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Abstract: Accurate and effective classification of lidar point clouds with discriminative features
expression is a challenging task for scene understanding. In order to improve the accuracy and the
robustness of point cloud classification based on single point features, we propose a novel point set
multi-level aggregation features extraction and fusion method based on multi-scale max pooling
and latent Dirichlet allocation (LDA). To this end, in the hierarchical point set feature extraction,
point sets of different levels and sizes are first adaptively generated through multi-level clustering.
Then, more effective sparse representation is implemented by locality-constrained linear coding (LLC)
based on single point features, which contributes to the extraction of discriminative individual point
set features. Next, the local point set features are extracted by combining the max pooling method
and the multi-scale pyramid structure constructed by the point’s coordinates within each point set.
The global and the local features of the point sets are effectively expressed by the fusion of multi-scale
max pooling features and global features constructed by the point set LLC-LDA model. The point
clouds are classified by using the point set multi-level aggregation features. Our experiments on two
scenes of airborne laser scanning (ALS) point clouds—a mobile laser scanning (MLS) scene point
cloud and a terrestrial laser scanning (TLS) scene point cloud—demonstrate the effectiveness of the
proposed point set multi-level aggregation features for point cloud classification, and the proposed
method outperforms other related and compared algorithms.

Keywords: point cloud classification; multi-level point sets; multi-scale features; max pooling

1. Introduction

Recently, lidar sensors have been widely used in many fields. Classification of laser scanning
point clouds is an important technology in the applications of automatic driving, intelligent city,
mapping, and remote sensing [1–4]. Due to a variety of complex objects with different sizes and
geometric structures in point clouds, accurate and efficient classification of point clouds becomes very
challenging [5,6]. Therefore, the research on point cloud classification is of great significance for scene
understanding and object perception.

A large number of point cloud classification approaches have been proposed over the past
decade. Those classification methods can be mainly classified into two categories: single point-based
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methods and point set-based methods. Generally, the single point-based methods mainly consist
of neighborhood selection, feature extraction, and classifier for each single point classification [5–9].
Among them, the methods of neighborhood selection mainly use radius, cylindrical region, or K-nearest
neighbor (KNN) [7,8] to construct the neighborhood. Feature extraction methods include low-level
feature extraction, higher level feature extraction, and feature selection based on low-level features.
The low-level features include normal vector and elevation feature [5,8], spin image [6,10], covariance
eigenvalue feature [11], view feature histogram (VFH) [12], and clustered view feature histogram
(CVFH) [13], among others. Higher level features are mainly extracted by manifold learning [9,14],
low-rank representation [15], sparse representation [6,16], and so on [17,18]. The most popular
classifiers mainly include linear classifiers [19], random forests [20], AdaBoost [21], and SVM (support
vector machine) [22]. For example, Mei et al. [9] extracted color information, normal vector, spin image,
and elevation features of each point using nearest neighbor points selected by radius. Then, the margin,
the co-graph, and the label constraints were used for feature learning and selection. Finally, the linear
classifier was used to classify all points. However, the features extracted by single point-based methods
are usually not stable and lack the structure and the correlation information between local points,
thereby decreasing accuracy and robustness of single point-based classification methods [6,16,23].
To solve the above problems, researchers proposed several point set-based classification methods. For
these methods, points with the same attributes are grouped into a patch, from which the features can be
derived to improve the robustness and the discrimination ability of feature expression. In this case, the
basic processing unit is the segmented point sets, which shows a high resistance to noise and outliers
and can help improve the accuracy of point cloud classification.

Currently, point set construction methods can be generally categorized into cluster-based
methods [24–29], region growing-based methods [20,29], graph cut and raster image-based
methods [6,16,30], model-based methods [31,32], content-sensitive and raster image-based methods [33],
voxel-based methods [34], and neighborhood-based methods [35,36]. However, point set construction
relies on the point cloud segmentation/clustering algorithms. It is also difficult to analyze the topological
structure, and it is not always easy to select the effective segmentation/clustering method [36], especially
for point cloud scenes contaminated with many scattered points. For example, the region growing
segmentation algorithm is greatly influenced by the selection of seed points and an appropriate
clustering criterion. As the growth criterion construction and the low-level features selection have huge
impact on the point clouds segmentation, the region growing-based algorithms usually are less robust.
Model-based segmentation methods can only be applied to specific model categories. Graph cut and
raster image-based method [6,16] and content sensitivity and raster image-based method [33] need to
project point clouds to two-dimensional raster images, which increases the computational difficulty and
does not guarantee the discrepancies between point sets. Moreover, if the number of constructed layers
is small, it causes under-segmentation, which does not contribute to extract stable and salient features
at different levels. Although the cluster-based approach represents an adaptability to a certain extent,
it usually depends on the Euclidean distance metric for clustering. In some complex scenes, different
objects are too close each other, which makes the clustering algorithm inapplicable. Additionally, it is
difficult to segment the point cloud objects of different scales based on a clustering algorithm. To obtain
more representative point sets at different levels for different objects, we propose a multi-level point
set construction method based on point cloud density and maximum point constraints within point set.
The proposed method first uses the DBSCAN (density-based spatial clustering of applications with
noise) [27] algorithm to coarsely segment the point cloud. After implementing DBSCAN, the K-means
algorithm [24] is used to iteratively segment every large-scale point set to guarantee that the number
of points in every point set is less than a threshold T. Thereby, small-scale point sets can be generated.
Jointing the two clustering algorithms, we can effectively construct multi-level point sets of different
sizes, i.e., large scale point sets and small scale point sets.

