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Abstract: Severe scintillations degrade the satellite signal intensity below the fade margin of satellite 
receivers thereby resulting in failure of communication, positioning, and navigational services. The 
performance of satellite receivers is obviously restricted by ionospheric scintillation effects, which 
may lead to signal degradation primarily due to the refraction, reflection, and scattering of radio 
signals. Thus, there is a need to develop an ionospheric scintillation detection and mitigation 
technique for robust satellite signal receivers. Hence, variational mode decomposition (VMD) is 
proposed. VMD addresses the problem of ionospheric scintillation effects on global navigation 
satellite system (GNSS) signals by extracting the noise from the radio signals in combination with 
multifractal detrended fluctuation analysis (MFDFA). MFDFA helps as a criterion designed to 
detect and distinguish the intrinsic mode functions (IMFs) into noisy (scintillated) and noise-free 
(non-scintillated) IMF signal components using the MFDFA threshold. The results of the proposed 
method are promising, reliable, and have the potential to mitigate ionospheric scintillation effects 
on both the synthetic (simulated) and real GNSS data obtained from Manado station (latitude 1.34° 
S and longitude 124.82° E), Indonesia. From the results, the effectiveness of VMD-MFDFA over 
complementary ensemble empirical mode decomposition with MFDFA (CEEMD-MFDFA) is an 
indication of better performance. 

Keywords: variational mode decomposition (VMD); Global Navigation Satellite System (GNSS); 
ionospheric scintillation; multifractal detrended fluctuation analysis (MFDFA); complementary 
ensemble empirical mode decomposition (CEEMD); satellite communication; radio signal 
propagation 

 

1. Introduction 

The accuracy of remote sensing, positioning, and timing information applications and the 
services of global navigation satellite and communication systems are restricted by ionospheric 
scintillation [1]. Ionospheric scintillation is a known predominant propagation impairment at L-band 
frequencies [2]. The existence of irregularities in the ionosphere distorts radio signals [3] as they pass 
through the ionosphere from a satellite in space, thereby leading to phase mixing, which creates 
refraction, reflection, and scattering [4]. It is important to note that the small- and large-scale 
ionospheric irregularities cause scintillations in the trans-ionospheric communication and navigation 
signals [5], depending on the time of the day [6], season, space weather activities, and geographical 
locations [7]. During the small-scale irregularities, the phase variation is usually small. However, the 
phase fluctuations are dominant and the radio signals become non-coherent during large-scale 
irregularities [8]. Amplitude and phase scintillations degrade the satellite communication [2] and 
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navigation system receivers tracking performance [9], which includes loss of lock and cycle slip [8]. 
In order to design and improve the positioning accuracy, navigation, availability and, timing 
information of advanced communication and global navigation satellite system (GNSS) receivers 
[10], the monitoring and mitigation of ionospheric scintillation effects is essential [11]. 

One of the prominent methods for denoising is wavelet filtering, and its implementation 
improves the Global Positioning System tracking loop performance during various ionospheric 
scintillation conditions [12]. However, it was revealed by the wavelet detrending technique that its 
transform performance depends on the mother wavelet [1] and the local features of the signals [13]. 
A recursive method, empirical mode decomposition (EMD) [8], has been proposed, which adaptively 
decomposes radio signals into a finite number of intrinsic mode functions (IMFs) and a residue [14]. 
EMD has been found suitable, as it uses a sifting process instead of a selection of mother wavelets. 
Nevertheless, EMD has a mode-mixing problem and a lack of mathematical theory that are within 
the confines of its sifting algorithm [15]. Ensemble empirical mode decomposition (EEMD) has 
overcome the drawbacks of EMD [16]. EMD was combined with detrended fluctuation analysis 
(DFA) to obtain a robust threshold and remove the noise components in the signal. Meanwhile, 
EMD’s performance is limited [17] by its sensitivity to sampling and noise [18]. Multifractal 
detrended fluctuation analysis (MFDFA) has been used to investigate medical and geophysics 
applications, such as self-similarities and long-range correlations in the signals [19]. 

