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Abstract: Recently, different algorithms have been developed to assess near-surface particulate
organic matter (POC) concentration over coastal waters. In this study, we gathered an extensive
in situ dataset representing various contrasted bio-optical coastal environments at low, medium,
and high latitudes, with various bulk particulate matter chemical compositions (mineral-dominated,
50% of the data set, mixed, 40%, or organic-dominated, 10%). The dataset includes 606 coincident
measurements of POC concentration and remote-sensing reflectance, Rrs, with POC concentrations
covering three orders of magnitude. Twelve existing algorithms have then been tested on this data set,
and a new one was proposed. The results show that the performance of historical algorithms depends
on the type of water, with an overall low performance observed for mineral-dominated waters.
Furthermore, none of the tested algorithms provided satisfactory results over the whole POC range.
A novel approach was thus developed based on a maximum band ratio of Rrs (red/blue, red/yellow or
red/green ratio). Based on the standard statistical metric for the evaluation of inverse models, the new
algorithm presents the best performance. The root-mean square deviation for log-transformed data
(RMSDlog) is 0.25. The mean absolute percentage difference (MAPD) is 37.48%. The mean bias
(MB) and median ratio (MR) values are 0.54 µg L−1 and 1.02, respectively. This algorithm replicates
quite well the distribution of in situ data. The new algorithm was also tested on a matchup dataset
gathering 154 coincident MERIS (MEdium Resolution Imaging Spectrometer) Rrs and in situ POC
concentration sampled along the French coast. The matchup analysis showed that the performance
of the new algorithm is satisfactory (RMSDlog = 0.24, MAPD = 34.16%, MR = 0.92). A regional
illustration of the model performance for the Louisiana continental shelf shows that monthly mean
POC concentrations derived from MERIS with the new algorithm are consistent with those derived
from the 2016 algorithm of Le et al. which was specifically developed for this region.
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Remote Sens. 2019, 11, 2849; doi:10.3390/rs11232849 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-3669-4369
https://orcid.org/0000-0002-4812-9239
http://www.mdpi.com/2072-4292/11/23/2849?type=check_update&version=1
http://dx.doi.org/10.3390/rs11232849
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 2849 2 of 29

1. Introduction

Carbon is unevenly distributed in the biosphere among three major reservoirs: atmospheric,
oceanic, and terrestrial (on land in vegetation, soils and freshwaters). Knowledge of the carbon
exchanges between the different reservoirs is a key issue for better understanding the carbon cycle in
the biosphere [1,2]. Although coastal waters represent only 7% of the oceanic surface area, this domain
is of a particular interest, being an active exchange zone between the terrestrial and oceanic reservoirs.
A significant amount of terrestrial carbon is transported from soils to river headstreams. A fraction of
this carbon returns to the atmosphere via degassing occurring in inland waters, a fraction is stored in
freshwater organic sediments, and the remaining amount is delivered by estuaries to the coastal waters
as dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and particulate organic (POC) and
inorganic (PIC) carbon [3–5]. Besides this pool of terrestrial carbon origin, marine coastal ecosystems
are also productive areas where dissolved and particulate organic carbon may be locally produced
and degraded due to complex biogeochemical and physical processes. For a better understanding
of the role of coastal waters in the carbon cycle, the spatiotemporal evolution of the different carbon
compartment (POC, DOC, PIC, DIC) and their respective standing stocks, must be evaluated and
analyzed [6].

POC is one of the main pools of ocean organic carbon, which is composed of living material
(heterotrophic bacteria, phytoplankton, zooplankton) and detritus (i.e., non-living cells). Despite its
relatively small stock in open ocean waters, its high turnover rate makes POC a central component of
the oceanic carbon cycle. Knowledge of the POC concentration distribution and dynamics is indeed
a key parameter to study the biological export of carbon from the surface to the deep ocean but also the
transfer of carbon throughout the marine food web. Indeed, being the first level of the trophic chain,
the production of organic matter (and organic carbon) by phytoplankton supports higher trophic levels
and marine diversity. Thus, the amount of POC is an indicator of productivity in the euphotic zone,
and can also be used as an indicator of pollution events in coastal areas impacted by human activities.

Over the past few years, many bio-optical algorithms have been developed to derive the POC
concentration at both the surface [7–14] and within the euphotic [15] or mixed oceanic layers [12,16]
from ocean-color radiometry (OCR). These algorithms were developed for open waters and rely on the
fact that the variability of the inherent optical properties is driven by phytoplankton and its associated
material (heterotrophic bacteria, detritus, colored dissolved organic matter (CDOM)). The performance
of different available POC algorithms for oceanic waters has recently been evaluated [17] showing
that empirical approaches based on band ratios [11] and semi-analytical approaches based on the back
scattering coefficient (bbp) and chlorophyll-a concentration (Chla) [8] performed the best. While the
application of these algorithms to OCR observations allowed the pool of POC over the open ocean to
be estimated (about 0.4 and 1.2 Pg. C in the first attenuation and euphotic layers, respectively), [15],
such information is still not available for global coastal waters, which are more complex bio-optical
environments [18]. To overcome this limitation on our understanding of the POC dynamics, some purely
empirical approaches were recently developed from in situ measurements performed in offshore
and coastal waters [19–22] or exclusively from measurements collected in coastal waters (mainly
in river-dominated systems) [23] to estimate the surface POC concentration from OCR. However,
these algorithms were almost all developed from limited datasets gathered in specific regions.
This dictates that the results and performance of these approaches at a global scale may be strongly
conditioned by the representativeness of the dataset used for their development. In other words,
these algorithms may be not suitable to catch the large POC variability encountered in optically
contrasted coastal areas.

This study emerged in this context and aimed at improving the retrieval of POC concentration for
global scale applications in coastal waters (i.e., over large POC concentration range). For this purpose,
a large number of in situ measurements performed at low, medium, and high latitudes were first
gathered to constitute an extended dataset attesting to the high diversity of physical and biological
coastal environments. Different existing algorithms built on different approaches and assumptions
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were tested over this in situ dataset. A new empirical algorithm involving a maximum band ratio
was then developed. Finally, the new approach was applied to a dataset of the medium resolution
imaging spectrometer (MERIS) and a coastal region was selected, where the spatial changes of POC
concentrations were discussed.

2. Data and Methods

2.1. In Situ Data

The in-situ dataset includes the concentration of biogeochemical parameters (POC, Chla,
and suspended particulate matter, SPM) and remote sensing reflectance spectra Rrs(λ) where λ is the
wavelength. Measurements were collected by different contributors and instruments undoubtedly
introducing uncertainties, which are not necessarily well characterized (Table 1). The field measurement
protocols and data processing are described in detail in related papers listed in Table 1. Measurements
were sampled between 1997 and 2015 in various coastal regions (Figure 1): European coastal
waters [24–29], French Guiana [30], Eastern Viet Nam Sea [31,32], coastal waters of South East
Pacific [33] and North Canada [34]. The particulate organic carbon is here considered as particulate
carbon from organic origin retained by a Whatman GF/F filter according to the JGOFS (Joint Global
Ocean Flux Study) protocol [5]. The POC is then composed of particles with a diameter between 0.4
and 200 µm, with pre-filtration usually performed.

The highest POC values are observed in French Guiana 5744 µg L−1 and Mekong River 4623 µg L−1.
The lowest POC concentrations (< 100 µg L−1) are associated with the Chilean upwelling system
sampled during the Biosope campaign [35]. The Chilean upwelling system was identified as coastal
waters on criteria based on bathymetry (4000 m), distance to the coast (200 km), and Chla concentration
(> 0.8 µg L−1) [32]. Biosope upwelling data were included in our dataset in order to consider the
transition zone between coastal and open waters.

Among the Rrs(λ) spectra considered, about 69% were obtained from hyperspectral measurements
performed from 310 to 950 nm with a 3 nm spectral resolution, while the remaining 31% were obtained
from multispectral measurements at the standard spectral bands of ocean color sensors. Hyperspectral
data were interpolated to obtain Rrs(λ) at every nanometer, to be able to test the different published
algorithms considering their specific input spectral bands. Quality controls were applied on Rrs(λ)
spectra based on criteria developed in [36] (unusual spectral shape, negative values in the near-infrared,
strong deviation in the Rrs vs. SPM relationship in the red). The whole dataset (named DSW)
consists of 606 measurements of POC concentrations (NPOC) associated with hyperspectral (73%) and
multispectral (27%) Rrs(λ) spectra. Note that, for some of the 606 POC measurements, coincident Chla
and SPM concentrations are missing so NPOC > NChla > NSPM. The POC, Chla, and SPM concentrations
vary from 45.37 to 5744 µg L−1, 0.034 to 48.66 µg L−1, and 207.4 to 2626 x 103 µg L−1, respectively
(Table 1 and Figure 2).