The point set features can be extracted followed by point set construction. Generally, point set
features are extracted mainly by low-level features of point set [23], BoW (bag of word), and LDA
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(latent Dirichlet allocation) [6], sparse coding and LDA [16], and convolutional neural networks [35].
For example, Xu et. al. [33] projected the point clouds onto the ground to form a raster image, and
then content-sensitive constraints were used to segment the raster image into super-pixels. Next, the
normalized segmentation method [30] based on exponential function was used to obtain different
levels of point sets. The sparse representations of low-level features for each point were obtained.
Afterwards, the multi-level point set features were constructed based on the LDA model. Finally, the
point set was classified by AdaBoost classifier. This method achieved better classification performance
than the compared methods using point-based features, which also directly proves the effectiveness of
point set-based methods and the robustness of high-level features based on point sets.

In addition, for the construction of multi-level point set features, references [6,16,33] extracted
higher level features using LDA or other methods based on the sparse representation of single-point
features through dictionary learning. Considering that the local region of the point cloud features has
a certain correlation, these methods do not take the local structure relationships into account during
sparse representation. That is, only the point set global features constructed by the LDA model are
utilized, and LDA-based point set features lack the local structure information in the point set. To solve
this problem, we propose a point set multi-level aggregation feature extraction framework. We first
introduce locality-constrained linear coding (LLC) [37] for sparse representation of single point features.
Then, a multi-scale point set feature construction method based on max pooling is proposed to obtain
the point set local features. Afterwards, the LDA-based features defined at different hierarchical point
sets (called LLC-LDA) and hierarchical multi-scale max pooling point set features (called LLC-MP)
are fused to construct point set multi-level aggregation features. The fusion features can achieve the
effective description of global and local point set features, thereby enhancing the stability and the
discrimination ability of point set features.

The specific flowchart of the proposed point cloud classification algorithm is shown in Figure 1.
Firstly, a multi-level point sets construction method based on point cloud density and the maximum
point number is used to generate multi-level point sets. Then, considering the point cloud expression
of local geometry and shape information, the multi-scale covariance eigenvalue features and the spin
image features are extracted for each single point. Next, combining multi-level point sets, the LLC-LDA
and the LLC-MP features can be extracted based on dictionary learning and sparse representation
of single point features. Afterwards, global and local features of the point set can be generated by
fusing LLC-LDA and LLC-MP features. In addition, different levels and types of point set features are
transferred to the point set space at the finest layer, and then the multi-level aggregation features of the
point sets are constructed by different types of features fusion. Finally, the multi-level aggregation
features are used to classify the point clouds by SVM classifier.
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The main contributions of this paper are the following:
(1) A multi-level point sets construction method based on point cloud density and the maximum

point number of point set is proposed, which can effectively construct different sizes and levels of
point sets. The generation of the point sets does not require projection from the point cloud onto the
two-dimensional grid, and it is possible to adaptively construct point sets of objects with different sizes.
By controlling the maximum number of points in the point set, the fine-level point sets can be fully
segmented. Different levels of point sets can contribute to construct effective point set features, which
are more robust than single point features.

(2) A global feature extraction method called LLC-LDA of point set based on LLC and LDA models
is proposed. LLC-based sparse coding considers the local relationships between individual point
features and obtains more significant sparse representations than traditional sparse coding. Furthermore,
the point set features constructed based on the LDA model are more stable and discriminative.

(3) A multi-level LLC-LDA and LLC-MP aggregation feature extraction and fusion method of the
point set is proposed. The LLC-LDA mainly expresses the global features of the point set. The LLC-MP
uses the spatial geometry to construct the point set features at multiple scales. That is, the features can
reflect local features in point sets. Point set features at different levels are aggregated onto the point set
at the finest level to generate the multi-level aggregation features of point sets. Once the local LLC-MP
and the global LLC-LDA aggregation features are generated, we fused them together to obtain the
final discriminative point set features.

2. Multi-Level Point Sets Construction

The point cloud classification based on the features of single point is susceptible to noise
interference and the lack of relationship expression among points. To overcome the above problems, we
extract point set features, followed by constructing multi-level point sets according to the constraints
of density, position relationships, and point number. Different level point sets represent different scale
information of the ground objects. Therefore, multi-level point sets can construct multi-level structures,
which are more suitable for representation of objects with various sizes. For many constructed point
sets [6], the number of point sets changes in a linear manner. The discrepancy of point sets between the
adjacent levels might not be prominent enough. Thereby, the different level features of the same object
and the same level features of different objects do not have a distinct difference. In fact, comprehensive
descriptions of objects are generally achieved by multi-level features. The large-scale point sets can
better represent the object at the global scale, while the small-scale point sets have the capability to
describe the object at local and detailed scales. To obtain more representative point sets at different
levels for describing different objects, we propose a multi-level point sets construction method based
on the constraints of point cloud density and maximum point number of point set.