Here, for the estimation and mitigation of ionospheric scintillation effects on a satellite signal, 
an adaptive time–frequency decomposition technique known as variational mode decomposition 
(VMD) was proposed. It is a non-recursive method and can adaptively extract the intrinsic modes 
from any non-linear and non-stationary signals concurrently [18]. In VMD, the Wiener filter estimates 
the center frequencies and bandwidth for each IMF to address the presence of noise adaptively [17]. 
It easily detects ionospheric effects and unstable signals [20] and uses an iterative search variational 
optimal solution to extract each IMF component [21]. The mode-mixing problem and communication 
influence have been resolved, as VMD effectively filters out noises with large intensity and other 
interferences simultaneously [22]. Many investigations, such as denoising of various noisy signals, 
biomedical images, seismic data acquisitions, and geophysical applications have been carried out 
using VMD [23]. The non-linear properties and complexity of random ionospheric irregularities are 
determined with this method. Besides, the harmonics in the scintillated GNSS signal are effectively 
decomposed too. In this paper, VMD in combination with MFDFA was able to estimate, mitigate, 
and re-acquire GNSS signals under the intensity of ionospheric scintillation effects. The results show 
that the performance of VMD-MFDFA alleviated the impact of ionospheric scintillation effects on the 
GNSS signal by choosing a robust threshold for different VMD IMFs to retrieve scintillation-free 
signals better than CEEMD in combination with the MFDFA method. A comparative analysis of the 
results obtained from the synthetic and real (at Manado station, Indonesia) S4 index data was 
conducted through which the efficiency and reliability of the proposed method of denoising were 
verified. Statistical tools, such as standard deviation (STD) and root mean square error (RMSE), were 
employed to accurately prove the effectiveness of VMD-MFDFA over the GNSS signal. 

This paper is organized as follows: Section 1 is the introduction; Section 2 discusses VMD as a 
denoising method and the MFDFA threshold; Section 3 highlights the merits and features of VMD; 
Section 4 shows the results of the proposed VMD-MFDFA method, comparison, and validation with 
other methods; Section 5 presents the discussion of results; and finally, Section 6 provides the 
conclusions, including the applications of the proposed method. 

2. Methodology  

In this section, VMD as a denoising tool and the multifractal detrended fluctuation analysis as a 
scaling exponent are discussed. Two scenarios are considered for scintillation index S4 data—the 
synthetic (simulated) data generated and the real data obtained from Manado receiving station, 
Indonesia. Meanwhile, the synthetic data are generated by 

4 1 S k rφ= ⋅ ⋅  (1) 
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where ( )( )2 2r filter I jQ= +  is the complex Gaussian random process, 1k  is the line of sight 

component 1 0k > , φ is the phase shift [-π, π], and I and Q  are the in-phase and quadrature 
components of the Gaussian process, respectively. 

2.1. Variational Mode Decomposition (VMD) 

The VMD method adaptively decomposes non-stationary signals into a series of components 
(modes) [18] of different scales according to the characteristics of the signal itself. It concurrently 
decomposes a given signal into an ensemble number of IMFs [18]. The IMFs are amplitude-
modulated–frequency-modulated (AM–FM) signals usually given as 

( ) ( ) ( )( ) cosn n nm t A t tφ=  (2) 

where ( )nm t IMF= , ( )tnA  signifies the non-negative envelope, and ( )n tφ  is the envelope phase. 
The function of VMD is to tackle and construct noise-free IMFs and discard any form of the 

variational problem of signals. Thus, the VMD decomposition process is specifically meant to tackle 
the fluctuation (variational) problem of signals due to obstacles and atmospheric disturbances. 
However, Wiener filtering, Hilbert transform, and frequency mixing remain the building blocks in 
signal processing and analysis. The signal (t)x  is adaptively split into an N discrete number of sub-
signals (IMFs) such that the optimal solution to the constrained variational model can be obtained. 
The center frequency and bandwidth for each IMF are determined through solving the variational 
model iteratively. First, solving the minimization problem with respect to the IMF (𝑚 ) and center 
frequency (𝜔 ) according to the following procedures is necessary: 

Step 1: Compute the analytic signal of the mode 𝑚  using Hilbert transform: 