The large ranges of POC, SPM, and Chla concentrations attest to the high diversity of physical
and biological coastal environments (river plumes, phytoplankton blooms, and areas affected by
bottom sediment re-suspension, land-ocean exchange, and upwelling) sampled at low (tropical),
medium, and high latitudes (Arctic). Because POC represents a significant fraction of the particulate
organic matter, the POC to SPM ratio (POC/SPM) can be used as a rough proxy of the relative
contribution of organic particles to the total suspended particulate matter [11,37–39]. Woźniak et al.
2010 [39] identified three types of waters according to the POC/SPM level. Waters are considered as
mineral-dominated if POC/SPM < 0.06, organic-dominated if POC/SPM > 0.25, and mixed if 0.06 ≤
POC/SPM≤ 0.25. According to these criteria, which may not be adapted for all water types while giving
a rough approximation of the nature of the particulate assemblage, about 50% of the measurements
of our dataset were sampled within mineral-dominated waters, 10% within organic-dominated
waters, and 40% within mixed waters (Figure 3a). The whole dataset (DSW, NPOC = N = 606) was
randomly split (Monte Carlo method) into a development dataset (DSD) and a validation dataset
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(DSV), which represent 67.8% (N = 411) and 32.2% (N = 195) of DSW, respectively. The ranges of Rrs

(490), Rrs (555), and Rrs (665) and proportion of mineral-dominated, organic-dominated, and mixed
waters are quite similar for DSW, DSD, and DSV (Figure 3). DSD and DSV cover about three orders of
magnitude in terms of POC concentration (Figure 4) being representative of the large natural variability
of coastal environments.
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in Table 1; In situ data were collected (a) in the Beaufort Sea—Arctic ocean, (b) in the coastal water
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the English Channel and Bay of Biscay, (e) in the Baltic Sea and, (f,g) the Eastern Viet Nam Sea. The color
scale corresponds to surface POC concentrations (in µg L−1).
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Table 1. Information on the in-situ data used in this study: number of data (N), minimum (Min),
maximum (Max), mean, and standard deviation (StdDev) values of POC concentrations (µg L−1).
M and H stand for multispectral and hyperspectral data, respectively.

Region Year NPOC NRrs Min Max Mean StdDev Reference Multispectral (M) or
Hyperspectral Data (H)

Baltic Sea 1998 33 33 330.0 1990 823.3 339.7 [24,25] M
Bay of Biscay-France 2012 38 38 157.0 3930 1225 1056 [28] H

Beaufort Sea Arctic Ocean 2004 20 20 49.80 319.7 120.8 64.15 [34] M

East Sea-Viet Nam

2010 14 14 188.0 1248 485.1 365.6

[31,32]

H
2011 125 125 68.90 1203 283.7 200.4 H
2013 37 37 221.0 1858 649.5 248.1 H
2014 72 72 65.41 4623 588.3 816.9 H
2015 17 17 45.37 144.5 99.98 36.92 H

English Channel
1997 47 47 60.00 221.0 119.4 41.53 [24,25] M
2004 84 84 214.7 2262 754.0 388.2 [26,27] H
2010 20 20 110.2 2159 331.6 276.9 [29] H

French Guiana 2012 35 35 216.0 5744 1406 1309 [30,40] H
North Sea 1998 58 58 190.0 2470 505.8 390.5 [24,25] M

South Pacific Ocean 2004 6 6 112.9 277.8 192.6 62.79 [33] M

Overall 606 606 45.37 5744 575.6 662.5

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 31 

Table 1. Information on the in-situ data used in this study: number of data (N), minimum (Min), 
maximum (Max), mean, and standard deviation (StdDev) values of POC concentrations (μg L−1). M 
and H stand for multispectral and hyperspectral data, respectively. 

Region Year NPOC NRrs Min Max Mean StdDev Reference 
Multispectral (M) or 
Hyperspectral Data 

(H) 
Baltic Sea 1998 33 33 330.0 1990 823.3 339.7 [24,25] M 

Bay of Biscay-France 2012 38 38 157.0 3930 1225 1056 [28] H 
Beaufort Sea Arctic Ocean 2004 20 20 49.80 319.7 120.8 64.15 [34] M 

East Sea-Viet Nam 

2010 14 14 188.0 1248 485.1 365.6 

[31,32] 

H 
2011 125 125 68.90 1203 283.7 200.4 H 
2013 37 37 221.0 1858 649.5 248.1 H 
2014 72 72 65.41 4623 588.3 816.9 H 
2015 17 17 45.37 144.5 99.98 36.92 H 

English Channel 
1997 47 47 60.00 221.0 119.4 41.53 [24,25] M 
2004 84 84 214.7 2262 754.0 388.2 [26,27] H 
2010 20 20 110.2 2159 331.6 276.9 [29] H 

French Guiana 2012 35 35 216.0 5744 1406 1309 [30,40] H 
North Sea 1998 58 58 190.0 2470 505.8 390.5 [24,25] M 

South Pacific Ocean 2004 6 6 112.9 277.8 192.6 62.79 [33] M 
Overall  606 606 45.37 5744 575.6 662.5   

 

Figure 2. Frequency distribution of (a) POC, (b) SPM, and (c) Chla concentration. Dashed lines stand 
for the median values (M) of each parameter. 

 

Figure 3. Frequency distribution of the POC to SPM ratio for (a) DSW, (b) DSD, and (c) DSV. Dot-
dashed lines represent the values, which delimit the POC/SPM ranges for the mineral-dominated, 
mixed, and organic-dominated waters according to [39]. The percentages between brackets indicate 
the percentage of in situ data for each type of water. 
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and organic-dominated waters according to [39]. The percentages between brackets indicate the
percentage of in situ data for each type of water.
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2.2. Satellite-In Situ Matchup Data Base

The matchup dataset is composed by in situ measurements of POC collected in the frame
of the French Coastal Monitoring Network (SOMLIT, Service d’Observation en Milieu LITtoral,
http://somlit.epoc.u-bordeaux1.fr/fr/) nearly simultaneously with the overpass of the MERIS onboard
the European Space Agency (ESA)’s Envisat platform. The SOMLIT network gathers several coastal
stations along the French coastline (Eastern English Channel, Atlantic Ocean, and Mediterranean Sea)
sampled bi-monthly since 1995 (Figure 5). MERIS level 1 data were processed using the polymer
atmospheric correction algorithm [41], which was adapted for coastal waters in the frame of the
GlobCoast project funded by the French Research National Agency [42]. From daily MERIS images,
a total of 336 in situ data points were extracted during the satellite lifetime (2002–2012). The criteria
considered for the matchup selection were: (1) selection of a 3 × 3 pixel window centered on matchup
location, (2) a time difference between in situ measurements and satellite overpass lower than 3 h
(a time window of one hour also was tested with no significant differences in the results), (3) spatial

http://somlit.epoc.u-bordeaux1.fr/fr/


Remote Sens. 2019, 11, 2849 7 of 29

homogeneity in the satellite pixels (coefficient of variation of Rrs(λ), ratio of the standard deviation to
the mean computed over the pixel window, lower than 30%), and (4) number of valid pixels per pixel
window greater than 6. After the application of all these criteria, the final matchup dataset is then
composed of 154 matched points (Table 2). For the matchup dataset, POC concentrations are between
26.58 and 658.2 µg L−1, Chla ranges from 0.04 to 10.04 µg L−1, and SPM from 80 to 20,270 µg L−1,
respectively (Figure 6). According to the value of the in situ POC/SPM ratio, 38.31%, 15.58%, and 46.1%
of matchups concern mineral-dominated, organic-dominated, and mixed waters, respectively.

Table 2. In situ data from the French SOMLIT network (DSM dataset) sampled simultaneously with
MERIS overpass.

