2
F (30)

The solution of V6 is:

V(k+1)
6 ← max

(
X(k)
−D(k)

6 , 0
)

(31)

3.4. Computational Complexity

In this algorithm, the most time-consuming procedures are calculating X, V3, and V5, and the
corresponding complexities are O(l2s), O(lslogs), and O(wu2P), respectively, where s is the total number
of pixels in a hyperspectral image, l is the number of spectral characteristics, w and u are the number of
pixels and bands in one patch group, respectively, and P is the number of patches. In each iteration,
V5, the singular value decomposition step, costs the most time. Thus, the overall complexity of this
algorithm is O(wu2P).

4. Experiment and Analysis

In order to test the unmixing performance of the proposed algorithm, we used two simulated
data sets and two real hyperspectral image data sets. For each simulated data set, our experiments
were performed in three different signal-to-noise ratio (SNR) levels, 10dB, 15dB, and 20dB. We also
compared the proposed algorithm with SUnSAL [31], CLSUnSAL [38], SUnSAL-TV [42], J-LASU [55],
and L1-L2 SUnSAL-TV [43].

4.1. Experiments with Simulated Data

In this paper, we employed splib06 [65], a USGS spectral library released in September 2007, to
our experiments. We selected 240 endmember signatures randomly from the splib06 as the spectral
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library, denoted by A ∈ R224×240, and the spectral library A contains 224 bands of spectra with spectral
range from 0.4 to 2.5 µm. Because the linear correlation between the spectral characteristics is very
high, we set the spectral angle to be larger than 4.4 to avoid this problem.

The simulated data set 1 (DS1) was generated by randomly selecting five spectral characteristics
from the spectral library A and following the linear mixed model. DS1 has 75× 75 pixels and each
pixel has 224 bands and the corresponding abundance is constrained by ASC. Figure 3a illustrated the
composition of the DS1. In DS1, some square regions are pure and some regions are mixed by two to
five endmembers. The background pixels of this data set are composed of the same five endmembers
with randomly fixed abundance values 0.1149, 0.0741, 0.2003, 0.2055, and 0.4051. Figure 3b–f shows
the true abundances of five endmembers. After generating DS1, we applied three different SNR levels
Gaussian noise, 10dB, 15dB, and 20dB, to this data set.
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image; (b) endmember 1; (c) endmember 2; (d) endmember 3; (e) endmember 4; (f) endmember 5.

The simulated data set 2 (DS2) contains nine spectral characteristics which are randomly selected
from spectral library A and has 100× 100 pixels. The abundances of nine spectral signatures obey a
Dirichlet distribution uniformly over the probability simplex and are constrained by ANC and ASC.
As shown in Figure 4, the abundances of DS2 shows the piecewise smoothness in the spatial domain
and their distributions are closer to those of the real data sets. After generating DS2, this data set is
distorted by Gaussian noise with the same SNR levels as DS1.

In the simulated data experiment, the parameters λ represent sparsity term for SUnSAL,
CLSUnSAL, SUnSAL-TV, J-LASU, L1-L2 SUnSAL-TV, and NLLRSU. The TV term for SUnSAL-TV,
J-LASU, L1-L2 SUnSAL-TV, and NLLRSU is represented by λTV. For J-LASU, the local low-rank term
is controlled by λLR and the local block size is set to 5× 5× 5 with no overlap according to J-LASU.
The λNL means nonlocal abundance low-rank term for NLLRSU and each local patch size is set to
5× 5× 5 and we find the four patches which are similar to the local patch after several experiments.
The parameters λ, λTV, λLR, λNL are selected between 10-4 to 10. For each algorithm, we adjust each
parameter to the optimal value. Table 1 shows these parameter settings.
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Figure 4. True fractional abundances of endmembers in the simulated data set 2 (DS2). (a) Endmember
1; (b) endmember 2; (c) endmember 3; (d) endmember 4; (e) endmember 5; (f) endmember 6;
(g) endmember 7; (h) endmember 8; (i) endmember 9.

Table 1. Parameter settings.