2.1. Large-Scale Point Set Construction Based on Point Cloud Density

Most existing segmentation methods are based on a fixed threshold of the size or the number of
points, which is not suitable for various sizes of objects. Generally, outdoor scenes include many kinds
of objects with various sizes and geometric shapes. Besides, there are some noises, outliers, occlusion,
and data missing during the acquisition process. To get a reasonable number of segmentation units
for all kinds of objects without knowing the number of object classes, DBSCAN is used for initial
point cloud clustering. The specific steps of this algorithm are shown in references [23,24,27]. Here,
different types of experimental scenes can be clustered according to the distribution of point clouds by
DBSCAN algorithm.

As shown in the outdoor scene in Figure 2a, the point cloud can be roughly segmented at
the first level clustering, as it is evident in Figure 2b. Compared with the ground truth shown in
Figure 2d, it is observed that, in outdoor scenes, due to the similar point cloud density between cars
and buildings, a small portion of cars and buildings are clustered together. That is, a phenomenon of
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under-segmentation occurs. To make the structure and the class/label of point set more homogeneous,
it is necessary to further segment the large-scale point set to achieve over-segmentation.
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Figure 2. Multi-level point sets construction by combining density-based spatial clustering of
applications with noise (DBSCAN) and K-means algorithms. (a) Original point clouds; (b) large-scale
point sets; (c) small-scale point sets; (d) ground truth class label of each point. Please note that different
colors represent different clusters in (b) and (c). A few colors are reused; as a result, different disjoint
clusters may share the same color. In subfigure (d), the green points represent buildings, the red points
represent trees, the yellow points represent cars, and the blue points represent utility poles.

2.2. Adaptive Small-Scale Point Sets Construction Based on K-Means

As shown in Figure 2b, the generated coarse point sets do not consider details and local
distribution of the objects. In addition, the homogeneity of points within each point cloud cluster
cannot be guaranteed. To overcome this deficiency, the K-means algorithm [24] is introduced to further
segment coarse point sets. However, if K-means is directly used to segment the original point clouds,
it needs more iterations and time cost. Therefore, we iteratively use K-means to over-segment coarse
point sets clustered by DBSCAN with the threshold constraint. Here, we set K = 2, and K is the number
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of cluster centers. This method can effectively cluster the coarse point sets into a large number of
small-scale point sets with less than T points. Afterwards, the majority labels of points within each
point set have high probability of belonging to the same class. T is a parameter that controls the size of
the small-scale point sets. By this way, each coarse point set clustered by DBSCAN is further segmented
to many over-segmented, smaller area/volume and homogeneous point sets. Almost all the points
in the point set belong to the same class. The specific process of the segmentation method is shown
as follows.

Algorithm 1: K-Means-Based Adaptive Small-Scale Point Sets Construction Algorithm.

Input: The coarse point sets obtained by DBSCAN V = {V1, . . . ,VN } (N is the number of point sets)
Parameters: The number of cluster centers K, The maximum point threshold in point set: T, maximum number
of iterations Titer.
for I = 1:N

1: An unlabeled point set Vi is selected, and K points are selected as the initial centroid p(1)i,c , c = 1,2, . . . ,K.
(Make sure the distance between centroids is not too close).
2: While stop condition not met do

2.1: For the input point set, calculate the Euclidean distance of each point pi, j from the centroid p(t)i,c .
Discriminate the category of each point according to the following equation, and obtain the point cloud

clusters of each category S(t)i,c .
pi, j ∈ Vi

c∗ = arg min
j

(
‖ pi, j − p(t)i,c ‖

)
, c, c∗ = 1, 2, . . . , K

2.2: Update the centroid of each category: p(t+1)
i,c = 1

nc

nc∑
j=1

pi, j

∣∣∣∣∣∣∣pi, j ∈ S(t+1)
i,c , nc is the points number of the c-th

point cloud cluster.

2.3: The stop condition: S(t+1)
i,c = S(t)i,c , ∀c = 1, 2, . . . , K or t + 1 ≥ Titer.

end

3: for c = 1:K in S(t+1)
i,c

3.1: if nc ≤ T

Sv = S(t+1)
i,c , v is the v-th output over-segmented point set.

V = v+1.
3.2: else

Sξ = S(t+1)
i,c , s is the s-th point set with more than T points.

ξ= ξ+1
end
end
4: Repeat step 2 and step 3 until the point cloud clusters Ss

i = ∅.
end
Output: Over-segmented point sets: Sclu = { S1, . . . , Sv}.

The small-scale point sets constructed by Algorithm 1 is shown in Figure 2c. Compared with
Figure 2d, it can be seen that the points in the small-scale point sets almost belong to the same class,
and the small-scale point sets reflect the characteristics of local region of the object. By making
comparison with Figure 2b,c, we observe that the small-scale point sets actually describe the local
region’s geometries of the large-scale point sets in Figure 2b.