Station Location Distance to
Coastline (km)

Number of In
Situ POC Data

Number of
Matchups

S 01 Wimereux, North of France
(Channel Sea) 1.6 30 6

S 02 Wimereux, North of France
(Channel Sea) 8.1 56 11

S 03 Roscoff, Brittany
(Channel Sea) 3.5 42 30

S 10 Banyuls-sur-Mer
(Mediterranean Sea) 0.8 92 78

S 11 Marseille
(Mediterranean Sea) 4.8–6.4 69 28

S 12 Villefranche-sur-Mer, French Riviera,
(Mediterranean Sea) 0.5 44

S 17 Luc-sur-Mer, Normandy,
(Channel Sea) 0.175 1

S 18 La Rochelle, Bay of Biscay
(Atlantic Ocean) 8.046 2 1

Total 336 154
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and (c) display the median values (M). The dot-dashed lines in (d) delimit the POC/SPM range for the
mineral-dominated, mixed and organic-dominated waters according to [39].

2.3. Candidate Algorithms

Many bio-optical algorithms have been developed to derive the near-surface concentration of
POC from satellite measurements [7–14] and an inter-comparison exercise was recently performed
to test their respective performances [17]. These algorithms were developed for open ocean waters
and rely on the dominance of phytoplankton biomass in the total POC concentration. More recently,
some purely empirical approaches were developed from in situ measurements performed in offshore
and coastal waters [19–22] or exclusively from measurements collected in coastal waters (mainly in
river-dominated systems) [23]. These algorithms are all empirical because the use of a semi-analytical
algorithm to estimate POC requires a perfect knowledge of the spectral specific POC-IOPs properties,
which are not available as yet.

These latter coastal and offshore-coastal algorithms, which were almost all developed for specific
regions (Table 3), were all considered for the inter-comparison exercise. In addition, we selected
Stramski et al., (2008) algorithm that was implemented by the NASA Ocean Biology Processing Group
to derive POC from MODIS at global scale. Because this algorithm is dedicated to open waters,
the discussion on its performance is limited to organic-dominated waters. The selected models are
representative of the different approaches found in the literature: purely empirical approaches using
Rrs(λ) [23], Rrs band ratios [11,19–21], or color index [22] as input parameters.
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Table 3. Candidate algorithms used for the inter-comparison exercise. The four last columns provide
relevant information on the algorithms: inputs of algorithm, region where the data were collected,
the range of POC, and number of data used for the development of the algorithm.

Authors Abbreviation Inputs Region POC Range
(µg L−1)

N

Band ratio-based algorithms

Stramski
et al. 2008 S08-1S08-2 Rrs(443)/Rrs(555)

Rrs(490)/Rrs(555) Eastern South Pacific 10–270 53

Woźniak
et al. 2016

W16-1
W16-2

Rrs(555)/Rrs(589),
Rrs (490)/Rrs(625)

Baltic Sea
Gulf of Gdańsk (Poland) 145–2370 73

Hu et al.
2015

Hu15-1
Hu15-2
Hu15-3

Rrs(443)/Rrs(555)
Rrs(490)/Rrs(555)
Rrs(510)/Rrs(555)

China Sea 17.59–687.5 120

Liu et al.
2015 Liu15 Rrs(678)/Rrs(488)

& Rrs(748)/Rrs(412)
Pearl River Estuary,

(China) 113–1402 103

Rrs based algorithm

Le et al.
2016

Le16-1
Le16-2

Rrs(488), Rrs(532), Rrs(547), Rrs (667), Rrs(678)
Rrs(490), Rrs(510), Rrs(550), Rrs (670)

Louisiana & Mobile Bay
(Gulf of Mexico) 11.5–230 230

Color index algorithm

Le et al.
2018

Le18-1
Le18-2

Rrs(490) & Rrs(555) & Rrs(665),
Rrs(443)/Rrs(555) Global ocean * 52.6–375.2 297

*The algorithm was developed from satellite Rrs and coincident in situ POC measurements through a matchup exercise.

2.3.1. Band Ratio-based Algorithms

S08—Stramski et al., 2008 [11] developed an empirical algorithm based on Rrs(λ) ratios at two
different wavelengths to derive POC concentration in open ocean waters. This algorithm was developed
from in situ data (N = 53) collected within oligotrophic and upwelling waters of the eastern South
Pacific Ocean (10 ≤ POC ≤ 270 µg L−1) during the Biosope campaign. This algorithm is based on
an empirical power-law between near-surface POC and blue-to-green ratio of Rrs(λ). Stramski et al.
(2008) showed that the following two algorithms have the best performance for their dataset:

POC = 203.2
[

Rrs(443)
Rrs(555)

]−555)0

(1)

POC = 308.3
[

Rrs(490)
Rrs(555)

]−555)0

(2)

These two algorithms will be named S08-1 (Equation (1)) and S08-2 (Equation (2)) in the following.
W16—Woźniak et al. 2016 [21] proposed an empirical algorithm built from 73 in situ measurements

collected during four field campaigns during spring and late summer within the open waters of the
Southern Baltic and coastal regions of the Gulf of Gdańsk. POC measurements cover a wide range
from 145 to 2370 µg L−1. The authors tested correlations of POC concentrations with reflectance ratios
at various spectral bands leading to the selection of the Rrs(555)/Rrs(589) ratio:

POC = 0.814×
[

Rrs(555)
Rrs(589)

]−589)

(3)

A good performance was also obtained with the Rrs(490)/Rrs(625) ratio, which has benefits to
consider the input Rrs close to bands potentially available from satellite observations:

POC = 0.774
[

Rrs(490)
Rrs(625)

]−625)

(4)
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Equations (3) and (4) will be further named W16-1 and W16-2, respectively. Note that the 589 nm
spectral band is absent in all ocean color sensors, while the 625 nm band is only available for MERIS
and OLCI (Ocean and Land Colour Instrument).

Hu16—Hu et al., 2016 [20] developed a regional algorithm using coastal and offshore data (N = 120)
collected in the South China Sea mainly during the summer. The POC values range between 25.3 and
687.5 mg m−3. Their algorithm is quite similar to the 2008 algorithm from Stramski et al. as it is based
on a blue-to-green reflectance ratio. The authors examined the following band ratios:

POC = 262.1730
[

Rrs(443)
Rrs(555)

]−555)6

(5)

POC = 285.0929
[

Rrs(490)
Rrs(555)

]−555)85

(6)

POC = 243.8148
[

Rrs(510)
Rrs(555)

]−555)43

(7)

They showed that the algorithm described by Equation (5) provides the best performance.
The Equations (5)–(7) will be further named Hu16-1, Hu16-2, and Hu16-3, respectively.

Liu15—Liu et al., 2015 [19] developed an algorithm for estimating surface POC concentration
in the highly turbid waters of the Pearl River estuary in China. Their algorithm is based on band
ratios of the equivalent reflectance computed for MODIS/AQUA (Moderate Resolution Imaging
Spectro-radiometer) spectral bands (412, 443, 488, 531, 551, 667, 678 and 748 nm). The equivalent
reflectance is defined by Equation (8):

requi() =

∫ λmax

λmin

f(λ)r(λ)L(λ)dλ/
∫ λmax

λmin

f(λ)L(λ)dλ (8)

where requi(λ) is the equivalent reflectance for a band with a central wavelength λ, f(λ) is the spectral
response function, available from the Ocean Color website (http://oceancolor.gsfc.nasa.gov/), r(λ) is the
in situ remote-sensing reflectance, L(λ) is the solar irradiance at mean Earth-Sun distance, λmin is equal
to 350 nm, and λmax is 800 nm. The authors selected an approach based on two different band ratios,
and used an optimization approach to determine the best band combination:

POC = b0 + b1
requi(λ1)

requi(λ2)
+ b2

requi(λ3)

requi(λ4)
(9)

After testing all possible band combinations, the algorithm achieved the best fit with λ1 = 678 nm,
λ2 = 488 nm, λ3 = 748 nm, and λ4 = 412 nm. The regression coefficients are b0 = 0.0078, b1 = 1.3973,
and b2 = −1.2397. Equation (9) is named Liu15. It was shown that the Rrs(λ) values at the central bands
are very similar to the equivalent reflectance values calculated using the band spectral response at all
visible bands of the different OCR [36]. For this reason, the central remote-sensing reflectance at 678,
488, 748, and 412 nm are used instead of the equivalent reflectance in this inter-comparison exercise.

It is worth noticing that the two-step algorithm developed by Woźniak et al. in 2016 [21], based on
the particulate absorption (ap) coefficient at 570 and 675 and the concentration of SPM, was not tested
because of the complexity in retrieving ap in the green and in the red from OCR [43].

