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Abstract: Landslides are among the most harmful natural hazards for human beings. This study
aims to delineate landslide hazard zones in the Darjeeling and Kalimpong districts of West Bengal,
India using a novel ensemble approach combining the weight-of-evidence (WofE) and support
vector machine (SVM) techniques with remote sensing datasets and geographic information systems
(GIS). The study area currently faces severe landslide problems, causing fatalities and losses of
property. In the present study, the landslide inventory database was prepared using Google Earth
imagery, and a field investigation carried out with a global positioning system (GPS). Of the
326 landslides in the inventory, 98 landslides (30%) were used for validation, and 228 landslides (70%)
were used for modeling purposes. The landslide conditioning factors of elevation, rainfall, slope,
aspect, geomorphology, geology, soil texture, land use/land cover (LULC), normalized differential
vegetation index (NDVI), topographic wetness index (TWI), sediment transportation index (STI),
stream power index (SPI), and seismic zone maps were used as independent variables in the modeling
process. The weight-of-evidence and SVM techniques were ensembled and used to prepare landslide
susceptibility maps (LSMs) with the help of remote sensing (RS) data and geographical information
systems (GIS). The landslide susceptibility maps (LSMs) were then classified into four classes; namely,
low, medium, high, and very high susceptibility to landslide occurrence, using the natural breaks
classification methods in the GIS environment. The very high susceptibility zones produced by
these ensemble models cover an area of 630 km2 (WofE& RBF-SVM), 474 km2 (WofE& Linear-SVM),
501km2 (WofE& Polynomial-SVM), and 498 km2 (WofE& Sigmoid-SVM), respectively, of a total area
of 3914 km2. The results of our study were validated using the receiver operating characteristic (ROC)
curve and quality sum (Qs) methods. The area under the curve (AUC) values of the ensemble WofE&
RBF-SVM, WofE & Linear-SVM, WofE & Polynomial-SVM, and WofE & Sigmoid-SVM models are
87%, 90%, 88%, and 85%, respectively, which indicates they are very good models for identifying
landslide hazard zones. As per the results of both validation methods, the WofE & Linear-SVM model
is more accurate than the other ensemble models. The results obtained from this study using our new
ensemble methods can provide proper and significant information to decision-makers and policy
planners in the landslide-prone areas of these districts.
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1. Introduction

Mountainous regions are threatened by the common natural disaster of landslides. Like hurricanes,
floods, droughts, earthquakes, soil erosion, and tsunamis, landslides are important environmental
disasters which cause damage and destruction to residential areas, roads, agricultural fields, gardens,
and grasslands. Spatially predicting landslide-prone areas may play an important role in disaster
management, and it can be considered the standard tool for decision-making in different areas [1].
In geological engineering, landslides are defined as the downward movement of material mass on a
slope [2]. Worldwide, mountainous areas are profoundly affected by landslides due to the instability
of slopes and masses [3]. For example, the Indian Himalayan mountain regions such as Jammu
& Kasmir, Himachal Himalaya, Kumayun, Darjeeling, Sikkim, and north-eastern hilly regions are
severely affected by landslides [4]. In the Darjeeling Himalayan region, landslides have a severe
environmental impact on socio-economic development. Every year the Darjeeling and Kalimpong
districts are frequently heated by landslides due to heavy monsoon rainfall and seismic activity [5].
During July–August in 1993, May in 2009, and September in 2011, the Darjeeling and Kalimpong
districts were severely affected by extreme landslides [6]. Furthermore, some major towns in these
districts, such as Darjeeling, Mirik, Kurseong, and Kalimpong were hit by landslides during June–July
in 2015 due to heavy rainfall, causing fatalities and damage to properties. Therefore, it is necessary to
address the landslide risk faced by this particular region to reduce the impact of this environmental
disaster. Information regarding the magnitude, character, and probability of landslides can be used to
reduce the impact of landslide hazards and for sustainable environmental development and future
planning [7]. Therefore, landslide potentiality zoning is an important step for sustainable land
management, not only for this particular region but also for other mountainous regions all over the
world. The chance of landslide occurrence depends on various conditioning factors rather than a single
factor. For preparing the landslide susceptibility map, two things are important: Firstly, landslide
inventory data which is considered the dependent variable, and, secondly, landslide conditioning
factors which are considered independent variables. In this study, the landslide inventory map was
prepared using data collected from Google Earth imagery, a global positioning system (GPS), and
extensive field investigations. The landslide conditioning factors or environmental factors, such as
slope, aspect, altitude, curvature, geology, soil, land use, normalized differential vegetation index
(NDVI), distance from drainage, distance from fault, distance from road, topographic wetness index
(TWI), and stream power index (SPI) were selected based on the findings of previous literature
(Yilmaz [8], Abedini et al. [9], Regmi et al. [10], Chawla et al. [11], Shahabi and hasim [12], Roy and
Saha [13], Pradhan [14], Pourghasemi et al. [15], Pham et al. [16], and Goetz et al. [17]). The landslide
inventory data and aforementioned landslide conditioning factors were used to prepare the LSMs
with the help of the remote sensing data (RS) and geographical information systems (GIS). Nowadays,
most researchers argue that machine learning algorithms using remote sensing and geographical
information systems are reliable and appropriate methods for assessing landslide hazards. During
recent decades, many studies on landslide susceptibility mapping have been conducted in various parts
of the world. Researchers have applied different approaches to produce landslide susceptibility maps,
such as statistical models, probabilistic models, knowledge-driven models, and machine learning
models using geographical information systems and remote sensing techniques like the analytical
hierarchy process (AHP) and bivariate statistics [9,18], logistic regression (LR), artificial neural networks
(ANN), frequency ratio (FR), naive bayes classifier, auto logistic modeling, static methods, multivariate
adaptive regression, two-class kernel logistic regression, SVM, artificial neural network kernel, logistic
regression and logistic tree, random forest, and decision tree methods [19]. Ensemble techniques have
been shown to achieve better results than a single method. In this article, WofE was ensembled with
four kernels (radial basis function (RBF), linear kernel, polynomial kernel, and sigmoid kernel) of
SVM to predict probable landslide hazard areas and for a comparison of the results. The Darjeeling
and Kalimpong districts are parts of the eastern Himalayan region in India. Both districts are mostly
covered in hilly terrain. Every year, these districts are affected by landslides, which cause destruction
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to the roads, residential areas, tea gardens, and forests, leading to numerous fatalities. Therefore,
these regions were selected as the study area to raise awareness among the public and government so
necessary steps can be taken to mitigate the landslide hazard.