( ) ( ), ( ) *n A n
jm t t m t
t

δ
π

 = + 
 

 (3) 

where ( )tδ denotes the Dirac distribution, * represents the convolution, and , ( )n Am t refers to the 

conversion of ( )nm t  into an analytical signal using Hilbert transform; 
Step 2: Mix each mode with an exponential adjustment to the respective estimated center 

frequency such that the mode spectrum, ,ˆ ( )n Am t , is shifted to baseband: 

( ) ( ),ˆ ( ) * nj t
n A n

jt t m t e
t

m ωδ
π

−  = + ⋅    
 (4) 

where nω  represents the center frequency of the nth IMF ( )nm t ; 

Step 3: Now, estimate the bandwidth of the demodulated signal [24] as shown below: 
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−

=

=

    ∂ + ⋅       
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 (5) 

where 1,  2,  ...,  n N= , N is the number of IMFs, and { } { }1: ,  ...,  n Nm m m=  and 

{ } { }1: ,  ...,  n Nω ω ω=  are the set of modes and their center frequencies, respectively; 
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Step 4: Next, introduce a quadratic penalty term, 𝛼, and a Lagrangian multiplier factor, 𝜆(𝑡), to 
ensure that the problem is unconstrained. The Lagrangian multipliers enforce constraints rigorously, 
while the quadratic penalty generally encourages reconstruction integrity. Hence, the augmented 
Lagrangian is given as 

{ } { } ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

1 1 2 12

, , * , ( )n

N N
j t

n n

N

nn
n n n

t n
jL m t t m t e x t m t
t

t x t m tωω λλ α δ
π

−

= = =

  = ∂ + ⋅ + − +   
−


   (6) 

Step 5: Apply the alternate direction method of multipliers (ADMM) in tackling the 
minimization problem to determine the deviation through the augmented Lagrangian expression by 
updating ( 1)k

nm
+ , ( 1)k

nω + , and ( 1)kλ +  in turns. 

2.2. Multifractal Detrended Fluctuation Analysis 

Non-stationary and non-linear signals can be adequately analyzed by a multifractal detrended 
fluctuation analysis (MFDFA) method. It is evident that it provides a better and more reliable scaling 
exponent, which denoise the signal based on the appropriate threshold [25]. MFDFA was discovered 
recently, it measures the correlation between two sample points in a time series, especially when the 
signal has non-stationary properties with different trends and an unknown duration [26]. Usually in 
the past, when there was almost no alternative, the Hurst exponent measured the strength of 
autocorrelation (𝛼) over an extended time series, with mild or wild randomness [27]. However, the 
Hurst exponent is not reliable nor suitable in the case of non-stationarities, as it causes spurious 
detection [28]. Hence, the adoption of MFDFA, which is considered more effective and computes the 
signal average root mean square (RMS) fluctuations. Its accuracy paves the way for its miscellaneous 
applications, such as the measurement of non-stationary heartbeat in order to sense pathological 
conditions [10]. The fluctuations of the signal can be comprehended as either small or large 
depending on the randomness of the non-stationary signal. The slope of the curve, known as the 
scaling exponent, describes both the correlated and uncorrelated signals. The value of 𝛼  for 
uncorrelated signals is given as 0.5; if it is greater than 0.5, it is said to be correlated, while less than 
0.5 is known as an anti-correlated signal [29]. The basic fundamental principle behind this method is 
the exploration of the long-term correlations of the non-linear and non-stationary time series to obtain 
local fluctuations by implementing the detrending process at different time scales. To do this, 
simplify the algorithm given that the average time series is 〈𝑥〉 as shown: 

( ) ( )
1

k

i

y k x i x
=

′ =  −    (7) 

where k = 1, 2, …., N and { }( ) 1,  2,  ...,  x i N= . If 
1

1 ( )N

i
x N x i

=
  =   represents the average of the 

time series in the range 1 to N while the integrated time series, ( )y k′ , is the satellite vehicle S4 index 
signal that is divided into n length segments. This ( )ny k′  represents the local trend. From Equation 
(7), the RMS fluctuation, F(n), is obtained by subtracting ( )ny k′  from the integrated series, ( )y k′ : 

( ) ( ) ( ) 2

1

1 N

n
k

F n y k y k
N =

= − ′ ′   . (8) 

Then, validate the power law: ( )F n nα∝  where F(n) is a function of time scale and provided thatα

is not greater than 1. The scaling exponent, ( )α , is the slope of the curve, which is calculated by

( )log ( ) log( )F n n and is otherwise known as the correlation exponent. If the S4 index values are 

uncorrelated, just as that of white noise, then 𝛼 takes the value of 0.5 [10]. The threshold is obtained 
from the summation of the noise slope and a confidential offset [10]. For signal reconstruction, the 
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scaling exponents above the threshold are considered. The reconstructed signal now serves as the 
noise-free version of the scintillated data. 