2.3.2. Absolute Rrs-based Algorithms

Le16- Using a dataset of in situ POC concentrations matched with satellite Rrs(λ), Le et al., 2016 [23]
developed multiple regression algorithms for two river-dominated estuaries in the northern Gulf of
Mexico (the Louisiana Continental Shelf and Mobile Bay). The multiple linear regression models which

http://oceancolor.gsfc.nasa.gov/
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showed the lowest prediction error between log(POC) (log-transformed base 10) and Rrs(λ) are given
in Equation (10) (named Le16-1) and in Equation (11) (L16-2). L16-1 and L16-2 were developed using
MODIS and SeaWiFS (Sea Viewing Wide Field of View Sensor) spectral bands, respectively.

log(POC)= −126.22 × Rrs(488) − 120.74 × Rrs(531) + 245.42 × Rrs(547) − 493.54 ×
Rrs(667) + 489.3 × Rrs(678) − 0.59

(10)

log(POC) = −115.69 × Rrs(490) − 53.64 × Rrs(510) + 172.13 × Rrs(555) − 40.06 × Rrs(670) − 0.54 (11)

2.3.3. Color Index Algorithm

Le18—In 2018, Le et al., [22] formulated two algorithms using in situ POC data from the SeaWiFS
Bio-optical Archive and Storage System (SeaBASS) of NASA (https://seabass.gsfc.nasa.gov) and
satellite Rrs(λ) data obtained from matchups. This approach uses three spectral bands centered at
490 nm, 550 nm, and 670 nm to determine a color index (CIPOC, Equation (12)), from which the POC
concentration is estimated (Equations (13) and (14)). This approach is named Le18-1.

CIPOC = Rrs(555) − (Rrs(490) + (555 − 490)/(670 − 490) × (Rrs(670) − Rrs(490))) (12)

CIPOC ≤ −0.0005: log(POC) = 185.72 × CIPOC + 1.97 (13)

CIPOC ≥ −0.0005: log(POC) = 485.19 × CIPOC + 2.1 (14)

Le et al. formulated another algorithm based on the blue-to-green ratio (Equations (15) and (16)).
The color index (Equation (12)) is used to pick up a suitable relationship. Indeed, the authors indicated
that Equation (15) used when the CIPOC is less than –0.0005 is more suitable for open waters, whereas
Equation (16) used when CIPOC is greater than –0.0005 is suitable for coastal waters, respectively.

CIPOC ≤ −0.0005: log(POC) = −0.66 × log[Rrs(443)/Rrs(555)] + 2.06 (15)

CIPOC ≥ −0.0005: log(POC) = −1.38 × log[Rrs(443)/Rrs(555)] + 2.31 (16)

2.4. Statistical Indicators Used for Model Development and Validation

To assess the performance of the 12 selected algorithms, we use the graphical comparison of
model predictions and observations as well as quantitative statistical metrics of differences between
the corresponding predictions of model and observations. These indicators include the root mean
square deviation for log-transformed data (RMSDlog) (Equation (17)), the root mean square Deviation
for un-transformed data (RMSD) (Equation (18)), and the median absolute percent difference (MAPD)
(Equation (19)):

RMSDlog =

 N∑
i=1

(
log

(
POCmod

i

)
− odD

(
POCobs

i

))2
/N


1
2

(17)

RMSD =

 N∑
i=1

(
POCmod

i − POCobs
i

)2
/N


1
2

(18)

MAPD = median


∣∣∣∣∣∣∣POCmod

i − POCobs
i

POCobs
i

∣∣∣∣∣∣∣
× 100 (19)

https://seabass.gsfc.nasa.gov
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where POCi
obs and POCi

mod are the in situ and model—derived POC concentration. The mean bias
(MB) (Equation (20)) and the median ratio (MR) (Equation (21)) are also calculated:

MB =
1
N

N∑
i=1

(
POCmod

i − POCobs
i

)
(20)

MR = median

POCmod
i

POCobs
i

. (21)

The statistical indicators obtained for the 12 algorithms are normalized to be compared graphically.
For that purpose, the normalized statistical indicators for each algorithm are defined as follows:

MAPDnorma(j) =
MAPD(j)

maximum(MAPD(j), j = 1, k)
(22)

RMSDnorma
log (j) =

RMSDlog(j)

maximum
(
RMSDlog(j), j = 1, k

) (23)

MBnorma(j) =

∣∣∣MB(j)
∣∣∣

maximum
(∣∣∣MB(j)

∣∣∣, j = 1, k
) (24)

MRnorma(j) =

∣∣∣MR(j) −R
∣∣∣

maximum
(∣∣∣MR(j) −R

∣∣∣, j = 1, k
) (25)

where j identifies the algorithm (j =”S08-1”,”S08-2”, “W16-1”, “W16-2”, “Hu16-1”, “Hu16-2”, “Hu16-3”,
“Liu-15”, “Le16-1”, Le16-2”, “Le18-1”, “Le18-2”) and k is the number of tested algorithms.

Radar charts are also used to compare the performance of the algorithms. A radar chart is
a graphical method displaying multi parameters in the form of a two-dimensional chart. The radar
plots in used in the present study give an overview of the statistical indicators by displaying the
normalized MAPD, RMSDlog, MB and MR (Equations (22)–(25)). For the development of the new
model, we also use a half-matrix representation of the determination coefficient (R2) calculated between
POC and Rrs(λi)/Rrs(λj) as it does not matter which Rrs(λ) is taken as a numerator or denominator.

3. Results and Discussion

3.1. Development of a New Algorithm for POC

As explained in Section 2.3.1, empirical algorithms based on band ratios at two different
wavelengths were first developed for open waters. More recently, they were adjusted to coastal
waters but from limited in situ datasets in terms of the number of samples or geographical distribution
(Table 3). The objective of this section is to define a band ratio algorithm for coastal waters using the
large DSD dataset. The use of band ratios allows the influence of potential errors due to atmospheric
correction being minimized [21].

The performance of different color ratios is tested considering only the hyperspectral Rrs(λ)
measurements in DSD (N=298, representing 72.5% of DSD). For each spectrum, Rrs(λ) in the visible
part (400–700 nm) is measured at 300 different wavelengths (Rrs(λi)). Mathematically, the different
Rrs(λ) ratios, defined as Rrs(λi)/Rrs(λj) where i , j, correspond to k-combinations (Rrs(λi), Rrs(λj)) of
the set composed of DSD hyperspectral Rrs(λ). The number of k-combinations is equal to 44,850.
It corresponds to the binomial coefficient calculated using the factorials according to:(

n
k

)
=

n!
k!(n− k)!

(26)
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where k = 2 and n = 300. So, 44,850 linear type II regressions were computed between POC and
the different Rrs(λi)/Rrs(λj) ratios. Both POC concentration and Rrs(λi)/Rrs(λj) were log-transformed
to base 10. Figure 7 summarizes through a half matrix representation the value of the coefficient of
determination (R2) for the 44,850 regressions. The highest R2 values (about 0.68) are obtained for
band ratios Rrs(λi)/Rrs(λj) with λi ranging from 675 to 695 nm and λj ranging from 490 and 590 nm.
It corresponds to red-to-blue, red-to-green, or red-to-yellow ratios. However, as the spectral region
around 680 nm corresponds to the maximum of chlorophyll fluorescence [44,45], the Rrs(λ) signal
may be contaminated by light emission, which may bias the POC retrieval. Figure 7 shows that
Rrs(λ) between 660–670 nm and Rrs(λ) between 490–560 are “statistically promising” spectral band
combinations. The advantage is that many ocean color sensors have bands in the corresponding
spectral region. These results are in agreement with those of Woźniak et al. in 2016, who obtained
good performance for a blue-to-red ratio (Rrs(490)/Rrs(625) (Equation (4)). As MERIS data will be
used in the matchup exercise, a focus is performed on bands for that sensor, selecting the following
red-to-green and red-to-blue band ratios: Rrs(665)/Rrs(555), Rrs(665)/Rrs(510), Rrs(665)/Rrs(490) (Table 4
and Figure 8). Note that these bands are also available on OLCI, SeaWiFS, and VIIRS (Visible Infrared
Imaging Radiometer Suite).