2. Materials and Methods

2.1. Study Area

The Darjeeling and Kalimpong districts are situated in the eastern Himalaya region of India and
are mainly covered in hilly and rugged mountainous terrain. Combinedly, these districts cover an area
of 3914 square km. The research site is bounded within the 26◦27” to 27◦13”N latitudes and 87◦59”E to
88◦53”E longitudes (Figure 1). The altitude of the study area ranges from 15 m to 3602 m above the
mean sea level. Climatically, the region is influenced by the south-west and north-east Indian monsoon.
The summer season is very wet, and the winter season is dry and cold. The temperature of this
region can drop close to zero degrees. According to the Indian metrological department, the rainfall of
this region ranges from 1877 mm to 2333 mm. Geologically, the region is composed of Precambrian
(Darjeeling gneiss, Daling series), Permian (Damuda series), Miocene (Swaliks), and recent Pleistocene
(Alluvium) lithologies, as shown in Table 1 [20]. The Gorubathan and Rangamati surface are tectonic
landscape of these regions. The majority of the study area is covered in Triassic rock. Regarding
its geomorphology, the research site is composed of active flood plain, alluvial plain, folded ridge,
highly dissected hill slope, intermontane valley, and piedmont fan plain [11]. Pedologically, the region
is characterized by various soil texture classes; namely, gravelly-loamy, fine-loamy to coarse-loamy,
gravelly-loamy to loamy skeletal, and gravelly-loamy to coarse-loamy [21]. Several rivers—namely,
the Mahananda, Tista, Mechi, Balason, Jaldhaka, Rammam and Rangit—flow across these districts
originating in the mountainous areas. The Darjeeling and Kalimpong districts are famous for national
and international tourism. Some attractive tourist places in these regions are Tiger Hill, Rock Garden,
Mahakal Temple, Dhirdham Temple, Batasia Loop, Ghoom Monastery, and Happy Valley Tea Garden.
The major economic activities of these regions are tea plantation, horticulture, and tourism. The
healthy and tasty tea of this region is famous worldwide. Siliguri, Darjeeling, and Kalimpong are the
major towns and headquarters within our study area. the total population comprises 18,46,823 people,
of which 50.75 % are males, and 49.25% are females. The population density of the research site is
586 people/km2, which is comparatively higher than the mean Indian population density [22]. The
length of the national highway, state highway, and other main district highway has increased from 100
to 111 km, 80 to 191 km, and 37 to 79 km from 2001 to 2011. Different cultural communities are present
in the study area, such as Nepali, Lepcha, Bhutia, and Rai.

Table 1. Geological successions of Darjeeling Himalaya.

Age Series Lithological Characteristics

Recent
(Holocene)
Pleistocene

Sub-aerial formations
(soil, alluvia, colluvial)

Raised Terraces

Younger flood plain deposits of the rivers composed of sand, gravel,
pebble, etc. and soil covering the rocks sandy, clay, gravel, pebble,

boulders etc. representing older fluvial deposits

Miocene Siwalik Micaceous sandstones with slaty bands, seams of graphitic coal, silts
and minor bands of limestone

Permian Damuda Series (Lower
Gondwana)

Quartzitic sandstones with slaty bands, carbonaceous shales, seams
of graphitic coal, lamprophyre sills and minor bands of limestone

Precambrian 1) Darjeeling gneiss
2) Daling gneiss

Golden-silvery micaschists; Carbonaceousmicaschists;
Granatiferousmicaschists and coarse grained gneisses. Slates

(greenish to grey with perfect slaty cleavage). Phyllites surrounded
by pebbles of quartz, Chlorite-schists with bands of grilty schist’s
injected with gneiss (crinkled). Granites, pagmatites’s and quartz

veins, with tourmaline and iron as accessories

Source: Mallet (50); Gansser, (51); Pawde and Saha, (52).
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Figure 1. Study area and landslide location map.

2.2. Methodology

The methodology of the present study is depicted in Figure 2. The flowchart is divided into four
main steps, as follows. Step 1: Data used: here, the landslide inventory map (LIM) and landslide
conditioning factors (LCFs) data layers were prepared. Step 2: Multicollinearity analysis of landslide
conditioning factors was carried out. Step 3: New ensembles of weight-of-evidence (WofE) and SVM
models were applied to prepare the landslide susceptibility maps (LSMs). Step 4: LSMs were validated
using the receiver operating characteristics (ROC) and quality sum (Qs) methods to measure the
capability of the models and identify the best suitable model.



Remote Sens. 2019, 11, 2866 5 of 28

Remote Sens. 2019, 10, x FOR PEER REVIEW  5 of 27 

 

Source: Mallet (50); Gansser, (51); Pawde and Saha, (52) . 

2.2. Methodology 

The methodology of the present study is depicted in Figure 2. The flowchart is divided into four 
main steps, as follows. Step 1: Data used: here, the landslide inventory map (LIM) and landslide 
conditioning factors (LCFs) data layers were prepared. Step 2: Multicollinearity analysis of landslide 
conditioning factors was carried out. Step 3: New ensembles of weight-of-evidence (WofE) and SVM 
models were applied to prepare the landslide susceptibility maps (LSMs). Step 4: LSMs were 
validated using the receiver operating characteristics (ROC) and quality sum (Qs) methods to 
measure the capability of the models and identify the best suitable model. 

 
Figure 2. Methodological flowchart of the present work. 

2.3. Data Preparation 

2.3.1. Landslide Inventory Dataset 

It is vital to analyze the landslide distribution and landslide conditioning factors to determine 
which areas are most at risk of landslide occurrence. The landslide inventory map (LIM) is an 
important part of the evaluation and assessment of landslide hazards and risks. Some researchers 

Figure 2. Methodological flowchart of the present work.

2.3. Data Preparation

2.3.1. Landslide Inventory Dataset

It is vital to analyze the landslide distribution and landslide conditioning factors to determine
which areas are most at risk of landslide occurrence. The landslide inventory map (LIM) is an important
part of the evaluation and assessment of landslide hazards and risks. Some researchers have used
landslide inventory datasets for landslide susceptibility mapping [8–17,23]. In the present study, a total
of 326 landslides were identified through extensive field investigations using a global positing system
(GPS) and Google Earth imagery. Out of 326 landslides, 228 (70%) landslides were chosen randomly
for landslide modeling purposes, and 98 (30%) landslides were used to validate the prepared landslide
susceptibility maps. The landslide inventory map (LIM) was prepared in a GIS environment and is
shown in Figure 1. Field photographs of some landslides in the study area are shown in Figure 3.
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Figure 3. Field photographs of some landslides in the study area. (a) Sikkim-Kalimpong
road (27◦03′20”N, 88◦26′03”E) (b) Sevokekalimandir (26◦54′01”N, 88◦28′18”E). (c) Lish catchment
(26◦57′N, 88◦30′17”E). (d) Darjeeling road (26◦54′33”N, 88◦17′10”E). (e) Pagla Jhora (26◦52′47.70”N,
88◦18′11.24”E). (f) Sevoke Road (26◦54′33”N, 88◦28′04”E).

