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Abstract: Ground-based radar interferometry, which can be specifically classified as ground-based
synthetic aperture radar (GB-SAR) and ground-based real aperture radar (GB-RAR), was applied
to monitor the Liusha Peninsula landslide and Baishazhou Yangtze River Bridge. The GB-SAR
technique enabled us to obtain the daily displacement evolution of the landslide, with a maximum
cumulative displacement of 20 mm in the 13-day observation period. The virtual reality-based
panoramic technology (VRP) was introduced to illustrate the displacement evolutions intuitively and
facilitate the following web-based panoramic image browsing. We applied GB-RAR to extract the
operational modes of the large bridge and compared them with the global positioning system (GPS)
measurement. Through full-scale test and time-frequency result analysis from two totally different
monitoring methods, this paper emphasized the 3-D display potentiality by combining the GB-SAR
results with VRP, and focused on the detection of multi-order resonance frequencies, as well as the
configure improvement of ground-based radars in bridge health monitoring.
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1. Introduction

Spaceborne synthetic aperture radar (SAR) systems, from the pioneer SEASAT to the present
Sentinel-1 satellite, provide a powerful tool for deformation measurement with millimeter accuracy
by adopting differential interferometry or multi-temporal interferometry [1,2]. Thus, SAR systems
have been used in many application fields, e.g., surface subsidence [3–5], earthquakes [6–8], and
landslides [9,10]. Where the long-term and large-scale with slow deformation areas are characterized,
the use of spaceborne sensors has been shown to be successful and effective. Meanwhile, in some
complimentary, cases, e.g., individual structures, local landslides, steep slopes, and scenes with fast
deformation rates involving temporal decorrelation, an alternative strategy arises from the use of
ground-based radar interferometry [11].

Ground-based radar interferometry system (GBRI) is the realization and effective complementarity
of spaceborne radar system on the ground. It emits and receives a burst of microwaves to remotely detect
small displacements of targets through phase differentials [4,12]. Based on the image resolution/antenna
physical dimension, a specific class of ground-based radar interferometry systems can be classified into:
(1) Real aperture radars (SARs), such as GAMMA’s Portable Radar Interferometer (GPRI) and Image
By Interferometric Survey-Structure (IBIS-S); and (2) Synthetic aperture radar (SARs), such as the
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linear synthetic aperture radar (LISA) and Image By Interferometric Survey-Landslide (IBIS-L). For the
ground-based synthetic aperture radar (GB-SAR), its antenna is synthetically elongated by moving the
radar along a rail track perpendicular to the look direction. In the range direction, it uses the stepped
frequency continuous wave (SFCW) or frequency modulated continuous wave (FMCW) technique to
implement sampling in frequency domain, which can realize the two-dimensional imaging capability
with range and cross-range resolution of a large scene [12–14]. Thus, GB-SAR, as a supplementary
of spaceborne satellite, is widely used in landslides [15,16], mines [17], sinkhole subsidence [18],
glaciers [19], and volcanoes [20]. Unlike GB-SAR, the ground-based real aperture radar (GB-RAR),
with a radar sensor mounted on a tripod transmitting and receiving pulses of energy, can only obtain
the range resolution but with a higher sampling rate [13,21]. Thus, the applications of GB-RAR are
mainly in manmade structures, such as bridges [22,23], buildings [24,25], dams [26], towers [27], and
chimneys [20].

Although existing literatures have shown GB-SARs and GB-RARs as powerful tools for extracting
the two-dimensional displacement evolution of a large scene or dynamic vibration parameters of a
manmade structure, there is still room for improvement in the interpretation and exhibition of these
GBRI-derived results, on-surveying, and mapping professionals. For those modal shape parameters
extracted from frequency or time domain methods, most studies have emphasized the methods of
modal-parameter identification and validation using different sensors dataset, but have neglected
further discussion of the modal assurance criterion diagrams (MAC) between multiple mode shapes
that is sensitive to damage scenarios examination, e.g., Gentile et al. [21], Stabile et al. [22], Hu et al. [24],
Luzi et al. [25], and Xi et al. [28]. In view of the first issue, the virtual reality-based panoramic technology
(VRP) is implemented to the panorama images generation and spherical projection of the study area
images collected by an unmanned aerial vehicle (UAV). Subsequently, the spherical panoramic images
are embedded into the web to realize the panoramic roaming and map navigation. Most of the scene
deformation results were shown in a displacement color bar-adhered two-dimensional bitmap with
or without scene geomorphology superposition, e.g., Tarchi et al. [15], and Luzi et al. [29], Leva et
al. [30]. Thus, it is difficult to match them with the specific scene location. The in-situ measurement
of high-frequency GPS (10 Hz) and the no-contact remote sensing method of GB-RAR (17 Hz) were
conducted on the Wuhan Baishazhou Yangtze River Bridge, and the dynamic vibration parameters
were extracted using the enhanced frequency domain decomposition technique (EFFD) and sequential
quadratic programming-based venetic algorithm (SQP-GA). Through these damage-sensitive features,
ambient vibration testing (AVT)-based damage examination features of the bridge were presented.