Because of the slightly different statistics (in terms of R2 and RMSD) observed between POC and the
different latter band ratios (see Table 4), a linear (and polynomial) type II regression (log-transformed
data) based on the maximum band ratio (MBR) are also examined (Figure 9). Considering both
statistical and graphical criteria, the linear type II regression based on MBR presents rather better
performance with linear type II regression based on a single band ratio. The coefficient of determination
is a bit higher (R2 = 0.67 instead of R2 between 0.59 and 0.66) and the RMSDlog is a bit lower (RMSDlog

= 0.242 instead of RMSDlog between 0.246 and 0.267) (Table 4). As already discussed by [46] for Chla
estimates from OC4 algorithm, the MBR allows to switch from a given band ratio to another, thereby
avoiding, in some cases, a low and potentially noisy band ratio. Thus, in the context of satellite
applications, it is expected that using MBR instead of a single band ratio allow maximization of the
model precision over the entire range of POC. Among the three band ratios, Rrs(665)/Rrs(490) and
Rrs(665)/Rrs(555) are maximal for POC above 500 µg L−1 and POC below 500 µg L−1, respectively
(Figure 10). The latter pattern can be explained by the fact that, over their broad range of variability,
SPM and POC tend, at first order, to co-vary in coastal waters (R2 = 0.63 on DSW). For instance,
high SPM values increase Rrs in the red, while associated high POC values will increase absorption in
the blue-green part of the spectrum, hence decreasing Rrs(490). Although the Rrs(665)/Rrs(510) ratio
is maximum for only 4 data points over the present dataset, this ratio is more frequently selected
as the MBR over the MERIS coastal archive (not shown here). As observed for OC4 [46,47], there is
an overlap, over the POC range, in the bands selected for the MBR definition, so there is a smooth
transition for MBR around 0.2, which corresponds to POC concentrations between 100 and 500 µg
L−1 (Figure 10). Second and third order polynomial regressions, which theoretically allow for a better
account of specific spectral features, were also tested. Statistical results obtained for the second-order
polynomial are similar to those obtained for the type II linear regression (Figure 9, Table 4) while those
for the third polynomial regression do not show any improvements (not shown). Therefore, only the
linear (Equation (27)) and second-order polynomial (Equations (28)–(29)) fits based on the maximum
band ratio, named CPOC-1st and CPOC-2nd (Coastal POC), will be evaluated in the following section.

POC = 100.928X+2.875 (27)

POC = 100.025X2+0.945X+2.873 (28)

with

X = log10

[
maximum

(
Rrs(665)
Rrs(490)

,
Rrs(665)
Rrs(510)

,
Rrs(665)
Rrs(555)

)]
(29)
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Table 4. Statistical results for POC algorithms. The formulations are power function, POC = 10a1X+a0

or second-order polynomial POC = 10a2X2+ a1X + a0 (log is for decimal logarithm).

X Functional Form ao a1 a2 R2 RMSDlog

log(Rrs(665)/Rrs(555)) Power 3.097 1.122 0.59 0.267
log(Rrs(665)/Rrs(510)) Power 2.926 0.906 0.65 0.249
log(Rrs(665)/Rrs(490)) Power 2.861 0.833 0.66 0.246

log(MRB) Power 2.875 0.928 0.67 0.242

log(MRB) Second-order
polynomial 2.873 0.945 0.025 0.67 0.242
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Figure 10. Relationships (log-transformed) between POC and the maximum band ratio (MBR)
developed from the DSD dataset (N = 411). Symbols indicate which ratio is maximal for each data point.
For open circles, it is Rrs(665)/Rrs(555), which is maximum, whereas for crosses and filled triangles, it is
Rrs(665)/Rrs(490) and Rrs(665)/Rrs(510), respectively.
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3.2. Inter-comparison Exercise of Existing Algorithms

The inter-comparison exercise is carried out on DSV (N = 195). Because some algorithms (W16,
Le16 and Liu15) require Rrs(λ) at wavelengths available from hyperspectral measurements only,
multi-spectral measurements of DSV cannot be used for their evaluation. The W16-1, W16-2, Le16-2,
and Liu15 algorithms are therefore tested using 150, 146, and 144 data points, respectively. The number
of used hyperspectral data changes based on the availability of the bands required by each algorithm.
DSV was however not restricted to hyperspectral data to allow a wide representativeness of this
validation dataset in terms of geographical distribution as well as biogeochemical and optical variability.
The inter-comparison exercise is realized in two steps. First, the performance of the algorithms was
assessed using hyperspectral and multispectral data (when possible) to cover a wide range of variability.
Second, the inter-comparison exercise was performed on a consistent number of hyperspectral data
(N = 144) to observe if the number of data impacts the ranking of the algorithms’ performance.

Figure 11 shows POC concentration derived from the different algorithms described in Section 2.3
and Table 3 against in situ POC measurements. Figure 12 compares the histograms of the frequency
distribution of in situ and model-derived POC concentrations. Relevant statistical metrics are
summarized in Table 5. The Le18-1 algorithm presents the highest MAPD, MB, RMSDlog and MR
values, and a much wider POC distribution compared to the in-situ ones (Figures 11f and 12f). For the
organic-dominated waters, Le18-1 performs quite well as data points (green dots) are distributed along
the 1:1 line. However, for mixed or organic-dominated waters, the variability in POC concentration is
not reproduced and modeled POC values can be 100 times higher than in situ ones. In view of these
results, this algorithm was excluded from further steps of the inter-comparison exercise. The statistical
metrics (Table 5) provide a range of values among the 11 remaining algorithms for which the MAPD
values vary between 38.83% and 64.40%, RMSDlog between 0.27 and 0.44, MR between 1.04 and 1.59,
and MB between −104.78 and 1237 µg L−1. Note that the Liu15 algorithm generates 10 negative
POC values, which were not considered within the log-scale statistics may be leading to an artificial
increase in the algorithm performance. The radar plot in Figure 13 gives an overview of the statistical
indicators by displaying the normalized MAPD, RMSDlog, MB and MR (Equations (20–23)). The best
performance, related to the smallest area in the normalized radar diagram (Figure 13), is obtained for
the Hu15-3 algorithm. The Hu15-3 presents the smallest MAPD (38.87%), the smallest RMSDlog (0.27),
and an MR close to one (1.11) (Table 5). The Hu15-3 algorithm provides relatively good performance
for organic-dominated (green dots close to the 1:1 line in Figure 11c). Data points sampled in mixed
waters are scattered but follow the 1:1 line. However, for mineral-dominated waters, the Hu15-3
algorithm tends to underestimate high concentrations (POC > 1000 µg L−1) (Figure 11c and 12c) and
overestimates POC concentrations lower than 1000 µg L−1 (blue dots in Figure 11c). This results in the
the regression slope between in situ and derived POC being lower than 1 (= 0.5). Similar observations
can be made for the Hu15-2 and Hu15-1 algorithms.

The S08-1 and S08-2 algorithms provide accurate estimates at low concentrations for
organic-dominated and mixed waters (around 100–200 µg L−1), as it was developed mainly from
data collected in open ocean waters. The performances of these algorithms are degraded at high
concentrations, and for mineral dominated waters (blue dots in Figure 11h,i). Two Biosope data points
in DSV were used previously by Stramski et al. (2008) to establish the S08-1 and S08-2 relationships
and may artificially increase the performance of the S08-1 and S08-2. The performances of the S08
algorithms however do not change when removing these Biosope data points. The performance of
the L18-2 algorithm is quite similar to the performance of the S08-1, 2 (Figure 11g, Tables 5 and A1).
This was expected as Le18-2, S08-1 and S08-2 are based on a blue-to-green ratio.

Woźniak’s algorithm W16-1 presents the best linear fit with a slope of 1.1. Both W16-1 and W16-2
algorithms overestimate POC concentration in mineral-dominated waters and underestimate POC
concentration in organic-dominated and mixed waters (Figure 11k,l). For the W16-2 algorithm, data are
less scattered and more accurate estimates of POC are achieved, especially for POC concentrations
around 100 mg m−3. This results in MAPD and RMSDlog being 61.32% and 0.337 for W16-2, respectively,
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against 64.08% and 0.427 for W16-1. The histograms in Figure 12k,l show that the shape of the frequency
distribution of POC estimates and in situ data differ. The peak of frequency between 200 and 500 µg L−1

observed for the in-situ data is absent for modeled data.
Concerning the Liu15 algorithm, despite the fact that this algorithm was developed for highly

turbid waters, it does not provide better POC retrievals over the mineral-dominated water dataset
(Figure 11j and Table 5).

The second step of the inter-comparison exercise, performed on the same number of hyperspectral
data (N = 144), does not change the respective statistical results for the different algorithms, and Hu15-3
remains the best algorithm (Appendix A).

Table 5. Statistics obtained on DSV for the tested algorithms. The best results for each statistic are
shown in bold.