2.3.2. Preparing Effective Factors

Landslides are processes of mass movement under the influence of different effective factors.
Accordingly, it is essential to analyze the conditions of the selected factors to assess landslide
susceptibility. The topographic (altitude, slope, aspect), climatic (rainfall), lithological (geology,
distance from lineament), hydro-morphological (geomorphology, distance from river, sediment
transportation index, stream power index, topographic wetness index), land use, vegetation index,
soil texture physical properties, and earthquake intensity are the major effective factors responsible
for landslides in general. Previous studies, including Yilmaz [8], Abedini et al. [9], Regmi et al. [10],
Chawla et al. [11], Shahabi et al. [12], Roy and Saha [13], Pradhan [14], Pourghasemi et al. [15],
Pham et al. [16], and Goetz et al. [17] used these effective factors for landslide susceptibility mapping.
In the present study, rainfall (Figure 4d), elevation (Figure 4a), slope (Figure 4b), aspect (Figure 4c),
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geology (Figure 4e), soil texture (Figure 4f), distance from river (Figure 4 g) distance from lineament
(Figure 4h), distance from road (Figure 4k), geomorphology (Figure 4o), land use/land cover (Figure 4i),
normalized differential vegetation index (Figure 4j), topographic wetness index (Figure 4l), sediment
transportation index (Figure 4n), stream power index (Figure 4m), and seismic zone (Figure 4p) maps
were used to delineate the landslide susceptibility area. Different techniques, which are mentioned
in Table 2, were used to prepare the thematic layers of these effective factors. A DEM with a spatial
resolution of 30m* 30m was selected to prepare the landslide susceptibility maps, and all of the
parameters with scales greater or lesser than the DEM were resampled into 30m*30m resolution.

Slope is one of the main landslide conditioning factors. The spatial distribution of slope ranges
from 0 to 89 degrees (Figure 4b). The aspect (Figure 4c) was classified into ten categories, i.e. flat
(−1), north (0–22.5; 337.5–360), northeast (22.5–67.5), east (67.5–112.5), southeast (112.5–157.5), south
(157.5–202.5), southwest (202.5–247.5), west (247.5–292.5), north-west (292.25–337.5). The altitude of
the study area ranges from 15 m to 3602 m above mean sea level (Figure 4a). The spatial distribution
of average rainfall ranges from 1877 mm to 2333 mm (Figure 4d). The geological map was obtained
from the geological survey of India. The river buffer map was classified into five classes, based on
the distance from the river, using the natural breaks classification method. The maximum distance
from the river in this study area is 4.33 km (Figure 4g). Similarly, the maximum distances from the
road and lineament are 16.4 km (Figure 4k) and 10 km (Figure 4h), respectively. The land use of this
study area was classified into five categories; namely, water bodies, settlement, vegetation, tea gardens,
fallow land, and agricultural land (Figure 4i). The NDVI values range from −0.072 to 0.432 (Figure 4j).
The topographic wetness index (TWI) value of the study area ranges from 1.95 to 18.41 (Figure 4l).
Geomorphologically, the research area consists of active flood plain, alluvial plain, folded ridge, highly
dissected hill slope, inter mountain valley, and piedmont fan plain (Figure 4o). The seismic map of the
study area was classified into two categories; namely, moderate and high seismic zones. The values of
the moderate risk zone range from 3 to 5 on the Richter scale, while values above 5 on the Richter scale
characterize the high seismic prone areas (Figure 4p). The spatial value of STI ranges from 0 to 203
(Figure 4n). The value of SPI in the study area ranges from −11.0 to 7.81 (Figure 4m).

The elevation, slope, aspect, rainfall, normalized differential vegetation index (NDVI), topographic
wetness index (TWI), stream power index (SPI), and sediment transportation index (STI) factors were
classified into five sub-layers using the natural breaks classification method in a GIS environment
(Figure 4). The land use/land cover (LULC) was determined by the maximum likelihood classification
method (Figure 4). The geology, soil texture, geomorphology, and seismic zone maps were categorized
into different sub-layers using a general classification technique in a GIS environment (Figure 4).
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Figure 4. Landslide conditioning factors - a. elevation, b. slope, c. aspect, d. rainfall, e. geology, f. soil
texture, g. distance from river, h. distance from lineament, i. land use/land cover (LULC), j. normalized
differential vegetation index (NDVI), k. distance from road, l. topographic wetness index (TWI), m.
stream power index (SPI), n. sediment transportation index (STI), o. Geomorphology, p. Seismic map.
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Table 2. Production techniques used for the various thematic data layers.

Sl. No. Parameters Data Used & Scale Sources of Data Types Techniques References

1 Elevation DEM
30 m × 30 U.S Geological Survey 30 m × 30 m digital elevation model [24]

2 Slope DEM
30 m × 30 U.S Geological Survey Tanθ = N×i

636.6 N=No. of Contour Cutting;
i=Contour Interval

[25]

3 Aspect DEM
30 m × 30 U.S Geological Survey

Aspect = 57.29× αtan2(
[

dz
dy

]
− [dz/dx]

Where,
dz/dx= ((c+2f+i)−(a+2d+g))/8
dz/dy=((g+2h+i)−(a+2b+c))/8

Here, a to i indicates the cell value of 3*3
window.

[26]

4 Rainfall
Annual average rainfall data of

different stations in the last 5
years

Indian Metrological
Department (IMD) Kriging Interpolation method [27]

5 Geology Reference geological map
1: 50,000 Geological Survey of India Digitization process [28]

6 Soil Reference district soil map
1: 50,000

National Bureau of Soil Survey
and Land Use Planning Digitization process [28]

7 Distance from River
Reference
Topomap
1: 50,000

Survey of India Euclidian Distance Buffering [29]

8 Distance from Lineament Reference sheet of Lineament
30 m × 30

“https://bhuvan-vec2.nrsc.gov.
in/bhuvan/wms” Euclidian Distance Buffering [29]

9 Land use/land cover
(LULC)

Landsat 8 OLI/TIRS
30 m × 30 U.S Geological Survey Maximum likelihood Classification [30]

https://bhuvan-vec2.nrsc.gov.in/bhuvan/wms
https://bhuvan-vec2.nrsc.gov.in/bhuvan/wms


Remote Sens. 2019, 11, 2866 11 of 28

Table 2. Cont.

Sl. No. Parameters Data Used & Scale Sources of Data Types Techniques References

10 Normalized differential
vegetation index (NDVI)

Landsat 8 OLI/TIRS
30 m × 30 U.S Geological Survey

NDVI = NIR−IR
NIR+IR

Where NIR is the near infrared band or band
4 and IR is the infrared band or band 3.

[31]

11 Distance from road Reference Topomap
1: 50,000 Survey of India Euclidian Distance Buffering [29]

12 Topographic wetness
index (TWI)

DEM
30 m×30
1: 50,000

U.S Geological Survey

TWI = In(As/tanθ)
Where α is the cumulative upslope area

draining through a point (per unit contour
length), and β is the slope gradient (in

degree).

[32].

13 Stream power index (SPI)
DEM

30 m × 30
1: 50,000

U.S Geological Survey
SPI = As ∗ tanβ

Where AS is the upstream contributing area
and β is the slope gradient (in degrees)

[32].

14 Sediment transportation
index (STI)

DEM
30 m × 30 U.S Geological Survey

STI =
(m + 1) × (As/22.13)m

× sin(B/0.0896)n

Where, As, is the specific catchment area; ‘B’
is the local slope gradient in degrees; m is

usually set to 0.4, ‘n’, is usually set to 0.0896

[33]

15 Geomorphology Reference sheet
1: 50,000

“https://bhuvan-vec2.nrsc.gov.
in/bhuvan/wms” Digitization process [27]

16 Seismic zone map
Last 200 years point data of

earthquake
30 m × 30

National Centre for Seismology,
New Delhi, India

Gridding and Interpolation (Inverse distance
weight method) [11]

https://bhuvan-vec2.nrsc.gov.in/bhuvan/wms
https://bhuvan-vec2.nrsc.gov.in/bhuvan/wms
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2.4. Multicollinearity Analysis

Multicollinearity analysis is a vital way of identifying and selecting appropriate landslide
conditioning factors [13]. In this study, multicollinearity was evaluated through the tolerance value
and variance inflation factor (VIF). In normal conditions, tolerance values under 0.10 or VIF values
of 10 and above indicate multicollinearity [31–33]. In the present study, the multicollinearity test of
landslide conditioning factors was done using SPSS software.