2.3. Multi-Level Point Sets Generation

As the point sets at a single scale cannot describe the object comprehensively, we construct point
sets with multiple scales to effectively express the different size objects. A large-scale point set often
describes the information of a large object or more objects belonging to the same category, while a
small-scale point set can express the information of a small object or part of the object. We generate
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the small-scale point sets at different levels by controlling the maximum point number threshold T.
In addition, in order to obtain point sets with adjacent relationships and have more levels, a smaller
threshold T is recommended to generate over-segmented point sets, which are then provided as input
to the Mean-shift algorithm [24] to obtain more level point sets by tuning parameter of radius.

3. Multi-Level Point Set Features Extraction

This section mainly introduces the multi-level point set features extraction method. Firstly, we
extract the features of each single point in the point cloud. Then, the multi-scale max pooling features
and the LDA features of point set are constructed by sparse coding based on LLC.

3.1. Multi-Scale Single Point Features Extraction

With radius R as the support neighborhood, covariance eigenvalue features Fcov and spin image
feature Fsi of all points are extracted for each individual point P.

(1) Covariance eigenvalue feature
The covariance eigenvalue features [11] can be calculated by the Equations (1)–(3), and all the

points in the support neighborhood are used to calculate the features. Each point in the point cloud
can extract a set of six-dimensional covariance eigenvalue features within a neighborhood of radius R.

Ci =
1
k

k∑
j=1

(
P j − pi

)
·

(
P j − pi

)T
(1)

λd = λd/
3∑

d=1

λd (2)

Fcov =

 3

√√√ 3∏
d=1

λd,
λ1 − λ3

λ1
,
λ2 − λ3

λ1
,
λ3

λ1
,−

3∑
d=1

λdlog(λd),
λ1 − λ2

λ1

 (3)

where k is the number of all points in the support neighborhood.
(2) Spin image feature
Spin image [6,16] can express the shape features of the adjacent region for a point in

three-dimensional space. Due to the strong robustness to occlusion and background interference
and the insensitivity to rigid transformation of spin image feature, it is widely used in point clouds
registration and three-dimensional objects recognition [6,9,16,19,33,38–40]. Its specific extraction
process is descried as follows.

For each point pi, support neighborhood at radius R is p j
i ,
∣∣∣∣p j

i − pi

∣∣∣∣ ≤ R, j ∈
{
1, 2, . . . , KR

i

}
. The normal

vector nR
i of pi is first calculated. Then, pi and nR

i are used as axes to construct a cylindrical coordinate
system. The two-dimensional grid size of spin image is defined asZx ×Zy, and the three-dimensional
coordinates of the cylinder are projected onto the two-dimensional grid according to the following
Equation: (

ai
j, bi

j

)
=


√
‖ p j

i − pi ‖2 −
(
nR

i ·
(
p j

i − pi
))2

, nR
i ·

(
p j

i − pi
),

∣∣∣∣p j
i − pi

∣∣∣∣ ≤ R (4)

where ai
j represents the X-axis coordinates of spin image constructed by three-dimensional point p j

i

at point pi, and bi
j represents the Y-axis coordinates of spin image constructed by three-dimensional
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point p j
i at point pi. According to spin image coordinate values, all the points in the neighborhood of pi

falling into the corresponding grid are determined according to Equation (5).

gridx =

Zxai
j

R

, gridy =

Zy

2

1−
bi

j

R


 (5)

The number of points falling in each grid in the spin image is different. The intensity I of each
grid can be calculated according to the point number. Here, we build a 6 × 6 spin image for each point,
which is a 36-dimensional feature vector (denoted by the symbol Fsi) for each point.

To make the local features expression more sufficient and robust, three support neighborhoods of
different sizes are selected to construct multi-scale features. The size of supporting neighborhoods is
determined radius R. In this article, parameter R is selected as 0.2 m, 0.8 m, and 1.2 m. At each scale,
each point can be represented by a 42-dimensional feature descriptor. Thereby, the multi-scale features
of each point can be represented by a 126-dimensional feature descriptor, i.e., Fm-point = [Fcov-R1, Fcov-R2,
Fcov-R3, Fsi-R1, Fsi-R2, Fsi-R3].

The two quantities (Fcov and Fsi) do not have the same scale, which makes it biased towards one
or the other. To solve it, we normalize all single point features Fm-point over each column. Each column
represents each feature vector element of all points.

3.2. LLC-Based Dictionary Learning and Sparse Coding for Single Point Features

Since the original single point multi-scale features are low-level features, the expression of
attributes for each single point is not significant. To make point cloud features more prominent and
effective, BoW, low rank representation, manifold learning, and sparse coding are commonly used
for feature selection [6,14,15]. Sparse coding, by learning a set of “super-complete” basis vectors
to represent samples more efficiently, has significant advantages in dictionary learning and feature
representation. For example, the better reconstruction performance and the sparse representation
contribute to the salient feature extraction, and sparse features have better linear separability. However,
according to reference [37], locality is more important than sparsity. Moreover, locality can guarantee
the sparsity of coding, but the opposite is not true. The traditional sparse coding does not have a
good locality. Generally, the neighboring points have the same or similar attributes, thereby, the local
smoothness for sparse coding helps the features learning. To this end, the proposed method uses
locality-constrained linear coding (LLC) to sparsely express point cloud features. Specific steps of LLC
are described as follows.