Algorithms N MAPD MB RMSDlog RMSD MR R2 Slope Intercept Negative
Value

CPOC-1st 195 38.37 −2.77 0.25 488.02 1.03 0.60 0.78 0.58 0
CPOC-2nd 195 37.48 0.54 0.25 489.88 1.02 0.60 0.78 0.58 0

Hu15-1 195 64.40 29.45 0.32 581.37 1.55 0.39 0.32 1.9 0
Hu15-2 195 38.83 −104.8 0.28 582.1 1.14 0.48 0.35 1.72 0
Hu15-3 195 38.87 −74.53 0.27 589.8 1.11 0.47 0.5 1.31 0
Le16-1 195 61.75 127.5 0.38 943.3 1.52 0.22 0.4 1.7 0
Le16-2 144 60.89 1237 0.44 4715 1.59 0.42 0.9 0.46 0
Le18-1 195 1781 1,340,760 1.76 13,608,584 18.81 0.08 0.94 1.48 0
Le18-2 195 68.94 157.7 0.35 651.5 1.63 0.39 0.48 1.52 0
Liu15 134 62.71 202.8 0.38 749.4 1.4 0.28 0.62 1.1 10
S08-1 195 45.09 −60.53 0.3 584.0 1.26 0.39 0.36 1.73 0
S08-2 195 49.19 44.14 0.29 590.4 1.41 0.48 0.47 1.51 0
W16-1 150 64.29 214.9 0.44 842.5 1.04 0.48 1.13 −0.33 0
W16-2 146 61.32 247.5 0.34 715.1 1.48 0.53 0.91 0.35 0
S08-1* 193 45.46 −61.03 0.30 587.0 1.26 0.38 0.35 1.75 0
S08-2 * 193 49.19 44.47 0.30 593.5 1.41 0.48 0.46 1.52 0

* Removed Biosope data.
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2. Green, red, and blue dots correspond to organic-dominated, mixed, and mineral-dominated waters, 
respectively. Gray dots indicate the in situ data points without information of SPM that cannot be 
classified according to the POC/SPM ratio. The black dashed line is the 1:1 line, and the solid red line 
is the type II linear regression. 

Figure 11. Comparison of in situ and model-derived POC for the selected algorithms (log-transformed
data). Each subplot was made using a different algorithm to retrieve POC: (a) Hu15-1; (b) Hu15-2;
(c) Hu15-3; (d) Le16-1; (e) Le16-2; (f) Le18-1; (g) Le18-2; (h) S08-1; (i) S08-2; (j) Liu15; (k) W16-1;
(l) W16-2. Green, red, and blue dots correspond to organic-dominated, mixed, and mineral-dominated
waters, respectively. Gray dots indicate the in situ data points without information of SPM that cannot
be classified according to the POC/SPM ratio. The black dashed line is the 1:1 line, and the solid red
line is the type II linear regression.
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Figure 12. Frequency distribution of in situ (grey) and model-derived (white) POC. Each subplot
was made using a different algorithm to retrieve POC: (a) Hu15-1; (b) Hu15-2; (c) Hu15-3; (d) Le16-1;
(e) Le16-2; (f) Le18-1; (g) Le18-2; (h) S08-1; (i) S08-2; (j) Liu15; (k) W16-1; (l) W16-2. The dashed lines
represent the median of in situ POC measurements for DSV (=391 µg L−1), and the solid line the median
values of POC estimates. The median values of POC estimates (M) are indicated in each panel.
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regression. The MAPD is 37.48%, the RMSDlog is 0.25, MB is = 0.54, MR is equal to 1.02, and the 
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matter, as opposed to any regional aspects. The shape of the POC distribution of model-derived and 
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is slightly shifted towards higher POC values. This results in the median calculated for modeled data 
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Figure 13. Comparison of the statistical performance of the eleven algorithms. The algorithms
were tested using hyperspectral and multispectral data. The number of data changes according the
considered algorithm (Table 5).

3.3. Performance of the New Algorithms

The radar plot in Figure 14 and Table 5 illustrate that the CPOC-1st and CPOC-2nd algorithms
improve the overall performance as compared to Hu15-3 algorithm. The second-order polynomial
relationship shows the best performance with a smaller MAPD and smaller MB than the Type II linear
regression. The MAPD is 37.48%, the RMSDlog is 0.25, MB is = 0.54, MR is equal to 1.02, and the
regression slope is around 0.78. Most of the POC values in waters identified as mineral-dominated are
overestimated, whereas the POC values in organic-dominated waters are underestimated (Figure 15).
We tried to develop a specific second-order polynomial regression according to the type of waters
to adjust the POC concentration from Equation (28) according to the POC/SPM ratio with SPM
concentration from Han et al., 2016. Results are not shown as it does not improve the accuracy of
the estimates. As no specific regional pattern has been noticed on the validation results (not shown),
the performance of the algorithm is more related to the chemical nature of the bulk suspended particulate
matter, as opposed to any regional aspects. The shape of the POC distribution of model-derived and in
situ data are quite similar (Figures 15b and 16b). Nevertheless, the maximum of occurrence is slightly
shifted towards higher POC values. This results in the median calculated for modeled data being a bit
higher (425 µg L−1 instead of 391 µg L−1), whereas the mean values are equal (=569 µg L−1).
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Figure 14. Statistical performance of the new developed algorithms named CPOC (Coastal POC) as
compared to the Hu15-3 algorithm. The normalized MAPD, MR, MB, and RMSDlog were calculated
on DSV. The black line and red line present statistics obtained with the CPOC-1st and CPOC-2nd
algorithm, respectively.

The matchup analysis was conducted by applying CPOC-2nd on the satellite Rrs(λ) measurements
gathered in the match-up dataset described in Section 2.2. The matchup analysis shows that the
CPOC-2nd algorithm, developed only on Rrs(λ) and POC in situ data, is able to estimate satisfactorily
the surface POC concentration from satellite observation over coastal waters. The histograms (Figure 17)
show a good agreement between the in situ and estimated maximum values (around 100 µg L−1),
as well as between the in situ and estimated median values (102.5 and 108.4 µg L−1), respectively.
The MAPD, RMSDlog, MR, and MB values are 34.16%, 0.24, 0.92, and −25.93 µg L−1, respectively [43,48].
Note that overestimations and underestimations of POC values are only observed for two of the eight
sampling stations (Banyuls-sur-Mer and Marseille). These differences can be due to uncertainties on
in situ POC measurements as well as satellite remote-sensing reflectance (partly due to atmospheric
corrections uncertainties). Concerning this latter aspect, we verified the retrieval accuracy of Rrs based
on an extensive matchup exercise of 760 coincident data points collected from the AERONET-OC sites
(Ocean Color component of the Aerosol Robotic Network). A bias of 3.4 × 10−3, 1.5 × 10−3, −1.9 × 10−4

between in situ AERONET and MERIS Rrs(λ) at 490, 555 and 665 has been observed, respectively.
Taking into account these bias values for the MERIS Rrs(λ) values over the SOMLIT matchup dataset,
we showed that this correction only slightly modifies the POC estimates. Inaccuracies can also be
explained by the fact that the range of POC concentration used in this matchup exercise is lower than
the range of POC concentration of DSD. For instance, the median POC value for the SOMLIT in situ
dataset is 108.4 µg L−1, while it reaches 366.4 for DSD. The fact that the statistical values are better for
the match-up data set than for DSV may be partly explained by the fact that the SOMLIT POC data
set used for the match-up exercise gathers less mineral dominated waters (38 %) for which a slight
over-estimation by CPOC-2nd has been observed, against 50% for DSV.
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situ data points without information of SPM that cannot be classified according to the POC/SPM ratio. 
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algorithm (black contour). The dashed lines represent the median of in situ POC measurement of DSV 
(=391 μg L−1), and the solid line the median value of model-derived POC value of DSV. 

 
Figure 16. (a) Comparison of in situ and model-derived POC for the CPOC-2nd algorithm. The dashed 
line is the 1:1 line, and the solid line is the type II linear regression. Green, red and blue dots 
correspond to organic-dominated, mixed and mineral-dominated waters; gray dots indicate the in-
situ data points without information of SPM that cannot be classified according to the POC/SPM ratio. 
(b) The frequency distribution of in situ (grey) and POC measurements derived from the CPOC-2nd 
algorithm (black contour). The dashed lines represent the median of in situ POC measurement of DSV 
(=391 μg L−1), and the solid line the median value of model-derived POC value of DSV. 