2.5. Models

2.5.1. Weight-of-Evidence (WofE) Model

The present study demonstrates the application of the ensemble WofE and SVM model (a Bayesian
probability model) for the assessment of landslide susceptibility in the GIS environment. Two types of
data were incorporated in the weight-of-evidence model; namely, the landslide inventory data and
landslide conditioning factors. The weights were assigned to each landslide conditioning factor by
the weight-of-evidence (WofE) model. This model may be compared to the other statistical methods
such as the data-driven model that is generally used for the Bayesian probability model [29,34–40].
Mohammady et al. [38] and Regmi et al. [10] emphasized the value of using the weight-of-evidence
model for the evaluation of landslide hazard zones.

The positive weight (W+) and negative weight (W−) were calculated to complete the
weight-of-evidence function. This calculation was the basis for assigning the weights to the landslide
conditioning factors (B) based on the presence and absence of landslides within the area [35] using the
following equations (1, 2).

W+
i = In

P{B/A}
P{B/A}

(1)

W−i = In
P
{
B/A

}
P
{
B/A

} (2)

Here, P is the probability and ln is the natural log. Similarly, B and B indicate the presence and
absence of landslide predictive factors. A and A indicate the presence and absence of landslides.
A positive weight (W+) indicates the presence of landslides in a sub-category of landslide conditioning
factors and the magnitude of this weight is an indication of the positive correlation between landslide
conditioning factors and landslide occurrence. A negative weight (W−) indicates the absence of
landslides in a sub-category of landslide conditioning factors. A negative weight also indicates a
negative correlation between the landslide conditioning factors and the occurrence of landslides [36].
For modeling purposes, the weight contrast C (C= W+

−W−) measures the spatial association between
landslide conditioning factors and landslide occurrences. A positive C value indicates a positive spatial
association and a negative C value indicates a negative spatial association [37].

The standard deviation of W is calculated using Equation (3):

S(C) =

√
S2W+ + S2W− (3)

where S(W+) indicates the variance of the positive weights and S (W−) indicates the variance of the
negative weights. The variance of the weights was calculated using the following equation:

S2W+ =
1

N{B∩A}
+

1

B∩A
(4)

S2W− =
1

N
{
B∩A

} + 1

B∩A
(5)
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The studentized contrast is the final weight. It is a measure of confidence and is defined as the ratio
of the contrast divided by its standard deviation. The studentized contrast serves as an informal test of
whether C is significantly different from zero or if the contrast is likely to be “real” [35]. After applying
the WofE model, the factor weights calculated by this model were ensembled with the SVM model.

2.5.2. Support Vector Machine (SVM) Model

Among the different machine learning algorithms, SVM is an important supervised learning
binary classifier that is based on the structural risk minimization principle [41–44]. This method
separates the hyperplane formation from the training dataset. The separating hyperplane is prepared
in the original space of n coordinates (xi parameter in vector x) between the points of two distinct
classes [43]. The maximum margin of separation between the classes is discovered by SVM and,
therefore, builds a classification hyperplane in the center of the maximum margin [14,44]. If a point is
located over the hyperplane, it will be classified as +1 and, if not, will be classified as −1. The training
points adjoined to the optimal hyperplane are called support vectors. Once the decision surface is
acquired, new data can be classified [45] considering a training data set of instance label pairs (XiYi)
with Xi ∈ Rn, Yi ∈ {+1,−1} and i = 1......, m. To delineate the landslide susceptibility zones, X represents
the vector space that includes rainfall, slope, aspect, elevation, geology, soil texture, land use/land cover,
normalized differential vegetation index, distance from river, distance from lineament, distance from
road, topographic wetness index, sediment transportation index, stream power index, geomorphology,
and the seismic zone map. Meanwhile, the +1 class indicates landslide pixels, whereas the −1 class
indicates non-landslide pixels.

The aim of SVM is to find the optimal separating hyperplane that can separate the training dataset
into the two classes of landslides and non-landslides {+1, −1}. The separating hyperplane separates
data using the following equations:

Yi = (W.Xi + b) ≥ 1− ξi (6)

where w is a coefficient vector that defines the orientation of the hyperplane in the feature space, b is
the offset value of the hyperplane from the origin, and ξi represents the weak positive variables [46].
The problem of optimization will be solved through the determination of an optimal hyperplane using
Lagrangian multipliers [47].

Minimize
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiα jYiY j(XiX j) (7)

Subject to
n∑

i=1

αiYi = O, 0 ≤ αi ≤ C, (8)

where ai represents the Lagrange multipliers, C is the penalty value, and the slack variables ni allow
for penalized constraint violation. The decision function, which will be used for the classification of
new data, can then be written as:

g(X) = sign(
n∑

i=1

YiαiXi + b) (9)

If the hyperplane cannot be separated by the linear kernel function, the original input data
may be shifted into a high-dimensional feature space through some nonlinear kernel functions.
The classification decision function is presented in Equation (10):

g(X) = sign(
n∑

i=1

YiαiK(Xi,X j) + b) (10)
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where K(Xi, Xj) is the kernel function.
Linear kernel (LN), polynomial kernel (PL), radial basis function kernel (RBF), and sigmoid

kernel (SIG) are the most popular kernel types for SVM analysis [14]. PL and RBF are called Gaussian
kernels, and they are the most commonly used kernels in the literature [43]. To prepare the landslide
susceptibility map using SVM, we used the remote sensing (RS) software ENVI 4.7, which is an
environment for visualizing images. The ENVI 4.7 SVM classifier has four types of kernels; namely,
radial basis function (RBF), linear kernel, polynomial kernel, and sigmoid kernel. The mathematical
calculation was carried out as shown in Table 3.

Table 3. SVM kernel types and their equations.

Kernel Types Equations Kernel Parameters

Radial Basis Function (RBF) K(Xi,X j) = exp(−γXi −X2
j ) γ

Linear kernel K(XiX j) = XT
i X j —

Polynomial kernel K(Xi,X j) = (−γXT
i X + 1)d γ, d

Sigmoid kernel K(Xi,X j) = Tanh(−γXT
i X + 1)d γ

(Source: Tien Bui et al. [46], Yao et al. [43]).

3. Results

3.1. Considering the Multicollinearity Analysis of the Effective Factors

The landslide conditioning factors were tested for multicollinearity. The results show that the
lowest tolerance value of landslide conditioning factors is 0.446 for rainfall and the highest tolerance
value is 0.824 for slope (Table 4). The highest variance inflation factor (VIF) value is 2.241, and the
lowest VIF value is 1.213 (Table 4). However, the tolerance values of landslide conditioning factors
are greater than 0.1, and VIF values are less than 0.1 and 10, suggesting that there are no collinearity
problems among these factors. Therefore, the selected 16 landslide conditioning factors are suitable
and accurate for modeling landslide susceptibility.