The paper is organized as follows: Section 2 briefly recalls the working principle of GB-SAR,
GB-RAR, VRP, and the adopted method for modal parameters identification. Section 3 provides
a description of the two experimental campaigns, underlining the data acquisition strategy and
preliminary results. Section 4 presents the results from VRP and Web-based panoramic image browsing
and identifies modal parameters and MAC results, followed by several concluding remarks related to the
integration of multi-sensor and interdisciplinary disciplines on large-scene and individual structures.

2. Working Principle of GBRI, VRP, and Method for Modal Parameters Identification
and Discrimination

Although there are many kinds of ground-based radar interferometry systems on the market, e.g.,
linear SAR [23], rotary SAR [31], ArcSAR [32], multiple input multiple output SAR [33], and moving
slot [34], they are different in instrument volumes and measurement ways. The principle of acquiring
target displacement is essentially realized by the stepped frequency(SF)/frequency modulation (FM)
continuous wave (CW) and interferometry technique. In this paper, we only focused on the linear SAR
system and used the IBIS-L and IBIS-S developed by Ingegneria dei Sistemi S.p.A. (IDS) in collaboration
with the Department of Electronics and Telecommunication of the Florence University as an example
for illustrations.
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2.1. Principles of GBRI

The technique in range direction integrates a Stepped Frequency Continuous Wave (SF-CW)
synthesizer to continuously emit a set of sweeps containing a SF signal with bandwidth B, a frequency
step size ∆ f (Figure 1), and a receiver to collect the energy reflected by the illuminated objects [35].
Thereby, it can achieve ultra-bandwidth B (B = (N − 1)∆ f ), thus leading to a higher range resolution
δr and reducing the instantaneous bandwidth requirement of digital signal processor [36].

δr =
cτ
2

=
c

2B
(1)

where τ is the pulse width, allowing an indicator of two points illuminated in range by the instrument
to be distinguished, and c is the speed of light.
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Figure 1. Representation of the SFCW waveform in time and the frequency domain.

The cross-range resolution is obtained without using long antennas by the SAR technique, i.e., the
sensor moves in a “stop and go” mode, scans scene at each step, and thus acquires mono-dimensional
images which are subsequently compressed (image focusing) in a single two-dimension complex
images using the inverse discrete Fourier transform (IDFT) [36,37]. Thereby, the achievable cross-range
angular step δθ and its corresponding cross-range resolution δrc are given:

δθ =
λ
2L

, δrc =
λ
2L

r (2)

The final complex images (comprising amplitude A and phase ϕ), where each pixel contains the
in-phase (I) and the quadrature (Q) components, and the polar image geometry (Figure 2) with a
constant range sampling step of δr and a constant azimuth angular step of δθ, are given by Equations (3)
and (4), respectively.

ϕ = tan−1(
Q
I
) , A =

√
I2 + Q2 (3)

r = y ∗ δr , β = (x− xc) ∗ δθ (4)

where λ is the wavelength, L is the length of the rail, and r and β are the radar to pixel distance the
off-central column angle, which can be calculated from a given pixel (x,y).

Once the time domain responses (amplitude and phase) are determined, the phase discrepancy
during a time interval of the same range bin ∆ϕ is obtained by complex conjugate multiplication of
the two echoes, expressed in Equation (5), which directly reflect the changes in distance between this
pixels and the radar, i.e., radial displacement ∆d in line of sight (LOS), expressed in Equation (6).