Figure 15. (a) Comparison of in situ and model-derived POC for the CPOC-1st algorithm. The dashed
line is the 1:1 line, and the solid line is the type II linear regression. Green, red and blue dots correspond
to organic-dominated, mixed and mineral-dominated waters; gray dots indicate the in-situ data points
without information of SPM that cannot be classified according to the POC/SPM ratio. (b) The frequency
distribution of in situ (grey) and POC measurements derived from the CPOC-1st algorithm (black
contour). The dashed lines represent the median of in situ POC measurement of DSV (=391 µg L−1),
and the solid line the median value of model-derived POC value of DSV.
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Figure 16. (a) Comparison of in situ and model-derived POC for the CPOC-2nd algorithm. The dashed 
line is the 1:1 line, and the solid line is the type II linear regression. Green, red and blue dots 
correspond to organic-dominated, mixed and mineral-dominated waters; gray dots indicate the in-
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Figure 16. (a) Comparison of in situ and model-derived POC for the CPOC-2nd algorithm. The dashed
line is the 1:1 line, and the solid line is the type II linear regression. Green, red and blue dots correspond
to organic-dominated, mixed and mineral-dominated waters; gray dots indicate the in-situ data points
without information of SPM that cannot be classified according to the POC/SPM ratio. (b) The frequency
distribution of in situ (grey) and POC measurements derived from the CPOC-2nd algorithm (black
contour). The dashed lines represent the median of in situ POC measurement of DSV (=391 µg L−1),
and the solid line the median value of model-derived POC value of DSV.
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Shelf, where the 2016 algorithm of Le et al. has been specifically developed. The MERIS monthly 
mean POC concentrations (June 2006) are displayed in Figure 18. The POC estimates were derived 
using the CPOC-2nd algorithm (Figure 18a) and the Le16-2 algorithm (Equation (11)), which is 
suitable for MERIS data (Figure 18b). The spatial patterns of the POC concentration derived using the 
CPOC-2nd mimics the spatial distribution observed using the Le16 algorithm. Figure 18a,b shows a 
strong gradient from the inner to outer shelves, which was observed by Le et al. from in situ 
measurements. A slight overestimation of POC by CPOC-2nd compared to Le16-2 is observed when 
all pixels are taken into account (Figure 18c). However, by restricting only the comparison to coastal 
pixels (as defined by Rrs(665) > 0.0012 [49]) for which the CPOC-2nd has been developed, an excellent 
agreement between the two POC products is observed (Figure 18d–f). The two histograms are more 
similar than previously, and the medians are closer: 700.25 μg L−1 for Le16-2 and 627.50 μg L−1 for 
CPOC-2nd estimates. This pattern shows that part of the discrepancies between the Le16-2 and 
CPOC-2nd are related to open water situations for which the CPOC-2nd and Le16-2 are not suitable.  

Figure 17. (a) Comparison of in situ and model-derived POC concentrations using the matchup
dataset. The dashed line displays the 1:1 line and the solid one the linear type II regression. Green,
red and blue dots correspond to organic-dominated, mixed and mineral-dominated waters, respectively.
(b) Frequency distribution of in situ (grey) and POC measurements derived from the CPOC-2nd
algorithm (black contour). The dashed lines represent the median of in situ POC measurement
(=108.4 µg L−1), and the solid line the median value of model-derived POC value.

3.4. Satellite POC Estimates for Coastal Regions

The present algorithm (CPOC-2nd) is applied to MERIS data over the Louisiana Continental Shelf,
where the 2016 algorithm of Le et al. has been specifically developed. The MERIS monthly mean
POC concentrations (June 2006) are displayed in Figure 18. The POC estimates were derived using
the CPOC-2nd algorithm (Figure 18a) and the Le16-2 algorithm (Equation (11)), which is suitable for
MERIS data (Figure 18b). The spatial patterns of the POC concentration derived using the CPOC-2nd
mimics the spatial distribution observed using the Le16 algorithm. Figure 18a,b shows a strong
gradient from the inner to outer shelves, which was observed by Le et al. from in situ measurements.
A slight overestimation of POC by CPOC-2nd compared to Le16-2 is observed when all pixels are
taken into account (Figure 18c). However, by restricting only the comparison to coastal pixels (as
defined by Rrs(665) > 0.0012 [49]) for which the CPOC-2nd has been developed, an excellent agreement
between the two POC products is observed (Figure 18d–f). The two histograms are more similar than
previously, and the medians are closer: 700.25 µg L−1 for Le16-2 and 627.50 µg L−1 for CPOC-2nd
estimates. This pattern shows that part of the discrepancies between the Le16-2 and CPOC-2nd are
related to open water situations for which the CPOC-2nd and Le16-2 are not suitable.
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Figure 18. Near-surface POC concentration model-derived from MERIS, Louisiana Continental Shelf,
June 2006 (a) using CPOC-2nd (b) Le16-2 algorithms. The black line in the upper left panel delimits
pixels, close to the coast, with Rrs(665) > 0.0012 [49] and offshore pixels with Rrs(665) < 0.0012 (c,d).
Density plots of POC as derived with the CPOC-2nd and Le16-2 algorithms for (c) all the pixels of the
scene (d) only for pixels with Rrs(665) > 0.0012. Distribution of POC estimates with CPOC-2nd and
Le16-2 algorithm for (e) all pixels of the scene (f) only for pixels with Rrs(665) > 0.0012. The black and red
lines represent the median of POC estimates using the Le16-2 and CPOC-2nd algorithms, respectively.

4. Concluding Remarks

A variety of POC inversion algorithms based on different approaches were evaluated from
an extensive dataset composed of coincident measurements of POC and Rrs(λ), which were sampled in
highly contrasting bio-optical coastal environments. While these existing algorithms perform relatively
well over POC ranges for which they were developed, they present some lack of accuracy over a broad
range of POC concentrations. With the objective of improving POC estimates at the global scale
for coastal waters, a new empirical relationship was proposed based on a second-order polynomial
regression using the maximum band ratio. The new algorithm (CPOC) shows relevant capacity to
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estimate POC concentrations on the in-situ validation dataset (MAPD = 37.48%, RMSDlog = 0.25,
MB = 0.54 µg L−1, and MR = 1.02). Robust results were found when the algorithm was tested on the
matchup dataset as illustrated by the consistency in the median values computed for the modeled
POC (102.5 µg L−1) and the in situ POC datasets (108.4 µg L−1). While the use of a spectral band
ratio to retrieve POC reduces the impact of atmospheric corrections, the latter continues to have
an impact as the accuracy of Rrs retrieval is spectrally dependent [50]. The new algorithm was applied
to MERIS data in the Louisiana Continental Shelf in June 2006. The observed spatial and temporal
(not shown) patterns were in good agreement with the patterns observed by Le et al. who developed
an algorithm specifically for this region in 2006. The algorithm developed in this study performs
consistently across the three types of water (mineral-dominated, mixed, and organic-dominated).
However, the POC concentration in mineral-dominated waters tends to be overestimated, whereas
POC concentration in organic-dominated waters tends to be underestimated. Second-order polynomial
regressions specific to the type of waters to adjust the POC concentration according to the POC/SPM
ratio were evaluated, but such formulations did not improve the estimates. From these results, several
key points of development are highlighted as necessary to the development of greater knowledge
pertaining to the composition of the particulate pool.

The use of POC/SPM ratio as a proxy for particulate composition according to the criteria of [39]
should be re-examined. The criteria established by [39] to define the type of waters were fixed regarding
the spectral shape of the absorption coefficient and the particle size distribution (PSD). This exercise was
based on measurements sampled from optically contrasted conditions but in a restricted area (Imperial
Beach, San Diego, Tijuana River watershed). It will be interesting to re-examine these criteria on a larger
number of observations performed in different coastal regions to ensure their possible generalization
at a global scale. However, in many cases, PSD is not available from the optical measurements
and measurements of the particulate absorption spectra using benchtop spectrophotometers are not
systematically performed. In this framework, the ratio of the particulate backscattering to scattering
coefficient (bbp/bp), measured by commercial optical backscattering sensors, such as WetLabs Eco-VSF
and ECO-BB, could be a valuable parameter. Indeed, previous studies [37,51,52] have shown that
bbp/bp could be an indicator of the amount of organic material relative to mineral particles. It would be
interesting to re-conduct these studies on coincident POC, Rrs(λ), SPM, and bbp/bp in situ measurements
to define some criteria at the global scale and to better characterize which kind of particles dominate in
a defined water mass.
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Appendix A

Table A1. Statistics obtained on the 144 hyperspectral data of DSV with hyperspectral Rrs only.
Multispectral data coming from CASES [36], Biosope [37] and Coastlooc [26,27] were removed.