Table 4. Multicollinearity analysis of landslide conditioning factors.

Landslide Conditioning Factors
Collinearity Statistics

Tolerance VIF

Rainfall 0.446 2.241

Elevation 0.520 1.924

Slope 0.824 1.213

Aspect 0.672 1.488

Geology 0.688 1.453

Soil 0.756 1.323

Distance from River 0.570 1.753

Distance from lineament 0.773 1.294

Distance from Road 0.499 2.003

Land use/land cover (LULC) 0.754 1.326

Normalized differential vegetation index (NDVI) 0.757 1.320

Topographic wetness index (TWI) 0.677 1.477

Stream power index (SPI) 0.684 1.461

Sediment transportation index (STI) 0.768 1.302

Geomorphology 0.789 1.268

Seismic zone 0.618 1.618
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3.2. Relationship Between Landslide Location and Effective Factors

The WofE values of each class of explanatory variables stand for the degree of landslide occurrence
(Table 5). The topographic factors of elevation, slope, and aspect are vital factors which determine the
landslide susceptibility of an area. Areas in high elevations are more susceptible to landslides compared
to lower altitude areas. In the present study, the altitude level between 422 m to 985 m has the highest
WofE value, which indicates a high susceptibility to landslides. The other sub-layers of elevation are
comparatively less susceptible to landslides. Slope plays a vital role in landslide hazard assessment.
When slope stability becomes weak, the tendency of landslide occurrence is very high. Therefore, high
slope values indicate a high probability of landslide occurrence. In our study area, the slope sub-class
of 36 to 79 degrees is more prone to landslides compared to the other sub-layers of slope because this
sub-class of slope has attained the maximum value of the WofE model. Aspect is also correlated with
the probability of landslide occurrence. Aspect is the direction that a slope faces. In this study, south
facing slopes obtained the maximum WofE value, indicating a high susceptibility to landslides. Heavy
rainfall detaches the soil and rock easily, leading to an increased probability of landslide occurrence.
The study area is highly influenced by the monsoon rainfall from June to November, during which
the tendency of landslide occurrence is very high. The rainfall sub-layer of 2167 mm to 2239 mm
attained the highest WofE values and, therefore, has a higher risk of landslides compared to the other
sub-layers of rainfall. Regarding the geology, Darjeeling gneiss, daling series, and swaliks geological
segments attained the highest WofE values, suggesting the highest risk of landslides. The soil texture
is strongly associated with the probability of landslide occurrence. Gravelly-loamy, gravelly-loamy
to loamy-skeletal, and coarse-loamy soil texture classes, with WofE values of 23.44, 21.01 and 19.05,
respectively, indicate a higher risk of landslide occurrence compared to the other soil texture classes.
River proximity also increases the chances of landslide occurrence. Areas nearest to rivers have a
higher landslide risk compared to areas in further distance classes. Here, areas in the class of 0 to
1.66 km distance from rivers have a high probability of landslide occurrence with a WofE value of 14.78.
Similarly, areas closest roads and lineaments have a high probability of landslide occurrence based on
the WofE values. In recent times, land use has had a strong influence on the occurrence of landslides.
Our study area is categorized into five land use types; namely, water bodies, settlement, vegetation,
fallow land, and agricultural land. The outcome of the WofE model indicates that the fallow land has a
higher risk of landslides compared to vegetation and other land uses. High normalized differential
vegetation index areas are less prone to landslide occurrence and vise-versa. Here, the −0.07 to 0.12
NDVI sub-class with a WofE value of 33.27 is the most critical zone for landslide occurrence. The other
sub-layers of NDVI indicate lower probabilities of landslide occurrence. For the factors of TWI, STI, and
SPI, the maximum values have the highest probability of landslide occurrence. Geomorphologically,
the folded ridge and highly dissected mountain regions have the highest potentiality of landslide
occurrence, with WofE values of 15 and 33, respectively. Comparatively, the hilly and mountainous
regions are more prone to landslides than the plain and plateau regions. Seismologically, the high
seismic zone is more susceptible to landslide occurrence than the low seismic zone.

All sub-layers of the different landslide conditioning factors were assigned a weight by the WofE
model in the GIS environment. The weighted layers were then converted to a raster layer to prepare
the landslide susceptibility map. Before the landslide susceptibility mapping, the weighted (by WofE)
layers were reclassified as the input data layers of the support vector machine (SVM) for ensembling
with WofE.
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Table 5. Spatial relationship between landslide conditioning factors and landslide occurrence extracted by the Weight-of-evidence (WofE) model.

Rainfall (mm) Pixels % of Pixels Landslide Pixels % of Pixels W+ W− C S2W+ S2W− S© W

1877.38–1991.97 322590 8.784 0 0.000 0.000 0.092 0.000 0.000 0.000 0.000 0.000

1991.97–2090.54 289906 7.894 0 0.000 0.000 0.082 0.000 0.000 0.000 0.000 0.000

2090.45–2167.44 944320 25.712 393 7.895 −1.182 0.215 −1.397 0.003 0.000 0.053 −26.580

2167.44–2239.06 1333493 36.309 3670 73.684 0.709 −0.885 1.594 0.000 0.001 0.032 49.504

2239.06–2333.96 782357 21.302 918 18.421 −0.145 0.036 −0.182 0.001 0.000 0.037 −4.963

Slope (Degree)

0–9.32 1175818 32.015 92 1.847 −2.854 0.368 −3.222 0.011 0.000 0.105 −30.614

9.32–18.64 665098 18.109 571 11.464 −0.458 0.078 −0.536 0.002 0.000 0.044 −12.044

18.44–27.34 813896 22.161 1172 23.529 0.060 −0.018 0.078 0.001 0.000 0.033 2.326

27.34–36.66 694449 18.909 1579 31.700 0.518 −0.172 0.690 0.001 0.000 0.030 22.622

36.66–79.23 323404 8.806 1567 31.460 1.277 −0.286 1.563 0.001 0.000 0.031 51.122

Altitude(m)

15–422 1351511 36.799 417 8.373 −1.482 0.372 −1.854 0.002 0.000 0.051 −36.226

422 – 985 837224 22.796 2491 50.000 0.787 −0.435 1.222 0.000 0.000 0.028 43.079

985 –1576 738499 20.108 1005 20.173 0.003 −0.001 0.004 0.001 0.000 0.035 0.115

1576 – 2279 518669 14.122 839 16.844 0.176 −0.032 0.209 0.001 0.000 0.038 5.509

2279 – 3602 226762 6.174 230 4.610 −0.293 0.017 −0.309 0.004 0.000 0.068 −4.572

Aspect

Flat(−1) 1905 0.052 0 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

north 236967 6.452 39 0.788 −2.104 0.059 −2.163 0.025 0.000 0.160 −13.495

northeast 462023 12.580 363 7.289 −0.546 0.059 −0.605 0.003 0.000 0.055 −11.098

east 454970 12.388 651 13.061 0.053 −0.008 0.061 0.002 0.000 0.042 1.443

southeast 522200 14.219 1098 22.045 0.439 −0.096 0.535 0.001 0.000 0.034 15.640

south 525807 14.317 1292 25.946 0.596 −0.146 0.742 0.001 0.000 0.032 22.922

southwest 457236 12.450 890 17.868 0.362 −0.064 0.426 0.001 0.000 0.037 11.505

west 378362 10.302 462 9.279 −0.105 0.011 −0.116 0.002 0.000 0.049 −2.376

northwest 419573 11.424 154 3.093 −1.308 0.090 −1.398 0.006 0.000 0.082 −17.074

north 213621 5.817 31 0.630 −2.223 0.054 −2.277 0.032 0.000 0.179 −12.718
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Table 5. Cont.