The point cloud feature is normalized to X = [ x1, x2, . . . , xN] ∈ RD×N, where N is the number
of points. D is the dimension of each point feature. The dictionary of point cloud features is B = [
b1, b2, . . . , bM] ∈ RD×M, and M is the number of words in the dictionary. The sparse coding of X is V
= [ v1, v2, . . . , vN] ∈ RM×N. The traditional dictionary learning and sparse coding model is shown in
Equation (6).

min
V, B

N∑
i=1

‖ X−BV ‖2 +λ|V| (6)

s.t. ‖ b j ‖≤ 1,∀ j = 1, 2, . . . , M

Considering the locality-constrained, the Equation (6) can be improved to construct the LLC
model, which is Equation (7).

min
V, B

N∑
i=1

‖ xi −Bvi ‖
2 +λ ‖ di � vi ‖

2 (7)

s.t.∀i, 1Tvi = 1.∀ j, ‖ b j ‖≤ 1
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where � is the inner product of the element, and λ is the constraint regular term parameter. di ∈ R
M is

a local constraint condition, and it is defined as:

di = exp
(

dist(xi, B)
σ

)
(8)

We should note that, in Equation (8), dist(xi, B) = [dist(x1, b1), . . . , dist(xi, bM)]T, dist
(
xi, b j

)
is the

Euclidean distance of xi and b j. σ is a parameter that controls the range of the local region. In order to
ensure that V has sparsity and local smoothness, the element of |vi| < ε needs to be set to zero. To learn
the optimal dictionary of point cloud features and the corresponding optimal sparse representation,
we use the algorithm in reference [37] to optimize the objective function (6). During optimization, the
initialized dictionary Bint is first obtained by the K-means algorithm, wherein the number of words
is M, i.e., K = M in the K-means algorithm. For Equation (7), V(B) is iteratively optimized by the
coordinate descent method based on B(V). Finally, the optimized dictionary B and the corresponding
sparse representation V are obtained.

3.3. Multi-Level Point Set Features Construction

Single point features lack descriptions of the relationship between points, and they are sensitive
to noise and outliers. We construct hierarchical point set features according to the different levels of
point sets. The multi-level point set features mainly include two types: point set features based on
LDA (LLC-LDA) and point set features based on multi-scale max pooling (LLC-MP).

3.3.1. Point Set Features Extraction Based on LDA (LLC-LDA)

To obtain different types of high level features, we construct topic models by statistical features of
each level point set. Based on the topic model, LLC-LDA features of each point set can be extracted.
The specific construction steps are as follows:

First, the frequency of each word in each point set is counted based on the sparse representation
matrix V of LLC. The frequency of the i-th word in a point set is calculated according to Equation (9).

p(bi|θ,β) =
Nr∑
j=1

v j
i (9)

where v j
i represents the frequency of the i-th word for the sparse representation of j-th point in the

point set. Nr is the number of points in the point set, β is a matrix with size ` ×M, and ` is the number
of latent topics. θ is a `-dimensional Dirichlet random variable, i.e., θ = [θ1, . . . ,θ`], and θi is the
probability of the i-th latent topic. Afterwards, the LDA model can be constructed as follows [41]:

p(B|α,β) =
Γ(

∑
i αi)∏

i Γ(
∑

i αi)

∫
(

j∏
i=1

θαi−1
i )

 M∏
m=1

∑
wm

p(wm|θ)p(bm|wm,β)

dθ (10)

where α is the Dirichlet parameter, and the latent topic set is: w = [w1, . . . , wM].
For Equations (10) and (11), the expectation maximum (EM) algorithm [16] is used to optimize α

and β. Based on these two optimized parameters, the point set probability of each latent topic can be
obtained. Subsequently, the point set feature is constructed based on the probability of all the latent
topics. The LLC-LDA feature of the l-th point set on the L-th level can be expressed as follows:

FLDA
Cl

L
= [θ1, . . . ,θ`] (11)
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3.3.2. Point Set Features Extraction Based on Multi-Scale Max Pooling (LLC-MP)

LLC-LDA features describe the global features of all points in point sets at each level. However,
there is a certain structural relationship among points in point set. To fully express the attribute of the
point set with local structure information, inspired by the structure of a space pyramid, we construct a
multi-scale pyramid using spatial coordinates of each point set. Then, the max pooling method is used
to extract nonlinear features of point sets at each scale. In the last step, the features of each scale are
fused to obtain the position–feature space features of the point set. From another perspective, this
method can construct smaller scale point sets and express the relationships of these smaller scale point
sets (local regions) for the current level point set. The specific LLC-MP features extraction is as follows:

Given a point set, for the s-th (s ∈ [1, Ps]) scale space, Ps is the number of scale spaces. The point
set is divided into Ks subspaces based on the spatial coordinates of the point set. Then, the different
scale spaces of the point set can be constructed.