Algorithms N MAPD MB RMSDlog RMSD MR R2 Slope Intercept Negative
Value

Hu15-1 144 55.44 −50.55 0.31 651.0 1.41 0.37 0.28 1.98 0
Hu15-2 144 41.01 −142.6 0.29 666.9 1.14 0.41 0.31 1.82 0
Hu15-3 144 41.77 −101.3 0.28 677.6 1.11 0.41 0.44 1.48 0
Le16-1 144 62.68 126.8 0.4 1084 1.51 0.14 0.33 1.87 0
Le16-2 144 60.89 1237 0.44 4715 1.59 0.42 0.9 0.46 0
Le18-1 144 2818 1,801,776 1.87 15,865,153 29.19 0.03 0.68 2.26 0
Le18-2 144 53.89 50.53 0.32 674.9 1.44 0.37 0.43 1.63 0
Liu15 134 62.71 202.8 0.38 749.4 1.4 0.28 0.62 1.1 10
CPOC-2nd 144 44.62 22.60 0.27 561.7 1.18 0.55 0.77 0.64 0
S08-1 144 42.82 −139.5 0.3 665.5 1.16 0.37 0.31 1.83 0
S08-2 144 49.59 17.34 0.3 675.4 1.4 0.41 0.42 1.64 0
W16-1 144 64.08 228.8 0.43 859.7 1.18 0.45 1.06 −0.15 0
W16-2 144 61.32 252.4 0.34 719.9 1.51 0.53 0.9 0.39 0Remote Sens. 2019, 11, x FOR PEER REVIEW 28 of 31 

 
Figure A1. Comparison of the statistical performance of the eleven algorithms. The algorithms were 
tested using hyperspectral data only. The number of data (N = 144) is the same for the 11 algorithms 
(Table 5). 

References 

1. Ward, N.D.; Bianchi, T.S.; Medeiros, P.M.; Seidel, M.; Richey, J.E.; Keil, R.G.; Sawakuchi, H.O. Where 
carbon goes when water flows: Carbon cycling across the aquatic continuum. Front. Mar. Sci. 2017, 4, 
doi:10.3389/fmars.2017.00007. 

2. Keller, D.P.; Lenton, A.; Littleton, E.W.; Oschlies, A.; Scott, V.; Vaughan, N.E. The effects of carbon dioxide 
removal on the carbon cycle. Curr. Clim. Chang. Rep. 2018, 4, 250–265. 

3. Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, 
P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the global carbon cycle: Integrating inland waters into 
the terrestrial carbon budget. Ecosystems 2007, 10, 172–185. 

4. Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; 
Fortino, K.; Knoll, L.B.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. 
Oceanogr. 2009, 54, 2298–2314. 

5. Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; 
Mayorga, E.; Humborg, C.; et al. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 
355–359. 

6. Bauer, J.E.; Cai, W.J.; Raymond, P.A.; Bianchi, T.S.; Hopkinson, C.S.; Regnier, P.A. The changing carbon 
cycle of the coastal ocean. Nature 2013, 504, 61–70. 

7. Stramski, D.; Reynolds, R.A.; Mati Kahru; Mitchell, B.G. Estimation of particulate organic carbon in the 
ocean from satellite remote sensing. Science 1999, 285, 239–242. 

8. Loisel, H.; Nicolas, J.-M.; Deschamps, P.-Y.; Frouin, R. Seasonal and inter-annual variability of particulate 
organic matter in the global ocean. Geophys. Res. Lett. 2002, 29, 49:1–49:4. 

9. Mishonov, A.V.; Gardner, W.D.; Jo Richardson, M. Remote sensing and surface POC concentration in the 
south atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 2997–3015. 

10. Gardner, W.D.; Mishonov, A.V.; Richardson, M.J. Global poc concentrations from in-situ and satellite data. 
Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 718–740. 

11. Stramski, D.; Reynolds, R.A.; Babin, M.; Kaczmarek, S.; Lewis, M.R.; Rottgers, R.; Sciandra, A.; Stramska, 
M.; Twardowski, M.S.; Franz, B.A.; et al. Relationships between the surface concentration of particulate 
organic carbon and optical properties in the eastern south pacific and eastern atlantic oceans. Biogeosciences 
2008, 5, 171–201. 

Figure A1. Comparison of the statistical performance of the eleven algorithms. The algorithms were
tested using hyperspectral data only. The number of data (N = 144) is the same for the 11 algorithms
(Table 5).

References

1. Ward, N.D.; Bianchi, T.S.; Medeiros, P.M.; Seidel, M.; Richey, J.E.; Keil, R.G.; Sawakuchi, H.O. Where carbon
goes when water flows: Carbon cycling across the aquatic continuum. Front. Mar. Sci. 2017, 4. [CrossRef]

2. Keller, D.P.; Lenton, A.; Littleton, E.W.; Oschlies, A.; Scott, V.; Vaughan, N.E. The effects of carbon dioxide
removal on the carbon cycle. Curr. Clim. Chang. Rep. 2018, 4, 250–265. [CrossRef] [PubMed]

3. Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.;
Downing, J.A.; Middelburg, J.J.; et al. Plumbing the global carbon cycle: Integrating inland waters into the
terrestrial carbon budget. Ecosystems 2007, 10, 172–185. [CrossRef]

http://dx.doi.org/10.3389/fmars.2017.00007
http://dx.doi.org/10.1007/s40641-018-0104-3
http://www.ncbi.nlm.nih.gov/pubmed/30956937
http://dx.doi.org/10.1007/s10021-006-9013-8


Remote Sens. 2019, 11, 2849 27 of 29

4. Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.;
Fortino, K.; Knoll, L.B.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol.
Oceanogr. 2009, 54, 2298–2314. [CrossRef]

5. Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.;
Mayorga, E.; Humborg, C.; et al. Global carbon dioxide emissions from inland waters. Nature 2013, 503,
355–359. [CrossRef]

6. Bauer, J.E.; Cai, W.J.; Raymond, P.A.; Bianchi, T.S.; Hopkinson, C.S.; Regnier, P.A. The changing carbon cycle
of the coastal ocean. Nature 2013, 504, 61–70. [CrossRef]

7. Stramski, D.; Reynolds, R.A.; Kahru, M.; Mitchell, B.G. Estimation of particulate organic carbon in the ocean
from satellite remote sensing. Science 1999, 285, 239–242. [CrossRef]

8. Loisel, H.; Nicolas, J.-M.; Deschamps, P.-Y.; Frouin, R. Seasonal and inter-annual variability of particulate
organic matter in the global ocean. Geophys. Res. Lett. 2002, 29, 49:1–49:4. [CrossRef]

9. Mishonov, A.V.; Gardner, W.D.; Jo Richardson, M. Remote sensing and surface POC concentration in the
south atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 2997–3015. [CrossRef]

10. Gardner, W.D.; Mishonov, A.V.; Richardson, M.J. Global poc concentrations from in-situ and satellite data.
Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 718–740. [CrossRef]

11. Stramski, D.; Reynolds, R.A.; Babin, M.; Kaczmarek, S.; Lewis, M.R.; Rottgers, R.; Sciandra, A.; Stramska, M.;
Twardowski, M.S.; Franz, B.A.; et al. Relationships between the surface concentration of particulate organic
carbon and optical properties in the eastern south pacific and eastern atlantic oceans. Biogeosciences 2008, 5,
171–201. [CrossRef]

12. Stramska, M. Particulate organic carbon in the global ocean derived from seawifs ocean color. Deep Sea Res.
Part I Oceanogr. Res. Pap. 2009, 56, 1459–1470. [CrossRef]

13. Pabi, S.; Arrigo, K.R. Satellite estimation of marine particulate organic carbon in waters dominated by
different phytoplankton taxa. J. Geophys. Res. 2006, 111. [CrossRef]

14. Son, Y.B.; Gardner, W.D.; Mishonov, A.V.; Richardson, M.J. Multispectral remote-sensing algorithms for
particulate organic carbon (poc): The gulf of mexico. Remote Sens. Environ. 2009, 113, 50–61. [CrossRef]

15. Duforêt-Gaurier, L.; Loisel, H.; Dessailly, D.; Nordkvist, K.; Alvain, S. Estimates of particulate organic carbon
over the euphotic depth from in situ measurements. Application to satellite data over the global ocean. Deep
Sea Res. Part I Oceanogr. Res. Pap. 2010, 57, 351–367. [CrossRef]
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