Rainfall (mm) Pixels % of Pixels Landslide Pixels % of Pixels W+ W− C S2W+ S2W− S© W

Geology

Swaliks 1936266 52.721 3182 63.889 0.192 −0.270 0.462 0.000 0.001 0.030 15.659

Darjeeling Gneiss 270526 7.366 692 13.889 0.635 −0.073 0.709 0.001 0.000 0.041 17.273

Daling series 131471 3.580 415 8.333 0.847 −0.051 0.897 0.002 0.000 0.051 17.480

Alluvium 678512 18.475 0 0.000 0.000 0.205 0.000 0.000 0.000 0.000 0.000

Damuda series 655890 17.859 692 13.889 −0.252 0.047 −0.299 0.001 0.000 0.041 −7.293

Soil

Gravelly-loamy 274651 7.478 830 16.667 0.803 −0.105 0.908 0.001 0.000 0.038 23.845

Fine loamy_Coarse
Loamy 1477848 40.239 1107 22.222 −0.594 0.264 −0.858 0.001 0.000 0.034 −25.171

Gravelly
loamy_LoamySkeletol 450035 12.254 1107 22.222 0.596 −0.121 0.717 0.001 0.000 0.034 21.019

Gravelly
Loamy_Coarse Loamy 1404794 38.250 1660 33.333 −0.138 0.077 −0.214 0.001 0.000 0.030 −7.131

Coarse Loamy 65336 1.779 277 5.556 1.142 −0.039 1.181 0.004 0.000 0.062 19.055

Distance from River (km)

0–0.42 1160959 31.611 1049 21.053 −0.407 0.144 −0.551 0.001 0.000 0.035 −15.837

0.42–1.10 1291696 35.171 1966 39.474 0.116 −0.069 0.184 0.001 0.000 0.029 6.356

1.10–1.66 750401 20.432 1442 28.947 0.349 −0.113 0.462 0.001 0.000 0.031 14.784

1.66–2.26 371677 10.120 393 7.895 −0.249 0.024 −0.273 0.003 0.000 0.053 −5.195

2.26–4.33 97931 2.666 131 2.632 −0.013 0.000 −0.014 0.008 0.000 0.089 −0.153

Distance from Lineament(km)

0–1.54 763490 20.788 906 18.182 −0.134 0.032 −0.167 0.001 0.000 0.037 −4.531

1.54–2.85 1093457 29.773 1019 20.455 −0.376 0.125 −0.501 0.001 0.000 0.035 −14.243

2.85–4.20 941314 25.630 1472 29.545 0.142 −0.054 0.197 0.001 0.000 0.031 6.323

4.20–5.75 633142 17.239 1245 25.000 0.372 −0.099 0.471 0.001 0.000 0.033 14.378

5.75–10.12 241263 6.569 340 6.818 0.037 −0.003 0.040 0.003 0.000 0.056 0.710
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Table 5. Cont.

Rainfall (mm) Pixels % of Pixels Landslide Pixels % of Pixels W+ W− C S2W+ S2W− S© W

Distance from Road(km)

0–1.74 1636028 44.546 792 15.909 −1.031 0.417 −1.448 0.001 0.000 0.039 −37.353

1.74–3.94 988335 26.911 906 18.182 −0.393 0.113 −0.506 0.001 0.000 0.037 −13.754

3.94–6.72 589253 16.044 906 18.182 0.125 −0.026 0.151 0.001 0.000 0.037 4.109

6.72–10.22 316628 8.621 1472 29.545 1.235 −0.260 1.495 0.001 0.000 0.031 48.066

10.22–16.49 142420 3.878 906 18.182 1.550 −0.161 1.711 0.001 0.000 0.037 46.466

Land use/Land cover

Water bodies 40427 1.101 0 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.000

Vegetation 2650294 72.163 1119 22.464 −1.168 1.027 −2.195 0.001 0.000 0.034 −64.607

Fallow land 168382 4.585 1624 32.609 1.970 −0.348 2.318 0.001 0.000 0.030 76.445

Agricultural land 763256 20.782 2238 44.928 0.773 −0.364 1.137 0.000 0.000 0.029 39.858

Settlement 50306 1.370 0 0.000 0.000 0.014 0.000 0.000 0.000 0.000 0.000

Normalized differential vegetation index (NDVI)

−0.07–0.12 442450 12.047 1399 28.093 0.849 −0.202 1.050 0.001 0.000 0.032 33.271

0.12–0.17) 972514 26.480 1421 28.523 0.074 −0.028 0.103 0.001 0.000 0.031 3.270

0.17–0.23) 997257 27.154 1312 26.336 −0.031 0.011 −0.042 0.001 0.000 0.032 −1.297

0.23–0.29 816592 22.234 618 12.411 −0.584 0.119 −0.703 0.002 0.000 0.043 −16.346

0.29–0.49 443851 12.085 231 4.636 −0.959 0.081 −1.041 0.004 0.000 0.067 −15.436

Topographic wetness index (TWI)

1.95–7.37 582990 15.874 918 18.421 0.149 −0.031 0.180 0.001 0.000 0.037 4.916

7.37–8.53 1326854 36.128 2097 42.105 0.153 −0.098 0.252 0.000 0.000 0.029 8.765

8.53–9.76 1088701 29.643 1311 26.316 −0.119 0.046 −0.165 0.001 0.000 0.032 −5.140

9.76–11.70 547267 14.901 655 13.158 −0.125 0.020 −0.145 0.002 0.000 0.042 −3.454

11.70–18.91 126853 3.454 0 0.000 0.000 0.035 0.000 0.000 0.000 0.000 0.000
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Table 5. Cont.