For the s-th scale, the point set max pooling features of Ks subspaces can be calculated according
to Equation (12).

fi,s = F
(
Vs

)
, Vs = Vs

′, Vs ∈ R
Ns×M (12)

where F is the max pooling function. Vs and Ns are the sparse representation matrix of the i-th
(i ∈ [1, Ks]) subspace point sets and the number of points in the point set, respectively. fi,s can be
calculated according to Equation (13). fi,s =

[
f i
1, .., f i

j

]
, j ∈ [1, M]

f i
j = zs

×max
{∣∣∣v1 j

∣∣∣, ∣∣∣v2 j
∣∣∣, . . . , ∣∣∣vNs j

∣∣∣} (13)

In different scales, due to the different number of points in each subspace, the features of different
scales have different effects on the description of the point set. Besides, different information of the
point set can be described in different subspaces. Therefore, the max pooling features of different scales
should have different weights, i.e., zs. In this paper, due to the small number of points in the finest
layer point set, we only construct two scale subspaces.

The multi-scale max pooling features (LLC-MP) of point sets can be described as follows:

fMP = f1,s+, . . . ,+fi,s, i ∈ [1, Ks], s ∈ [1, Ps] (14)

The features can be normalized according to the Equation (15):

FMP =
fi
MP∑M

i=1 (f
i
MP)

2 (15)

If FMP represents the l-th point set feature of the L-th level, LLC-MP can be expressed as FMP
Cl

L
.

4. Point Cloud Classification Based on Fusion of Multi-Level Point Set Features

Different types of features have different representations for the object attributes. Different levels
of point set features have different descriptions for the object. In order to fully and effectively express
the attributes of the object, we fuse different types and different levels of point set features. Taking the
LLC-LDA point set feature as an example, the point set features at different levels can be aggregated
by the coordinate of the points for different point sets. Generally, the point set feature space of the L-th
layer (the finest layer) is used as the basic space for features aggregation. As shown in Figure 3, the
point set features of the first layer and the second layer are transferred to the point set feature space of
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the L-th layer for features aggregation. The LLC-LDA multi-level aggregation features of the l-th point
set can be expressed as follows.

FALDA
Cl

L
=

[
FLDA

Cl
1

, FLDA
Cl

2
, . . . , FLDA

Cl
L

]
(16)
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The above method can also be used to aggregate the LLC-MP multi-level point set features.
Similarly, the LLC-MP multi-level aggregation feature of l-th point set can be expressed as follows:

FAMP
Cl

L
=

[
FMP

Cl
1

, FMP
Cl

2
, . . . , FMP

Cl
L

]
(17)

The LLC-LDA and the LLC-MP features of the point set reflect the global and the local features of
the point set, respectively. To make full use of different types of features to classify the point sets, the
two sets of features are fused. The fusion features of l-th point set are constructed as Equation (17).
Afterwards, the point set can be classified according to the point set features.

FCl
L
=

[
FALDA

Cl
L

, FAMP
Cl

L

]
(18)

In view of the excellent generalization ability and the relatively good adaptability to different data
sizes of SVM, it is chosen as the classifier for the point cloud classification. In the experiment, we use
the libsvm toolbox [42] to train and test the SVM model.

5. Experimental Results and Analysis

In this section, we carry out experiments on two different airborne laser scanning (ALS) point
cloud scenes—a mobile laser scanning (MLS) point cloud scene and a terrestrial laser scanning (TLS)
point cloud scene—to evaluate the effectiveness of the proposed algorithm. We conduct qualitative
and quantitative analyses for the classification results to prove the advantages of the proposed method.

5.1. Experiment Data

To verify the effectiveness of the proposed algorithm, four different scenes are used for experiments.
Among them, Scene1 and Scene2 are ALS point clouds provided by reference [16]. As shown in
Figure 4, there are three categories of objects in the dataset, including large objects (buildings and trees)
and small objects (cars). Scene3 is an MLS point cloud scene collected by a backpacked mobile mapping
robot [43]. As shown in Figure 5, Scene3 contains four categories of objects, i.e., cars, poles, buildings,
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and trees. Scene4 is a TLS point cloud scene provided by reference [9]. As shown in Figure 6, Scene4
contains pedestrians, cars, buildings, and trees. The point clouds of Scene1, Scene2, and Scene4 can be
download at the website (http://geogother.bnu.edu.cn/teacherweb/zhangliqiang/). The ground (natural
and artificial ground) points of these four scenes are manually filtered out using the open source tool
Cloudcompare (http://www.couldcompare.org/). The details of different point cloud collection systems
are shown in Table 1. The specific number of points in four scenes is shown in Table 2. The training set
and the testing set of each scene are shown in Figures 4–6.

Table 1. The characteristics of collection systems and point clouds.