∆ϕ = ϕt1(x, y)ϕt1(x, y)∗ = ∆ϕdisp + ∆ϕatm + ∆ϕnoise − 2πn (5)

∆d =
λ

4π
∆ϕdisp =

λ
4π

(∆ϕ− ∆ϕatm − ∆ϕnoise + 2πn) (6)

where ∆ϕ is the sum phase of three parts: Displacement, with which are are concerned;
atmosphere, which, for a small area, can be eliminated from surrounding stable points; and the



Remote Sens. 2019, 11, 2887 4 of 17

thermal/environmental noise practically, which is removed by selected points with high signal to noise
ratio (SNR) [11,15,35].

Except for the lack of SAR capability, GB-RAR, like IBIS-S, shares the same range imaging and
interferometry techniques with the above-mentioned GB-SAR. The tripod replaces the rail, while the
range sampling rates are up to 200 Hz with a displacement detection accuracy of 0.01 mm [24], which
is especially suitable for monitoring the dynamic vibration of structures.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 18 
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2.2. VR-based Panoramic Technology of Web
Virtual reality based the Panorama of Web technique (VRPW), also known as three-dimensional

panoramic virtual reality, is a real scene virtual reality technology based on panoramic images [38,39].
This technique mainly focuses on the accuracy of virtual environment representation, the authenticity of
virtual environment perception information synthesis, the naturalness of human-virtual environment
interaction, real-time display, graphics generation, intelligent technology, and other issues, allowing
users to perceive the virtual environment personally, so as to achieve the goal of exploring and
understanding objective things.

The steps of creating the Liusha Peninsula landslide (the study area described in Section 3.1)
virtual scene with the technology of the VRP were as follows: (1) The Rotor UAV hovered at fixed
point in the air with a camera and took common-view projection photography of the landslide area;
(2) Panorama image generation, which mainly included images of spherical projection, as well as
mosaic and sky-filling decoration. The planar graph, with a ratio of length to height of 2:1, was
obtained after using the latitude–longitude mapping method; (3) The 360-degree panoramic images,
re-spherically projected from the two-dimensional picture, were embed into the webpage for users
to sweep, revolve, switch, zoom out, and zoom in among different scenes using only the mouse,
allowing users to feel like they were in the virtual scene. On this basis, based on the 3-D development
engine Unity®, the virtual reality scene was built by means of objects and components. Finally, the
deformation monitoring results were imported and published as the objects in Unity scene to realize
the establishment of high visual deformation model.

2.3. Modal Parameters Identification
Enhanced frequency domain decomposition (EFFD) is an improved method proposed by Brincker

et al. [40] on the basis of frequency domain decomposition, which is widely applied to modal
identification of large structures under environmental excitation. Unlike the frequency domain
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decomposition method, in this technique, the decomposed single-degree-of-freedom power spectral
density (PSD) function is inversely Fourier transformed to obtain the time-domain correlation function.
Then, the logarithmic attenuation method is used to calculate the frequency and damping ratio [41,42].
The principle in the EFFD technique is easily understood by recalling that any response can be expressed
with unknown input signal and output signal in modal coordinates:

Gyy( jw) = H∗( jw)Gxx( jw)HT( jw) (7)

Gyy( jw) ∈ Rm×m PSD matrix of responses, where m is the number of responses; Gxx( jw) ∈ Rl×l PSD
matrix of the input, where l is the number of inputs; H( jw) ∈ Rm×l matrix of frequency response
function (FRF); ∗ and superscript T denote complex conjugate and transpose.

In a multi-degree-of-freedom system, the frequency response function can be written in the
following partial fractions and forms:

H( jw) =
n∑

i=1

[
Ri

( jw− λi)
+

Ri
∗

( jw− λi∗)

]
(8)

where i is the order of mode shape, Ri is the i−th matrix of FRF, λi is the eigenvalues of discrete systems,
and w is the natural frequency. Their relation with λi can be expressed as:

λi = −ξwi + j
√

1− ξ2wi (9)

Thus, the estimation of the output Ĝyy( jw), known at discrete frequencies wi, is then decomposed
by taking the singular value decomposition (SVD) of the PSD matrix,

Ĝyy( jw) = UiSiUi
H (10)

where Si denotes the diagonal matrix holding the scalar singular values, and Ui is the unitary matrix
holding the singular vectors, which indicates the mode shape of structure.

Furthermore, a hybrid optimization method (SQP-GA) that combines the genetic algorithm with
sequential quadratic programming was also adopted in this study to make a cross-comparison with
the EFFD-derived results. Detail explication can be found in the study by Hu J.Y et al [24], in which
the SQP-GA method was successfully used to extract the modal parameters of a high-rise building.