Data DS1 DS2

SNR 10dB 15dB 20dB 10dB 15dB 20dB

SUnSAL [31] λ 1× 100 5× 10−1 1× 10−1 5× 10−1 1× 10−1 1× 10−1

CLSUnSAL [38] λ 1× 101 1× 101 8× 100 1× 101 1× 101 3× 100

SUnSAL-TV [42] λ 1× 10−1 1× 10−1 5× 10−2 1× 10−1 1× 10−1 5× 10−2

λTV 5× 10−1 1× 10−1 5× 10−2 1× 10−1 5× 10−2 1× 10−2

J-LASU [55]
λ 2× 100 1× 100 2.5× 10−1 1× 10−4 1× 10−4 1× 10−4

λTV 1× 10−1 1× 10−1 5× 10−2 5× 10−2 5× 10−2 1× 10−2

λLR 1× 100 5× 10−1 3× 10−1 5× 10−1 1× 10−1 1× 10−1

L1-L2 SUnSAL-TV [43] λ 1× 10−2 1× 10−1 1× 10−2 1× 10−1 1× 10−2 1× 10−2

λTV 5× 10−1 5× 10−2 5× 10−2 1× 10−1 5× 10−2 5× 10−2

NLLRSU
λ 5× 10−1 1× 10−1 1× 10−1 1× 10−4 1× 10−4 1× 10−4

λTV 1× 10−1 1× 10−1 5× 10−2 1× 10−1 5× 10−2 1× 10−2

λNL 2× 100 5× 10−1 5× 10−1 1× 100 5× 10−1 1× 10−1

We employ two evaluation indicators to assess the quality of the six algorithms: signal
reconstruction error (SRE) [66] and root mean square error (RMSE) [67]. SRE is the ratio between the
reconstructed abundance matrix and error, and higher SRE value indicates a better result. SRE can be
defined as follows:
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SRE(dB) = 10 log10

E[||X||22]

E[||X− X̂||22]
, (32)

where X is the true abundance matrix and X̂ is the estimated abundance matrix.
RMSE represents the error between the true abundance matrix and the estimated abundance

matrix, and lower RMSE value indicates more accurate estimation of abundance matrix. RMSE can be
defined as follows:

RMSE =

√√√√
1

t× s

t∑
i=1

s∑
j=1

(xi j − x̂i j)
2, (33)

where xi j and x̂i j represent each element in the true abundance matrix and the estimated abundance
matrix, respectively.

Figure 5 shows SRE(dB) values of NLLRSU as a function of parameters λ, λTV, and λNL in 20dB
SNR level. Since there are three parameters, we considering the effect of (λ and λTV), (λ and λNL), (λTV

and λNL) on SRE value, respectively, while the other parameters are set to the optimal values. From
Figure 5, we can observe that relatively smaller parameter values result in better SRE values.
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Figure 5. Signal reconstruction error (SRE)(dB) as a function of parameters λ, λTV , and λNL for DS1
with 20dB SNR level. (a) λ and λTV ; (b) λ and λNL; (c) λTV and λNL.

Figures 6–9 show the abundance image reconstructed by the six algorithms for one randomly
selected endmember in DS1 and DS2 with 20db SNR level, respectively. From 8 and 9, we can clearly
see that SUnSAL-TV algorithm shows the smoothest results in the edge regions. Nevertheless, the
edge transition regions reconstructed by our algorithm is closer to the true abundance distribution.
The result shows that nonlocal low-rank regularization terms keep the structure information of the
image better than other algorithms. Tables 2 and 3 show the values of SRE (dB) and RMSE of the six
algorithms with two simulated data sets, respectively. From these tables, we can observe that the
performance of the proposed NLLRSU algorithm is better than other state-of-the-art algorithms in the
same SNR level.
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Table 3. Root mean square error (RMSE) result (The optimal results are shown in bold type).

Data SNR SUnSAL
[31]

CLSUnSAL
[38]

SUnSAL-TV
[42]

J-LASU
[55]

L1-L2 SUnSAL-TV
[43] NLLRSU

DS1
10dB 0.0338 0.0286 0.0218 0.0102 0.0214 0.0091
15dB 0.0310 0.0206 0.0165 0.0074 0.0173 0.0069
20dB 0.0261 0.0172 0.0152 0.0059 0.0154 0.0054

DS2
10dB 0.0426 0.0438 0.0325 0.0325 0.0323 0.0313
15dB 0.0392 0.0374 0.0290 0.0283 0.0282 0.0273
20dB 0.0305 0.0333 0.0260 0.0238 0.0241 0.0227

4.2. Experiments with Real Data

For the real hyperspectral data set experiment, we utilized the famous AVIRIS Cuprite mine
map and Urban data to test the performance of the six algorithms. For the Cuprite mine map, we
utilized a subset of this data set, with 250× 191 pixels. This subset contains 224 spectral bands between
0.4–2.5 µm. Because of the low SNR and water absorption, we removed the bands of 1-2, 105-115,
150-170, 223-224, and left 188 bands. The sub-library of USGS with 50 signatures was used to unmix
this subset. Figure 10 shows the USGS mineral distribution of Cuprite in Nevada. This mineral map
was drawn by Tricorder 3.3 software in 1995. However, the data for the currently published AVIRIS
Cuprite mine was collected in 1997. Therefore, this mineral map was used for qualitative assessment
of the six algorithms, because the mineral map product in 1995 and the AVIRIS data collected in 1997
cannot be directly compared. The Urban data has 307× 307 pixels and 210 spectral bands with a range
of wavelengths between 0.4 and 2.5 µm. We utilized a subset with 100× 100 pixels for the experiment.
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The bands 1–4, 76, 87, 101–111, 136–153, and 198-210 have been removed because of atmospheric
influence and water absorption, leaving 162 spectral bands. Since the ground truth of the Urban
data set is not available, we use the abundance map obtained from [68] as the ground truth, which is
obtained by the method of [69,70], including four endmembers (asphalt road, grass, tree, and roof).Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 22 
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Figure 10. United States Geological Survey (USGS) mineral map of Cuprite in Nevada.