Type ALS MLS TLS

Scenes Scene1/Scene2 Scene3 Scene4

Scanners Leica ALS50 system
Backpacked mobile

mapping robot (Omni
SLAMTM) [43]

RIEGL MS-Z620

Range
A mean flying height of
500 m above ground and

a 45◦ field of view

0–100 m / field of view:
360◦ × 360◦

2–2000 m/ Horizontal
and vertical angle

spacing 0.57◦

Accuracy/Precision 150 mm/80 mm 50 mm/30 mm 10 mm/5 mm

Characteristic

The average strip overlap
was 30%. Buildings with
different roof shapes, e.g.,
flat and gable roofs, are

surrounded by trees and
cars. There are buildings

with different heights,
dense complex trees, and

cars on the roads. The
classes are unbalanced.

Buildings have varied
densities, shapes, and
sizes. Other pole-like

objects (trees and poles)
and cars are connected

and mixed together.
There are certain degree

of noise and outliers
scattered in this point

clouds. Less affected by
the distance changing.

The classes are
unbalanced.

The density of the point
cloud varies according to

the distance from the
objects to the scanner.

Trees are different shapes
and densities. Many

objects in this scene are
incomplete, and many
noise points distributes

in this scene. The classes
are unbalanced.

Point density approximately
20–30 points/m2 approximately

100–180 points/m2
approximately

50–250 points/m2

Area ~(237.7 m × 58.1 m)/
~ (334.6 m ×0.5 m) ~ (151.7 m × 178.3 m) ~ (107.1 m × 79.9 m)

Scene type Residential/Urban,
Tianjin Downtown, Shenyang Campus, Beijing

Table 2. The statistics of the training and the testing datasets for four scenes. Note that each number in
the table represents the point number.

Training set Points Test set Points

Tree Building Car Pole Pedestrian Tree Building Car Pole Pedestrian

Scene1 68,802 37,128 5380 0 0 213,990 200,549 7816 0 0
Scene2 39,743 64,952 4,584 0 0 73,207 156,186 7409 0 0
Scene3 35,078 140,164 15,936 5641 0 49,359 172,311 56,889 3711 0
Scene4 125,610 45,341 1722 0 3087 178,391 13,906 48,759 0 16,381

http://geogother.bnu.edu.cn/teacherweb/zhangliqiang/
http://www.couldcompare.org/
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In our experiments, the proposed algorithm is implemented based on Microsoft Visual C++

(embedding PCL1.8.0) and MATLAB 2017b. All the experiments are run on a personal computer
equipped with a 4.20 GHz Intel Core i7–7700k CPU, 24 GB of main memory. The average training
time of four scenes is about 16.5 min, and the average testing time of four scenes is 2.3 min. In order
to evaluate the performance of the proposed algorithm more comprehensively and effectively, we
use Precision/Recall and F1-score to evaluate the classification performance of each category. Overall
accuracy (OA), mean Intersection over Union (mIoU), Kappa, and mF1 are used to evaluate the overall
classification performance of each scene. Here, Precision is the ratio of correctly predicted positive
points to the total predicted positive points. Recall is the ratio of correctly predicted positive points to
all points in the positive class. OA is the ratio of correctly predicted points to the total points. F1-score
is defined as: F1-score = 2 × (Recall × Precision)/(Recall + Precision). mF1 is computed by averaging
all classes of the F1-scores [23]. More details of these metrics are presented in reference [34,35].

mIoU =

Nc∑
i=1

hii
hii +

∑
i, j hi j +

∑
j,i h ji

(19)

Kappa =
OA− ρ

1− ρ
,ρ =

∑Nc
j=1

∑Nc
i=1(hi j × h ji)

N ×N
(20)

where H =
[
hi j

]
Nc×Nc

is a confusion matrix, hi j is a number of points from ground-truth class i predicted
as class j. Nc is the number of categories. N is the number of all the points in the point cloud.

5.2. Comparisons

To highlight the performance of the proposed algorithm, we select 13 methods for comparisons.
The characteristics of these comparison methods are shown in Table 3. Method 1(LLC-LDA-SVM):
LLC-LDA-SVM is proposed in this paper, which extracts the multi-level point sets and single point
features by our method. LLC is used to learn the dictionary. Then, the LLC-LDA point set features
are aggregated to construct multi-level point set features. Finally, the LLC-LDA aggregation features
are used for point cloud classification based on SVM. Method 2 (LLC-MP-SVM): LLC-MP-SVM is
proposed in this paper, which is similar to Method 1. For Method 2, the LLC-LDA point set features
are replaced by LLC-MP point set features. Method 3 (DKSVD): (Discriminative K-SVD): It uses
DKSVD [44] to classify the point clouds based on the fusion features of multi-scale FSI and Fcov. In our
experiment, the dictionary word is set to 128, and the regular term parameter is set to 0.1. Method
4 (LCKSVD1) and Method 5 (LCKSVD2) (Label Consistent K-SVD): They use LCKSVD1 [45] and
LCKSVD2 [45] to classify the point clouds based on the fusion features of multi-scale FSI and Fcov,
respectively. For LCKSVD1 and LCKSVD2, the number of dictionary words is selected from the set {64,
128, 256, 512}. The regular terms parameters are chosen from the set {0.001, 0.01, 0.1, 1, 10}. In our
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case, when we choose the values of 512 and 0.01, LCKSVD1 and LCKSVD2 can both get the optimal
results for all scenes. Method 6 (MSF-SVM) (multi-scale fusion features classified by SVM) [42]: It is a
point-based method, which employs SVM to classify the point clouds based on the fusion features
of multi-scale FSI and Fcov. Mothod 7 (ECF-SVM) (elevation and covariance eigenvalues features
classified by SVM): A compared method proposed in reference [5]. It uses multi-scale elevation Fz