2.3. GNSS Signal Decomposition with VMD 

The principle of the VMD method contains the detail of the GNSS signal decomposition as 
follows: 

Step 1: Initialize { }1ˆ nm , { }1ˆnω , 1λ̂  and k = 0; 

Step 2: If 𝑘 = 𝑘 + 1, then update 𝑚  and 𝜔  as can be seen in Equations (9) and (10): 

( ) ( ) ( ) ( )
( )

1
2

ˆˆ ˆ / 2

1 2
ˆ

k k
ik i n

n k
n

x m
m

ω ω λ ω
ω

α ω ω
+ ≠

− +
=

+ −

  (9) 
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21

0

ˆ

ˆ

k
nk

n
k
n

m d

m d

ω ω ω
ω

ω ω

∞ +

+
∞ +

= 


 (10) 

where 𝑛 = 1, 2, 3, … ,𝑁; 
Step 3: Next, update 𝜆 

( ) ( )1 1

1

ˆ ˆ ˆ ˆ
N

k k k
n

n

x mλ λ τ ω ω+ +

=

 = + − 
 

  (11) 

where 𝜏 and ᶺ denote the time step of the dual ascent and Fourier transforms, respectively; 
Step 4: Iterate Steps 2 and 3 up to the time the convergence condition in Equation (12) is satisfied: 

21
2

1

2

2
1

ˆ ˆ

ˆ

N
k k
n n

n
N

k
n

n

m m

m
ε

+

=

=

−
<




 (12) 

where 0ε ≥  is the convergence tolerance. 
The VMD denoising is described in the flowchart shown in Figure 1. 
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Figure 1. The flowchart of variational mode decomposition (VMD) denoising. 

Meanwhile, CEEMD decomposes signals recursively into IMFs and is suitable mainly for a 
multicomponent signal whose modes are well separated in the time–frequency plane. However, 
VMD is more robust and sensitive to sampling and noise [24], as it can handle a multicomponent 
signal whose mode is very close and can detect and distinguish small and large-scale fluctuations 
[30]. When VMD and CEEMD are combined with MFDFA, the two methods improved, as MFDFA 
classifies the IMFs; although, combining with VMD gives better results than CEEMD because of its 
good internal mechanism [31]. 

The next stage involves the processing of each VMD IMF, ( )nm t , of the scintillated GNSS signal 
through the MFDFA. Being a scale analysis tool, the MFDFA differentiates the scintillated-free signal 
from the amplitude-scintillated GNSS signal. 

3. Merits and Features of VMD 

This section briefly discusses the merits and important features of VMD as a signal-processing 
method that can be applied in many signal-processing applications. 

3.1. VMD Reconfiguration of Signal 

When all the modes obtained due to decomposition by VMD are aggregated, such that they are 
equal to the input signal, then, the constraint condition is satisfied. It is confirmed theoretically by 
Equation (5) that the original signal can be reconstructed by IMFs. The synthetic and real data 
obtained from Manado station, Indonesia, demonstrated this feature that the signal decomposed by 
VMD is reconfigurable, as shown in Figure 2, in combination with detrended fluctuation analysis 



Remote Sens. 2019, 11, 2867 7 of 16 

 

(DFA). The slope of the DFA is 0.5 for the uncorrelated (scintillated) signal. Thus, the DFA values 
above 0.5 represent correlated (scintillated-free) signals. This means that IMFs 1 and 2 are correlated, 
while IMFs 3 to 8 are uncorrelated (Figure 2). Hence, IMFs 1 and 2 are the main signal, while IMFs 3 
to 8 are rejected and regarded as noise. 

(a) (b) 

Figure 2. The decomposed signal intrinsic mode functions (IMFs) of synthetic and real scintillation 
data using the VMD method: (a) synthetic scintillation data and (b) Manado station scintillation data.  