3. The Experimental Campaigns

Two case studies, where the IBIS systems (IBIS-L and IBIS-S) were characterized by the GB-SAR
and GB-RAR technique mentioned above, were used to study the deformation evolution of the Liusha
Peninsula landslide and the dynamical behavior of the Baishazhou Yangtze River Bridge. The two
case studies are reported in this section. In this section, we focused on the outstanding results derived
from IBIS for each case. The discussion involved validation, comparison with multi-sensors, and MAC
calculation. Detailed operational parameters can be found in the studies by Rödelsperger et al. [13]
and Monserrat Hernández [37].

3.1. The Liusha Peninsula Landslide

3.1.1. IBIS-L Configuration

The Liusha Peninsula landslide occurred on the Liusha peninsula on the north bank of the Yong
River in Nanning, China, with Yinghua Road on the south and Peninsula Community on the east.
It first happened on 12 July 2014, due to building loads and heavy rainfall, causing the soil mass
migration of an area with width of 100 m, thickness of 15 m, and accumulated soil body of 40,000 cubic
meters. Such a large amount of soil mass migration directly led to cracks and tilt in some pillars, beams,
and walls of the A6 residential building and its podium near the Yong River (Figure 3).
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Figure 3. Example of the heavy damages on building caused by the Liusha Peninsula landslide on
12 July 2014.

To assess the possibility of further landslides and ensure the safety of the Peninsula Community,
a measurement campaign was carried out from the 24 September to 6 October 2017. The IBIS-L
instrument was installed at stable a datum point of approximately 420 m on the opposite levee in front
of the Liusha Peninsula landslide (Figure 4b). The arrangement of the instrumentation in the field is
shown in Figure 4a. The 2-m rail was precisely mounted on a custom steel shelf with five threaded
studs positioning holes of 16 mm in diameter on its upper surface. During the whole observation
period, the steel frame was fixed on a stable ground, which ensured a millimetric repositioning of the
rail and thus avoided a later co-registration of the datasets acquired in different field campaigns [11].
According to the characteristics of short sampling period of GB-SAR and small monitoring scene in this
study, four stable and high SNR points located in the northeast and southwest of the central landslide
area, respectively, were selected under the assumption of atmospheric homogeneity in the observation
scene to remove the atmospheric impact [43,44].Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 18 
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Figure 4. (a) Field settings and component connections of IBIS-L. The insert in upper left corner is
an enlarged view of precise rail positioning. (b) Overall view of data acquisition. The red triangles
represent the global positioning system (GPS) receivers and the corner reflectors are shown in the upper
right corner.

Moreover, we also implemented GPS measurements on 29 September 2017 with five receivers
(T1–T5) installed at feature points on the landslide. At each position of GPS receiver, a corner reflector
was fixed to facilitate post-analysis (Figure 4b).

3.1.2. Displacement Results

The area for analysis, illuminated by the IBIS-L sensor, extended to approximately 250 m in range
and 600 m in width, primarily comprising the landslide, bridge, and some buildings (Figure 4b). Each
image scan took roughly six minutes to perform a full SAR measure. The thermal signal noise ratio
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(TSNR) image of study area is shown in Figure 5. As illustrated in Figure 5, the bridge and some
buildings showed strong reflectivity with TSNR (more than 40 dB). The TSNR of the slip surface was
relatively low, but it was basically greater than 20 dB. The stone revetment in the middle of the landslide
and the stones stacked at the bottom of the landslide reached a TSNR of 30 dB. Figure 5b shows that
the temporal coherence of the whole landslide area was between 0.8 and 1.0, which indicates that the
quality of the acquired ground SAR image data is good [13,37].
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Such a high TSNR of study area enabled us to ensure a good estimation of the displacement
sequence from 24 September to 6 October 2017, as shown from Figure 6.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 18 
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the radar, whereas the positive displacement means away from the radar.



Remote Sens. 2019, 11, 2887 8 of 17

Figure 6 shows that the landslide had a nonlinear deformation during the 13-day monitoring period.
As local landslide activity would be expected to cause positive changes in the LOS displacement,
this was exactly the case of the lower part of the Liusha Peninsula landslide, where the positive
displacement has increased. The maximum positive deformation value was 20.68 mm as of 6 October
2017. Unlike the lower part, the upper part of the landslide body was relatively stable. Furthermore,
there was no evident deformation of the bridge during the whole period, which was basically in a
stable state. Moreover, no obvious deformations of the buildings near the landslide were observed.