Rainfall (mm) Pixels % of Pixels Landslide Pixels % of Pixels W+ W− C S2W+ S2W− S© W

Sediment transportation index (STI)

0–4.80 3576809 97.390 4850 97.368 0.000 0.008 −0.008 0.000 0.008 0.089 −0.096

4.80–20.81 78362 2.134 131 2.632 0.210 −0.005 0.215 0.008 0.000 0.089 2.429

20.81–56.85 13728 0.374 0 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000

56.85–120.10 3037 0.083 0 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

120.10–203.38 729 0.020 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Stream power index (SPI)

−11.16 – −6.84 457701 12.462 427 8.571 −0.375 0.044 −0.418 0.002 0.000 0.051 −8.260

−6.84 – −4.31 670452 18.255 1139 22.857 0.225 −0.058 0.283 0.001 0.000 0.034 8.385

−4.31 – −2.08 994622 27.082 1139 22.857 −0.170 0.056 −0.226 0.001 0.000 0.034 −6.700

−2.08 – −0.002 1003492 27.323 1423 28.571 0.045 −0.017 0.062 0.001 0.000 0.031 1.978

−0.002 – 7.81 546398 14.877 854 17.143 0.142 −0.027 0.169 0.001 0.000 0.038 4.491

Geomorphology

Alluvial plain 591694 16.111 0 0.000 0.000 0.176 0.000 0.000 0.000 0.000 0.000

Piedmont fan plain 453016 12.335 119 2.381 −1.646 0.108 −1.754 0.008 0.000 0.093 −18.867

Inter montane valley 383190 10.434 474 9.524 −0.091 0.010 −0.101 0.002 0.000 0.048 −2.101

Active flood plain 205950 5.608 0 0.000 0.000 0.058 0.000 0.000 0.000 0.000 0.000

Folded ridge 499607 13.603 1067 21.429 0.455 −0.095 0.550 0.001 0.000 0.035 15.919

Highly dissected hill
slope 1539208 41.910 3321 66.667 0.465 −0.556 1.021 0.000 0.001 0.030 33.948

Seismic zone map

High 1000641 27.246 2604 52.273 0.653 −0.422 1.075 0.000 0.000 0.028 37.859

Moderate 2672024 72.754 2377 47.727 −0.422 0.653 −1.075 0.000 0.000 0.028 −37.859
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3.3. Landslide Susceptibility Models

The support vector machine is an important machine learning algorithm that is used to assess an
area’s susceptibility to landslides and other natural hazards. In the present study, the SVM classification
was used and ensembled with WofE. The landslide conditioning factors; namely, elevation, slope, aspect,
rainfall, geology, soil texture, land use land cover, normalized differential vegetation index (NDVI),
distance from river, distance from road, distance from lineament, topographic wetness index (TWI),
stream power index (SPI), sediment transportation index (STI), geomorphology, and seismic zone map
were used as the input of the SVM classification. The probability values of the SVM classification
ranges from 0 to 1. Pixels of images or conditioning factors indicate the landslide susceptibility index
with two values, i.e., 0 to 1 where 0 represents stable conditions and 1 value indicates a high chance
of landslides occurrence. The SVM classification has four kernel types; namely, radial basis function,
linear kernel, polynomial kernel, and sigmoid kernel. These functions were applied in the SVM
classification. The output file images created by the SVM classification were integrated and used to
prepare the landslide susceptibility maps (LSMs) in the GIS environment.

The four landslide susceptibility maps (LSMs) shown in Figure 5a–d were prepared using
the four ensemble models of WofE and SVM; namely, WofE & RBF-SVM, WofE & Linear-SVM,
WofE&Polynimial-SVM, and WofE& Sigmoid-SVM. These landslide susceptibility maps (LSMs) were
classified into four categories; namely, low, medium, high, and very high susceptibility to landslides,
using the natural breaks classification method in the GIS environment. In the WofE& RBF-SVM
ensemble map, the four landslide susceptibility classes of low, medium, high, and very high covered
1071 km2 (34%), 813 km2 (25.8%), 635 km2 (20.2%), and 630 km2(20%) area of the districts, respectively
(Table 6 and Figure 6). In the WofE and Linear-SVM model, the low, medium, high, and very high
landslide susceptibility classes covered an area of 1128 km2 (35.8%), 918 km2 (29.1%), 630 km2 (20%),
and 474 km2 (15%), respectively (Table 6). In the WofE& Polynomial-SVM model, the low, medium,
high, and very high susceptibility classes covered an area of 1095 km2 (34.8 %), 944 km2 (30%), 608 km2

(19.3%) and 501 km2 (15.9 %), respectively (Table 6). Meanwhile, in the WofE & Sigmoid-SVM ensemble
landslide map, the classes of low, medium, high, and very high landslide susceptibility covered
1153 km2 (36.6%), 893 km2 (28.3%), 605 km2 (19.2%) and 398 km2 (15.8%) of the area, respectively
(Table 6).

Table 6. Areal distribution of ensemble model landslide susceptibility maps (LSMs).

Landslide
Susceptibility

Classes

WofE& RBF-SVM WofE&Linear-SVM WofE&
Polynomial-SVM

WofE&
Sigmoid-SVM

Area in
sq.km

% of
Area

Area in
sq.km

% of
Area

Area in
sq.km

% of
Area

Area in
sq.km

% of
Area

Low 1071 34.0 1128 35.8 1095 34.8 1153 36.6

Medium 813 25.8 918 29.1 944 30.0 893 28.3

High 635 20.2 630 20.0 608 19.3 605 19.2

Very High 630 20.0 474 15.0 501 15.9 498 15.8
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3.4. Validation and Comparison of Models

The landslide susceptibility maps of Darjeeling and Kalimpong districts were prepared by
the ensembles of WofE and SVM. These LSMs were then validated using the receiver operating
characteristics (ROC) curve, which justifies and evaluates the accuracy of the models [48–56]. The ROC
curve was prepared along the X and Y-axis. The X-axis indicates the false positive rate (1-specificity)
and the Y-axis indicates the true positive rate (sensitivity) [57]. ROC curves have been extensively used
for the assessment of susceptibility maps [8,12,15,58–66]. In the present study, of the 326 landslides, 98
(30%) landslides were used to validate the landslide susceptibility maps. The area under curve (AUC)
values of the ensemble models WofE& RBF-SVM, WofE& Linear-SVM, WofE& Polynomial-SVM, and
WofE& Sigmoid-SVM are 87%, 90%, 88%, and 85%, respectively, indicating that they are very good
models for the identification of landslide hazard zones (Figure 7a–d). Based on the results of the ROC
curves, the WofE& Linear-SVM model is considered more accurate (AUC = 90%) than the other three
ensemble models.Remote Sens. 2019, 10, x FOR PEER REVIEW  21 of 27 
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It is not sufficient to validate the susceptibility models with only one validation method because
this can lead to erroneous results if the samples are randomly distributed across the basin. Therefore,
it is essential to cross check the validation result using another suitable validation method. In the
present study, the quality sum (Qs) index was used as a second method to assess the accuracy and
compare the landslide susceptibility models. Abedini and Tulabi [67] used the Qs method for landslide
hazard assessment. In the Qs method, greater values indicate a higher accuracy and correctness of
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the landslide susceptibility map, whereas lower values indicate lower accuracy [67]. To evaluate this
index, the density ratio (Dr) was first calculated using Equation (11).

Dr =

Si
Ai∑n
i Si∑n
i Ai

(11)

where Si is the sum of the area of the landslides in each risk class, Ai is the area in the class of risk, and
n is the number of risk classes in a zonation map. The Qs index is shown in Equation (12).