3.2. Signal Smoothing Filtering 

VMD has its own filtering characteristics. Both the synthetic and real signals are decomposed by 
VMD, which contains a random noise introduced to the signal. VMD makes a clear difference 
between the scintillated signal (noise) and the constructed signal (noise-free) when compared, as 
shown in Figures 3a (original scintillated signal) and 4a Panel 2 (IMF 1—noise-free). Fluctuation 
characteristics of the reconstructed signal are distinct (differentiable) in the time domain. It can be 
observed from VMD theory in Equation (9) that the quadratic penalty term, α, is in the denominator. 
Hence, when α increases, the bandwidth of each mode decreases, and then the spectrum becomes 
smooth, while the filtered and smoothed modal components are discarded as noise.  

3.3. VMD Adaptivity 

An advantage of VMD is that it decomposes signals without prior knowledge while in wavelet 
transform; the performance depends on the choice of the mother wavelet. VMD can decompose any 
signal into different IMFs agreeing with the information about the signal itself. Note that the IMFs 
correspond to the components of the different frequency range and center frequency in the signal. 
This refers to the adaptivity of the VMD method. 

3.4. Orthogonality of IMFs 

A series of modal components (IMFs) are obtained by VMD, where each modal component 
represents a feature of the original signal theoretically. In essence, the modal components are 
orthogonal to each other. Nevertheless, absolute orthogonality is impossible between any two IMFs 
in practice, due to the end effect and mode mixing. In other words, the end effect causes IMF data to 
diverge at both ends, thereby creating false components. It is a common occurrence in a shorter length 
signal. Mode mixing is caused by the sifting (filtering) process and may make IMFs lose their physical 
meaning, thereby producing spurious results or hindering the interpretation of the analysis of the 
results [32]. Practically, there is still mode mixing, whereas there is no mode mixing in and between 
the IMFs theoretically. 
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4. Experimental Results 

The performance of GNSS receivers under the influence of ionospheric scintillation effects was 
analyzed using a time–frequency method known as VMD in combination with MFDFA. The data 
used were categorized into the synthetic (scintillated) data generated from the simulated in-phase (I) 
and quadrature (Q) accumulations with a very high S4 index value. The GNSS Ionospheric 
Scintillation and TEC Monitor (GISTM) recorded the real data at Manado station, Indonesia, that 
were used for validating this model. 

4.1. Signal Decomposition Analysis 

Figure 3a shows the synthetic (scintillated) signal generated from the simulated data, while 
Figure 3b depicts the ionospheric disturbances that occurred in 2013 at Manado station, Indonesia, 
where different pseudo-random numbers (PRNs) are evaluated by the proposed adaptive 
decomposition scheme to determine the amount of noise or error introduced to the GNSS signal and 
are then mitigated. 

(a) (b) 
Figure 3. Ionospheric amplitude scintillation of synthetic and real scintillation data: (a) synthetic 
scintillation data and (b) Manado station scintillation data. PRN—pseudo-random number; UTC—
coordinated universal time. 

On 10 April 2013, at Manado station, the intensity of the ionospheric disturbance was observed 
with PRN 23 and seen to be severely affected due to ionospheric scintillations. The GISTM S4 index 
data, whose angles of elevation were above 30°, were considered to avoid capturing the effect of 
multipath. It has been experimentally observed to have possible values of 40 1S< < and 
occasionally slightly above 1 at extreme (worst) conditions, as in this case. The simulation results of 
the experimental analysis after applying VMD are displayed and compared with that of real data. 

The signal interference was due to ionospheric scintillation, which was as high as 1.3 (from 
Figure 3b. The VMD and CEEMD methods were applied to the synthetic and the real S4 index signal 
with PRN 23 (10 April 2013). This was done to estimate and mitigate the effect of scintillation (noise), 
as shown in Figures 4 and 5, respectively. VMD adaptively breaks the scintillated (synthetic and real) 
signal into a series of modes with different scales, and thereafter each of the modes (IMFs) are 
classified by MFDFA. 
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(a) 

 
(b) 

Figure 4. Decomposition of synthetic data into IMFs using VMD and CEEMD methods: (a) VMD 
method and (b) CEEMD method. 