3.2. The Baishazhou Bridge

3.2.1. Description of the Bridge and Experimental Setup

The Baishazhou Yangtze River Bridge is a double-tower and double-cable plane welded steel
box girder cable-stayed bridge. The main beam adopts the mixed beam scheme: The steel box girder
is used for the middle span and some side spans, and the concrete box girder is used for the two
side spans. The beam is 3.0-m high and 30.2-m wide. It is basically a longitudinal floating system.
A group of "elastic cables" are arranged from the lower crossbeam of each main tower to the left and
right to anchor on the main beam 63-m away from the tower, so as to partially limit the longitudinal
displacement of the main beam. Each cable surface is composed of 24 cables on the left and right, of
which the cable spacing of concrete main beam is 24 m. The main tower is of diamond type with a
height of 174.75 m, of which the part above the bridge deck is 145.0-m high, and the upper and lower
beams are set. The following part of the bridge is mainly composed of six columns standing in the
water, and the water depth is between 6–22 m. The geological column chart shows that the overburden
of the riverbed is sand gravel layer, with a depth of 30–40 m.

Construction began on the bridge in in March 1997 and the bridge was opened to traffic in
September 2000. The total length of the bridge is 3585 m, of which the length of main bridge is
2458 m and the main span is 1078 m (50 m+180 m+618 m+180 m+50 m). It has six double-directional
driveways with a total width of 26.5 m and a capacity of 50,000 vehicles a day. Since its open to traffic in
2000, the bridge has undergone 24 repairs within 10 years. Therefore, dynamic monitoring campaigns
of this bridge have been carried out since 2005 [45].

In this paper, high-frequency (10 Hz) GPS observations, lasting one hour, were conducted on
27 September 2016. In this campaign, two GPS receivers were set up upstream and downstream of the
middle span (S012, S035), two GPS receivers were installed on the top of the double-tower (S035,S029),
and the reference station was delineated, with the red triangle approximately 2-km northeast of the
middle span (see Figure 7a,b). In addition, a GB-RAR monitoring of this bridge, lasting five hours,
was also implemented using the IBIS-S system on 2 October 2017. The instrument was installed under
the downstream deck with a sampling rate of 17 Hz. Moreover, two corner reflectors were fixed on
the downstream bridge edge within the illuminated area of radar (Figure 7c), and one was mounted
on a stable tripod 15 m in front of the radar, which was used to eliminate the atmosphere/noise effect
(Figure 8).
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3.2.2. Deflections of the Bridge

The operational test was carried out under the ambient excitation (usually due to micro-tremors,
traffic loads, and wind) on the bridge. After acquiring a range profile of the deck bridge, we selected a
set of radar bins with high TSNR from near to far along the deck and projected their LOS displacements
to the vertical direction of the bridge according to their configure geometry. Due to the 17-Hz
sampling rate and huge dataset, only 2000 s (34,000 records) displacement series of nine selected bins
located at different distance along the deck were processed to extract the vertical vibration frequencies
(Figure 7a). Meanwhile, the deflection sequences of the four GPS receivers in lateral (X), longitudinal
(Y), and vertical (Z) directions under the Bridge Coordinate System (BCS) were transformed from the
WGS84 coordinate system (N,E,U) by 2D similarity transformation [30]. Their corresponding vibration
frequencies are shown in Figures 9 and 10, respectively.
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The analysis of the vertical deflections time histories retrieved from the GPS (Figure 10) and
GB-RAR (Figure 9) indicates that the maximum deflections were more inclined to occur at the center
of the bridge (e.g., Rbin689, S012). The downward deflection exhibited intermittent surge and rapid
recovery characteristics. Meanwhile, the antisymmetric deformation characteristics of bridges (vertical
direction anisotropic vibration at different positions) were also observed (e.g., Rbin496 and Rbin689 at
1200 s), which were expected as the excitation result triggered by the trucks rapidly approaching away
from the middle deck. Although the GPS and GB-RAR measurements did not coincide with each other
in time domain, it was impossible to make deflection cross-vibration of these two sets of measurements.
However, for natural frequencies reflecting the inherent characteristics of the structure, dominant
frequencies around 0.23 Hz and 0.29 Hz were derived from both vertical deflections of the GPS and
GB-RAR (see Figures 9 and 10). Similar vibration frequencies were also retrieved by Zhang et al. [46]
and Huang et al. [45]. The analysis involving the combination of multi-position and multi-direction
(X, Y, and Z) deflection information of different sensors to implement the bridge modal parameters
extraction and cross-validation are described in the Section 4.2.