Figure 11 shows the three minerals’ (Alunite, Buddingtonite and Chalcedony) abundance
reconstructed by SUnSAL, CLSUnSAL, SUnSAL-TV, J-LASU, L1-L2 SUnSAL-TV, and NLLRSU
algorithms. In Figure 11, the first row shows the mineral distribution of Alunite, Buddingtonite,
and Chalcedony, which was generated by Tricorder 3.3 software in 1995 and regarded as ground
truth. Although it is difficult to perform the qualitative assessment of the results from the real
data produced by these algorithms, we can directly observe the results of the unmixing from the
reconstructed abundance map. From Figure 11, it is clear to see that SUnSAL and CLSUnSAL perform
poorly in the aspect of noise suppression while SUnSAL-TV, J-LASU, L1-L2 SUnSAL-TV, and NLLRSU
produce smooth transition results in the edge regions because the methods with TV regularization and
NLLRSU term keep structure information better than other algorithms. Table 4 shows the SRE and
RMSE results of the six algorithms on Urban data. Since the ground truth of Urban data cannot be
obtained directly from ground measurement but obtained by an algorithm, the RMSE values of the
six algorithms are much higher than those from the simulated data sets. From Table 4, it is obvious
that the unmixing results obtained by the proposed algorithm are better than other state-of-the-art
algorithms. The experiments on real datasets show that the nonlocal low-rank term can improve the
unmixing results effectively.
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(column 1-3) by Tricorder software. The second row (d–u) to the seventh row shows the reconstructed 

abundances maps of three minerals by SUnSAL, CLSUnSAL, SUnSAL-TV, J-LASU, L1-L2 SUnSAL-

TV, NLLRSU. 

Figure 11. The first row (a–c) shows the distribution maps of Alunite, Buddingtonite, and
Chalcedony (column 1-3) by Tricorder software. The second row (d–u) to the seventh row shows the
reconstructed abundances maps of three minerals by SUnSAL, CLSUnSAL, SUnSAL-TV, J-LASU, L1-L2

SUnSAL-TV, NLLRSU.
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Table 4. SRE and RMSE results of Urban data (The optimal results are shown in bold type).

Algorithms SUnSAL
[31]

CLSUnSAL
[38]

SUnSAL-TV
[42] J-LASU [55] L1-L2 SUnSAL-TV

[43] NLLRSU

SRE 3.9422 4.1685 4.2535 4.6928 4.5506 4.9362
RMSE 0.5534 0.5392 0.5339 0.5076 0.5160 0.4935

4.3. Discussion

Except for the parameters, the patch size and patch number also affect the optimal results. In each
patch group consisting of nonlocal patches, we utilized the nuclear norm to exploit its low-rank
property. We performed several experiments to find the optimal patch size and patch number in DS1
and DS2. Figure 12a shows the effect of patch size and patch number on SRE in DS1. Figure 12b
shows SRE and RMSE results as a function of patch size and patch number in DS1. After several
experiments, we found the optimal patch size is 5 × 5 pixels with 5 spectral bands and the patch
number is 5. Therefore, we utilized 5× 5× 5 patch size and 5 patch number for all data sets.
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Figure 12. (a) Effect of patch size and number on SRE; (b) SRE and RMSE result with patch size and
patch number change.

We conducted the experiments on the DS1 and the Cuprite mine map data set to compare the
running times of the six algorithms. DS1 has 75× 75 pixels with 224 spectral bands and Cuprite mine
map data set has 250× 191 pixels with 188 spectral bands. The six algorithms were performed on Intel
Core i7 with 3.6 GHz and 8 GB RAM desktop computer. Table 5 shows the execution time of the six
algorithms. It is clear to see that the proposed algorithm (NLLRSU) takes the longest time because
our method is the most complex one among the six algorithms. However, the proposed algorithm
preserves the details of the abundance map best, especially when the noise level is high.

Table 5. Execution time comparison (seconds/iteration).

Data SUnSAL
[31]

CLSUnSAL
[38]

SUnSAL-TV
[42] J-LASU [55] L1-L2 SUnSAL-TV

[43] NLLRSU

DS1 0.08 0.09 0.33 1.51 0.34 2.89

AVIRIS data 0.21 0.22 0.62 2.87 0.66 5.76

5. Conclusions

In this paper, a nonlocal low-rank sparse unmixing algorithm which explores both spectral and
spatial information is proposed to improve the unmixing performance. In this method, a novel nonlocal
low-rank regularization, a collaborative term and a TV term are integrated into a unified framework.
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The proposed model is finally solved by the ADMM algorithm effectively. Two simulated data sets and
two real hyperspectral image data sets are employed to validate the superiority of the proposed method,
and the experiment results show that our method outperforms several state-of-the-art methods.

In the future, we are committed to exploring better low-rank regularization to improve
unmixing results more effectively. In terms of time complexity reduction, we consider employing
parallel computing [71], such as multi-core CPU and GPU parallel computing, to improve
computational efficiency.
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