 

(a) (b) 

Figure 5. Decomposition of Manado real data into IMFs using VMD and CEEMD methods: (a) VMD 
method and (b) CEEMD method. 

In Figures 4 and 5, Panel 1 represents the severe scintillation time series of the original signal, 
while Panels 2 to 8 show the generated IMFs (sub-signal) by VMD and CEEMD. From observation, 
the IMFs with high-frequency oscillations signify the scintillation effects (noise) while those with low-
frequency oscillations are the real signal components (scintillation-free). The eight IMFs resolution 
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obtained by VMD is unique and better than the eight IMFs of CEEMD, depicted in Figures 4 and 5. 
Taking advantage of the band-limited characteristics of VMD, the IMFs were obtained concurrently 
rather than recursively. The high robustness of the VMD method to sampling and noise enabled its 
IMFs to extract sensitive intrinsic spikes better than the IMFs of CEEMD for the period of signal 
ionospheric scintillation interference.  

The synthetic S4 index signal values at 6 s, 11 s, and 54 s were 1.64, 1.62, and 1.76 (see Figure 4a), 
while at 13:47, 14:04, and 14:35 (coordinated universal time (UTC)) they were 1.3, 1.2, and 1.1, 
respectively, indicating the presence of severe ionospheric scintillation. This greatly affected the 
GNSS signal by introducing error, thereby reducing the signal strength (carrier to noise ratio) and 
integrity (accuracy) as depicted in Figure 3. VMD has been able to interpret even the small 
fluctuations of amplitude scintillation data adaptively and more efficiently than CEEMD. The Wiener 
filter structure and alternate direction method of multipliers (ADMM) are embedded in VMD and as 
such update the VMD IMFs directly in the Fourier domain [18]. It has been reported that low-
frequency components signify GNSS signal information, whereas high-frequency components are 
considered to be noise [33]. It was noted that the frequency of the signal components (IMFs) decreased 
from IMF 1 to IMF 8 in CEEMD and vice versa in VMD (as shown in Figures 4 and 5). 

4.2. Signal Reconfiguration Analysis 

The detection of ionospheric scintillation features from the IMFs, however, is a decision criterion 
of the binary source. Therefore, MFDFA was chosen as the binary hypothesis technique so that a 
robust threshold for better identification of noisy IMFs could be established for CEEMD and VMD. 
At the same time, MFDFA was chosen for its superiority and efficiency as a criterion, shown in Figure 
6, when combined with VMD and CEEMD. 

(a) (b) 

Figure 6. Multifractal detrended fluctuation analysis (MFDFA) threshold for the decomposed IMFs 
of synthetic and real scintillation data using CEEMD and VMD methods: (a) synthetic scintillation 
data and (b) Manado station scintillation data. 

 
MFDFA presents different thresholds for the various IMFs obtained from the VMD and CEEMD 

methods. The MFDFA threshold has been chosen to be 0.5, provided the scintillation noise is 
considered as white noise [26]. This then means that the decision output for the MFDFA threshold 
below 0.5 indicates irregular features in the GNSS signal due to ionospheric scintillations, while any 
threshold value above 0.5 signifies the scintillation-free GNSS signal. Figure 6 depicts the threshold 
values of MFDFA that distinguish the noisy IMFs and scintillation-free IMFs for the CEEMD and 
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VMD methods. It was observed that the MFDFA threshold values were in an ascending phase from 
lower-order IMFs to higher-order IMFs for CEEMD IMFs, while in the case of VMD IMFs, they were 
in descending order. 

Hence, this means that the frequency of each IMF in CEEMD decreases as the scaling exponent 
increases, whereas it is the opposite in VMD. VMD is very effective in addressing scintillation noise 
and ensures MFDFA efficiently detects noisy IMFs. It is thus clear, as seen in Figure 6a (synthetic 
data), that IMFs 1 and 2 of VMD and IMFs 3, 4, 5, 6, 7, and 8 of CEEMD had their MFDFA threshold 
above 0.5 (representing the main signal). A similar situation is found in Figure 6b for the real data 
analysis. Hence, IMFs 1 and 2 of VMD and IMFs 3, 4, 5, 6, 7, and 8 of CEEMD provided the 
reconstruction of a scintillation-free amplitude radio signal. Thus, the last IMFs were selected to 
reconstruct the filtered signal for CEEMD-based denoising, while front IMFs were chosen for VMD-
based denoising [17]. IMFs 1 and 2 of CEEMD and IMFs 3, 4, 5, 6, 7, and 8 of VMD were rejected 
because of their high-frequency components. 