4. Visualization, Cross-Validation, and Damage Detection

4.1. Web Browse of Landslide Deformation Based on VR Panoramic Technique

The results of deformation time series in the study area are usually expressed in radar
two-dimensional coordinates or roughly superimposed on local DEM, which is not intuitive, especially
when the displacement needs to be accurately projected onto specific objects in real scenes. Here, the
three-dimensional development engine Unity was used to make the landslide deformation panorama
and Web release according to the procedure in Section 2.2. Figure 11 shows the deformation panoramas
of four important time events.
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photographs taken by the Dajiang Elves UAV.

As seen from Figure 9, the whole slope remained relatively stable before 27 September 2017.
However, affected by several successive heavy rainfalls after 28 September 2017, the Liusha Peninsula
slope showed obvious sliding. The deformation of the upper part was small, but the displacement of
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the bottom of the slope reached 20 mm. Note that the bridge and the peninsula community located
in the center and at the top of the slope, respectively, remained relatively stable during the whole
observation period.

Furthermore, T2 and T3, with good quality of GPS observation data from 10:00 to 16:50, and 71
corresponding GB-SAR images were selected to compare their vertical displacement time series from
the view of an individual point (Figure 12). The two stations were 50 m apart. Therefore, they showed
the same trend of deformation in the six-hour observation and their cumulative displacements were less
than 4 mm. However, due to the limitation of centimeter-level processing accuracy of high-frequency
GPS, the displacements of the two stations were mostly constrained between 15 mm and –15 mm,
which made it difficult to quantitatively compare the two types of displacements one by one, especially
for the slowly deformed area around the Liusha Peninsula landslide.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 18 
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and GPS measurement.

4.2. Modal Parameters Extraction and Cross-Validation

Accurate identification of the first several resonance frequencies of bridge under natural
environment excitation is considerably important to support and update numerical models or preventive
diagnostic analyses [24]. With a relatively small structure rigidity of the long-span cable-stayed bridge,
its natural frequencies of first several orders are low, generally at 0.1–5 Hz [45,47,48]. Therefore, the
10 Hz-GPS and 17 Hz-IBIS-S data sampling rates ensure the full extraction of natural frequencies. In
this paper, the acquisition records of 2000 s and 3600 s corresponding to IBIS-S radar and the GPS
receivers, respectively, were processed to extract the bridge’s modal parameters using the EFDD
method embed in ARTeMIS® (see Figures 9 and 10). Meanwhile, for the natural frequency, we used a
hybrid optimization method (SQP-GA) that combined the genetic algorithm with sequential quadratic
programming [24] to probe the dynamic vibration characteristics of the bridge. Next, we compared
its vibration frequencies with results from the EFFD method (see Table 1). As seen from Figure 9,
Figure 10, and Table 1, the amplitudes of different measuring points in the same direction were different,
but the natural frequencies were basically the same. Compared with the more robust EFFD method,
the frequencies derived from SQP-GA method showed little discrepancy with the EFFD-derived
results, which indirectly proved the effectiveness of intelligent global search algorithm in extracting
the modal parameters of large structures. Moreover, compared with GPS in-situ measurement, the
radar measurement method can not only detect multiple point displacements at the same time, but
also detect higher order vibration frequencies of bridges due to its high sampling rates, such as 1.791
Hz, 2.681 Hz, 4.382 Hz, and 7.644 Hz (Figure 9).
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Table 1. Full-test results of the multi-frequency extraction of the two sensors based on the EFFD and
SQP-GA methods.