Qs =
n∑

i=1

(Dr−1)2
×S (12)

where Qs is the quality sum index, Dr is the density ratio, and S is the areal ratio of each risk class
to the total area. The Qs method is a reliable validation technique which is calculated based on the
landslide distribution and landslide hazards map using Equation (20). The four ensemble models in
this study obtained the following Qs values: the WofE & RBF-SVM ensemble model scored 2.10; the
WofE& Linear-SVM ensemble model scored 2.24; the WofE&Polynominal-SVM ensemble model scored
2.10, and the WofE& Sigmoid-SVM ensemble model scored 2.18 (Table 7). In line with the ROC results,
the Qs validation results also indicate that the WofE and Linear-SVM model is more accurate than the
other ensemble models.

Table 7. Mathematical Calculation of Qs Method of Ensemble LSMs.

Ensemble Models Classes ai (sq.km) si (sq.km) DR s Qs

WofE& RBF-SVM

Low 1071.23 0.00 0.00 0.34

2.10
Medium 812.95 0.12 0.10 0.26

High 635.02 0.93 1.07 0.20

Very High 629.80 3.26 3.78 0.20

WofE& Linear-SVM

Low 1127.55 0.00 0.00 0.36

2.24
Medium 917.57 0.34 0.27 0.29

High 630.04 1.13 1.32 0.20

Very High 473.84 2.84 4.37 0.15

WofE&
Polynomial-SVM

Low 1095.14 0.00 0.00 0.35

2.10
Medium 944.15 0.34 0.26 0.30

High 608.44 1.13 1.36 0.19

Very High 501.27 2.84 4.13 0.16

WofE& Sigmoid-SVM

Low 1153.40 0.00 0.00 0.37

2.18
Medium 892.57 0.23 0.19 0.28

High 604.55 1.25 1.51 0.19

Very High 498.48 2.84 4.16 0.16

4. Discussion

Landslide susceptibility maps play a vital role in stakeholders making suitable decisions in
landslide-prone areas. Landslide events not only cost human lives, but also destroy residential areas,
roads, and agricultural fields. The assessment of landslide hazards using LSMs performed in this study
is an important tool to mitigate landslide hazards, sustain the environment, and help the residents of
high risk landslide susceptibility zones. In this study, ensemble models of weight-of-evidence (WofE)
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and SVM were used to prepare the landslide susceptibility maps (LSMs). The different statistical,
knowledge-driven, probabilistic, and machine learning models were used to recognize which areas are
at severe risk of landslide occurrence. Several past studies have produced landslide susceptibility maps
using different methods and models, such as landslide numerical risk factor (LNRF), frequency ratio
(FR), analytical hierarchical process (AHP), SVM, artificial neural network (ANN), logistic regression
(LR), conditional probability (CP), multi-criteria decision approach (MCDA), bivariate statistical,
bivariate and multivariate models [8,9,60–65]. These studies determined the critical zones of landslide
risk in their respective study regions. However, in the present study, a new ensemble technique
was used, which has shown better results than those of previous studies. An ensemble of the two
or three models may provide better results than any single model. In the present study, landslide
susceptibility maps were prepared using ensemble models of WofE& RBF-SVM, WofE& Linear-SVM,
WofE & Polynomial-SVM, and WofE & Sigmoid-SVM. These models are reliable and accurate in this
field. The landslide susceptibility maps were created using landslide inventory data (326 landslides)
and landslide conditioning factors (16 environmental factors). The landslide susceptibility maps
(LSMs) produced by the ensemble models were classified into four susceptibility classes; namely,
low, medium, high, and very high susceptibility to landslide occurrence. The high susceptibility
landslide probability zones of the WofE & RBF-SVM, WofE& Linear-SVM, WofE & Polynomial-SVM
and WofE& Sigmoid-SVM models cover areas of 630 km2 (20%), 474 km2 (15%), 501 km2 (15%), 497 km2

(15%), respectively.
The landslide susceptibility maps (LSMs) were validated and compared using the receiver

operating characteristic (ROC) and quality sum (Qs) validation methods. Based on these validation
methods, all models are considered very good to excellent. A high resolution DEM for this area is not
freely available, posing the main challenge for the researchers in this study. If high resolution images
were used for the extraction of landslide conditioning factors instead of a 30m DEM, these methods
could be used to model landslide susceptibility at a micro level and achieve better results [68,69]. Of the
four ensemble models, the landslide map produced by the WofE & Linear-SVM model is more suitable
and accurate than those produced by other models. The areal distribution of the landslide susceptibility
maps is shown in Figure 7. In the present study, these very high susceptibilities landslide probability
zones are found in the middle portion of the study area. The areas in these districts closer to roads,
such as NH-31 road, Rohini road, Rishi road, Darjeeling road, Sevoke road, and Sikkim-Kalimpong
roads, are highly affected by landslides. Teesta River is the major river in these districts. The areas
closer to the Teesta River are the most critical zone of landslide susceptibility. The Lish catchment,
Mahananda catchment, and Torsha catchment are major catchments which are highly affected by
landslides. The other critical landslide areas are Sukhia-Pokhari, Kurseong, Sevoke, Majua tea garden,
and Kalimpong. The main factors determining landslide risk in these regions are heavy rainfall, steep
slope, elevation, soil texture, geology, distance from road and LULC. During the monsoon season, these
areas are strongly affected by landslides due to heavy rainfall. These regions are also affected by high
seismic intensity, which is an important cause of landslides. However, the study carefully chalks out
the landslides risk zones of Darjeeling and Kalimpong districts. This study will help the government
to mitigate the landslides effect and strengthen the public conscious for sustainable development.

5. Conclusions

Landslides are very harmful natural hazards that cost human lives and cause widespread damage
to roads, residences, gardens, and agricultural land. In this study, the weight-of-evidence (WofE) and
SVM models were ensembled to produce landslide susceptibility maps (LSMs) for the Darjeeling and
Kalimpong districts. The ensemble approach is an appropriate method for landslide susceptibility
mapping that provides better results than using a single model. The four LSMs produced in this
study were classified into four categories; namely, low, medium, high, and very high susceptibility to
landslide occurrence. In the various models, the very high susceptibility class covered 20% (WofE&
RBF-SVM mode), 15% (WofE& Linear-SVM model), 15.9% (WofE& Polynomial-SVM model), and
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15% (WofE& Sigmoid-SVM models) of the study area, respectively. The very high landslide-prone
areas are mainly located in the southern and middle parts of Darjeeling and Kalimpong districts.
In particular, the Lish catchment area, Teesta catchment area, Sevoke road, and Majua tea garden areas
are highly susceptible to landslide occurrences. The results of the ensemble models were validated
using the QS index and ROC methods. Both validation methods confirmed the landslide susceptibility
maps produced by the WofE& RBF-SVM, WofE& Linear-SVM, WofE& Polynomial-SVM, and WofE&
Sigmoid-SVM ensemble methods as being excellent and appropriate. Of the four ensemble models,
the WofE & Linear-SVM model was found to be more accurate than other ensemble models. This work
helps to increase awareness of the public and government and aims to reduce the impact of landslides
by providing steps and suitable strategies of hazard mitigation. Some necessary steps and techniques
are essential in the very high landslide risk zones of the study area. Identification of faults, weak
geological regions, proper drainage management, and afforestation programs in landslide-prone areas
may reduce the landslide risks. The results obtained from this study can provide proper and significant
information to the decision-makers and policy planners in the landslide-prone areas of these districts.
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