(a) (b) 

Figure 7. Performance comparison of VMD-DFA, CEEMD-MFDFA and VMD-MFDFA methods on 
amplitude scintillation: (a) synthetic scintillation data and (b) Manado station scintillation data. 

4.3. Signal Denoising 

Figure 7 shows the efficient comparison of the CEEMD- and VMD-MFDFA denoising methods 
in eliminating the scintillation components from synthetic and real data, while Figure 8 shows more 
detailed information, which includes the denoised signal and the eliminated noise components. In 
other words, Figure 8 depicts the robust denoising performance of VMD-MFDFA in estimating and 
mitigating the scintillation noise much better than CEEMD-MFDFA, having significantly enhanced 
and improved the signal. The values of the ionospheric scintillation index measured in the GNSS 
signal by GISTM receivers observed at 13:47, 14:04, and 14:35 (UTC) were 1.3, 1.2, and 1.1, indicating 
high trans-ionospheric GNSS signal irregularities. However, after being denoised by VMD-MFDFA, 
which filtered out (reduced) the noisy components, the values were 0.58, 0.75, and 0.62, respectively. 
With the S4 index values being very high and having a serious negative impact on the radio signal, 
they were also reduced by CEEMD-MFDFA to 0.67, 0.78, and 0.71, respectively. In a similar manner, 
VMD-MFDFA denoised the synthetic scintillated signal from 1.64, 1.62, and 1.76 to 0.65, 0.56, and 
0.74 at 6 s, 11 s, and 54 s, respectively, whereas CEEMD-MFDFA denoised them to 1.12, 1.04, and 
0.95, respectively.  
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Figure 8. GNSS signal amplitude scintillation denoising with VMD-DFA, CEEMD-MFDFA and VMD-
MFDFA. 

5. Discussion 

Tables 1 and 2 show the values of the simulated scintillation and the real ionospheric scintillation 
of the actual and denoised S4 index using VMD and CEEMD in combination with MFDFA and DFA 
methods. The real data were obtained from the GISTM receiver on PRN 23, 10 April 2013.  

Table 1. Synthetic scintillation index values before and after denoising. 

Time (s) 
Before denoising After denoising 

S4 CEEMD-MFDFA VMD-DFA VMD-MFDFA 

6 1.64 1.12 1.01 0.65 

11 1.62 1.04 0.80 0.56 

54 1.76 0.95 0.82 0.74 

Table 2. Ionospheric scintillation index values for PRN 23, 10 April 2013, before and after denoising. 

UTC time  

(hh:mm) 

Before denoising 

(S4) 

After denoising 

CEEMD-MFDFA VMD-DFA VMD-MFDFA 

13:47 1.3 0.67 0.62 0.58 

14:04 1.2 0.80 0.78 0.75 

14:35 1.1 0.71 0.66 0.62 
 
From observation, VMD-MFDFA performance was the best and most effective when compared 

to other methods, according to Tables 1 and 2. It is apparent that the denoising performance of VMD-
MFDFA was superior, having the lowest values of the S4 index. This method essentially denoised 
synthetic scintillation from 1.64, 1.62, and 1.76 to 0.65, 0.56, and 0.74 and the real ionospheric 
scintillation from 1.3, 1.2, and 1.1 to 0.58, 0.75, and 0.62—the best results. 
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In addition, to better analyze and evaluate the performance of VMD-MFDFA and compared 
with the CEEMD-MFDFA method, the root mean square error (RMSE) was used as a measure, and 
the results are clearly depicted in Figure 9a, b for synthetic and real data, respectively. 

(a) (b) 

Figure 9. Performance evaluation comparison of CEEMD-MFDFA and VMD-MFDFA methods for 
synthetic and real data: (a) synthetic scintillation data and (b) Manado station scintillation data. 