Direction Sensor Method Main Frequency (Hz)

vertical
GPS

EFFD – 0.2927 0.3801 –
SQP-GA – 0.2927 0.3724 –

GB-RAR
EFFD 0.23 0.2925 4.382 7.644

SQP-GA 0.2293 0.2921 4.212 7.402

Lateral GPS
EFFD 0.2293 – – –

SQP-GA 0.2291 – 0.35 –

Longitudinal GPS
EFFD – 0.2927 0.3561 –

SQP-GA – 0.2927 0.3721 –

In order to distinguish among bending and torsion modes during the frequency analysis of
the recorded data, there must be a phase reference between the data recorded on the upstream and
downstream side of the bridge. To this end, the radar must be installed on a platform that can
simultaneously illuminate the upstream and downstream decks of the bridge. However, it is not
always the case that this solution can be applied to all bridges, since the visibility of the objects located
on two sides is limited by the angular resolution of IBIS-S and the thickness and width of the bridge
deck. This is the exact case of the Wuhan Baishazhou Yangtze River Bridge. Therefore, we usde the
one-hour records with 12 channels of four GPS receivers (S012, S035, S029, and S023) to extract its
dynamic vibration parameters.

Figure 13 shows the identified vibration modes. The first lateral flexural mode shape was
symmetric, with a frequency of 0.217 Hz (Figure 13a), while the second and third recognition modes
(0.287 Hz and 0.38 Hz) involved the vertical bending of bridge decks constrained by the east and
west bridge towers. In this case, the third mode shape presented the same vibration characteristics
as the second mode but with low amplitude. Therefore, only the second mode shape (0.287 Hz) was
sketched here (Figure 13b). Figure 13c,d show the MAC correlation of the first three modes, in which
the self-power-spectrum correlations of each modes were strong but the cross-spectral correlation
were weak. However, affected by sampling rate (10 Hz) and kinematic processing accuracy (cm) of
GPS measurements, the higher modes involved torsional mode shape were not identified. However,
they were detected by IBIS-S with high sampling rate (17 Hz, and even more) and submillimeter
measurement accuracy (e.g., 1.791 Hz, 2.681 Hz, 4.382 Hz, and 7.644 Hz). In order to take full use
of these advantages of the GB-RAR technique—and therefore, in order to make full use of these
advantages of GB-RAR measurement to capture the vibration modes of bridges globally—we need to
consider the following problems in the next work: (1) By installing multiple corner reflectors on the
upstream and downstream of bridges, the deflection at different positions on both sides of the bridge
can be accurately recorded; (2) By setting up two IBIS-S systems underneath different positions of the
bridge, the true three-dimensional vibration characteristics of the bridge are extracted. Subsequently, it
is possible to extract multi-order mode shapes of bridge accurately and comprehensively based on the
high-precision three-dimensional deflection time series of a large amount of measuring bins located at
different positions of upstream and downstream bridge deck.
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5. Conclusions

Two case studies based on ground-based radar interferometry were described here, i.e., the
Liusha Peninsula landslide and Baishazhou Yangtze River Bridge, which confirmed the capability of
ground-based radar interferometer to detect the real-time rapid deformation field of landslide sectors
and completely operational modal parameters of bridges. For the Liusha Peninsula landslide, we
obtained the daily evolution time series of displacements, with a maximum cumulative displacement
of 20 mm in the 13-day observation period. The GPS observation provided a rough comparison
between the displacement derived by the noncontact and in-situ measurement, showing that the
vertical deformation trends of some specific points (T2, T3) were generally stable. Furthermore, the
displacement evolutions of the landslide were overlying on a spherical panorama images, which
enabled nonprofessionals to locate local deformation intuitively. For the Baishazhou Yangtze River
Bridge, the GB-RAR technique can not only extract lower natural frequencies, just as the results
derived from GPS (e.g., 0.23 Hz and 0.29 Hz), but can also detect higher natural frequencies (e.g.,
1.79 Hz, 2.68 Hz, 4.38 Hz, and 7.64 Hz), that may involve torsional modes not detected by the
GPS technique. The consistencies of frequency results derived from SVD-based EFFD method and
global optimization-based SQP-GA algorithm indicate the potentiality of using noncontact GB-RAR
technology to obtain accurate deflections and modal parameters of bridge under the operation state.

However, the GB-RAR technique only provided a 1-D LOS displacement and failed to capture the
lateral vibration of the bridge. To overcome this problem in future work, multiple corner reflectors
should be properly installed on the upstream and downstream decks of bridges. At least two GB-RAR
systems should be set up properly at a place where they can simultaneously illuminate the corner
reflectors mounted on the upstream and downstream decks of the bridge. Subsequently, it is possible
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to obtain precise 3-D deformation of different points located on the upstream and downstream deck
and implement the health monitoring of the bridge comprehensively.
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