Table 3. Performance evaluation of VMD-MFDFA for synthetic and real data. 

  Before 
denoising 

After denoising 

   CEEMD-
MFDFA 

VMD-DFA VMD-
MFDFA 

Data PRN STD RMSE STD RMSE STD RMSE STD RMSE 
Syn. data  0.23 0.48 0.21 0.46 0.20 0.45 0.17 0.43 

10 April 2013 23 0.23 0.13 0.21 0.11 0.19 0.10 0.17 0.09 

26 September 

2013 

12 0.24 0.10 0.22 0.08 0.20 0.07 0.10 0.05 

12 October 2013 29 0.13 0.05 0.11 0.03 0.10 0.02 0.09 0.01 

Table 4. Statistical performance evaluation for VMD-MFDFA method using Monte Carlos (MC) 
simulation. 

Method 50 MC runs 100 MC runs 150 MC runs 200 MC runs 
Min Max Mean Min Max Mean Min Max Mean Min Max Mean 

CEEMD-
MFDFA 0.20 0.28 0.25 0.20 0.31 0.25 0.19 0.32 0.24 0.21 0.33 0.33 

VMD-DFA 0.19 0.27 0.24 0.17 0.27 0.23 0.16 0.26 0.22 0.16 0.25 0.21 
VMD-

MFDFA 0.16 0.24 0.22 0.14 0.23 0.21 0.14 0.22 0.21 0.12 0.21 0.20 

 
Using the RMSE scenario and the standard deviation with synthetic and different PRNs for real 

data, Table 3 shows that the proposed VMD-MFDFA method outperformed the other methods. 
Further, analysis and evaluation of the proposed method (VMD-MFDFA) on synthetic data were 
carried out using the Monte Carlos simulation. The 50, 100, 150, and 200 Monte Carlos runs for the 
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minimum, maximum, and average values of RMSE performance are tabulated as shown in Table 4. 
The average value of the RMSE was 0.20 (for 200 Monte Carlos runs) for the proposed method (VMD-
MFDFA) which was less than for CEEMD-MFDFA (0.33) for the 200 Monte Carlos runs. The 
maximum and minimum values of the RMSE also depicted clearly that VMD-MFDFA was better 
(low RMSE) than the CEEMD-MFDFA method for the 200 Monte Carlos runs. Thus, it is evident that 
VMD-MFDFA is more robust and efficient than the CEEMD-MFDFA method. 

6. Conclusions 

Ionospheric scintillation contributes significantly to the GNSS positioning errors in many ways. 
It introduces ranging errors along with each scintillating GNSS receiver link and degrades the 
effective GNSS constellation geometry, resulting in the intermittent availability of GNSS. Therefore, 
the primary purpose of this research was to use an advanced and adaptive non-recursive signal 
decomposition method in combination with multifractal detrended fluctuation analysis for the 
estimation and mitigation of ionospheric scintillation effects on the GNSS signal, including synthetic 
(simulated) data. 

The denoising performance of VMD-MFDFA and other methods were analyzed and compared 
using the GNSS data recorded at Manado, Indonesia, and synthetic data. The results from the VMD-
MFDFA-based approach showed that the RMSE and the STD accuracy significantly improved after 
denoising, and thus we conclude it to be more viable and efficacious than the CEEMD-MFDFA 
method. It was observed that the ionospheric irregularities identified are mitigated by the proposed 
method for different PRNs. The mitigation of ionospheric scintillation directly improves the signal 
strength (carrier to noise ratio). Therefore, VMD-MFDFA is better employed, as its effectiveness in 
accurately separating noise components regardless of the closeness of the frequency components in 
the amplitude-scintillated signal is certain. The proposed VMD-MFDFA method produced a 
satisfactorily denoised ionospheric scintillated signal from the experimental analysis in this research. 
Hence, VMD-MFDFA is a more efficient and suitable decomposition technique in estimating and 
mitigating the effect of ionospheric scintillation on satellite signals. The satellite positioning accuracy 
also improved after completing the whole GNSS data processing with the proposed method. The 
achievements will be of great help to space engineers, scientists, and many organizations that make 
use of space. It broadens the understanding of and proffers a solution to the morphology of non-
linear ionospheric irregularities. 
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