and covariance eigenvalues features Fcov of single point to classify the point clouds. Afterwards,
the classification results are optimized by multi-scale neighbors. Method 8 (JointBoost) [37]: Each
point feature is constructed by geometry, strength, and statistics information. The JointBoost is used
for features selection and point clouds classification followed by each point feature constructed by
geometry, strength, and statistics features. Method 9 (AdaBoost): It is a compared method proposed in
reference [16]. This method uses AdaBoost to classify the point clouds based on the fusion features of
multi-scale FSI and Fcov. Method 10 (BoW-LDA) [6]: It uses graph cut and linear transform to construct
multi-level point sets. Then, K-means is employed for dictionary learning based on FSI and Fcov fusion
features. Afterwards, the multi-level point sets features can be constructed based on LDA model for
point cloud classification. Method 11 (DD-SCLDA) (discriminative dictionary based sparse coding
and LDA) [39]: Based on graph cut and exponential transformation, multi-level point sets can be
constructed by DD-SCLDA. Fusion features of multi-scale FSI and Fcov are used to learn the dictionary
in DD-SCLDA. Then, a DD-SCLDA model is constructed to extract multi-level point set features.
Finally, the point set features are aggregated for point clouds classification based on AdaBoost. Method
12 (SC-LDA-MP) [16,46]: Based on the multi-level point sets and single point features extracted by our
method, the traditional sparse coding (SC) method is used to learn the dictionary. Then, the SC-LDA
(sparse coding and LDA) point set features and the SC-MP (sparse coding and max pooling) point
set features are fused as SC-LDA-MP (sparse coding, LDA, and max pooling) to classify the point
clouds. Here, the number of dictionary words, the number of latent topics, and the point sets of the
SC-LDA-MP are the same as our method. The dictionary learning initialization method is the same as
well. The other parameters of the traditional sparse coding method are set as the optimal parameters
given in reference [16]. Method 13 (PointNet) [17]: It is a deep learning network based on a multilayer
perceptron, which is regarded as a baseline in reference [18]. The network can extract the features of
each point and classify the point clouds. Here, we give the classification results of Scene1 and Scene2
based on PointNet. For the above 13 methods, FSI and Fcov are features described in Section 3.1.

Table 3. Main characteristics of the proposed algorithm and other comparison algorithms.

Method Point Set
Construction Point Cloud Features Dictionary and Features

Expression Classifier

Our method Multi-level
clustering FSI + Fcov

LLC, Point set features
fusion of LLC-LDA and

LLC-MP
SVM

LLC-LDA-SVM Multi-level
clustering FSI + Fcov

LLC, Point set features of
LLC-LDA SVM

LLC-MP-SVM Multi-level
clustering FSI + Fcov

LLC, Point set features of
LLC-MP SVM

DKSVD [44] Single point FSI + Fcov
DKSVD, Dictionary-based

sparse representation Linear classifier

LCKSVD1 [45] Single point FSI + Fcov

LCKSVD1, Sparse
representation based on

saliency dictionary
Linear classifier

LCKSVD2 [45] Single point FSI + Fcov

LCKSVD2, Sparse
representation based on

saliency dictionary
Linear classifier

MSF-SVM [42] Single point FSI + Fcov
No dictionary, single point

features SVM

ECF-SVM [5] Single point Fz + Fcov
No dictionary, single point

features SVM
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Table 3. Cont.

Method Point Set
Construction Point Cloud Features Dictionary and Features

Expression Classifier

JointBoost [38] Single point Geometry, strength,
and statistical features

No dictionary, single point
features JointBoost

AdaBoost [16] Single point FSI + Fcov
No dictionary, single point

features AdaBoost

BoW-LDA [6]
Graph cut and

linear
transformation

FSI +Fcov
K-means, Point set

features of LDA AdaBoost

DD-SCLDA [39]
Graph cut and

exponential
transformation

FSI + Fcov
LCKSVD, Point set

features of DD-SCLDA AdaBoost

SC-LDA-MP
[16,46]

Multi-level
clustering FSI + Fcov

SC, Point set features
fusion of SC-LDA and
SC-MP (SC-LDA-MP)

SVM

PointNet [17] Point cloud block Point features based on
deep learning

No dictionary, multi-layer
perceptron (MLP) Softmax

Notes: DD-SCLDA: discriminative dictionary based sparse coding and LDA; BoW: bag of word; MSF-SVM:
multi-scale fusion features classified by SVM; ECF-SVM: elevation and covariance eigenvalues features classified by
SVM; SVM: support vector machine; DKSVD: discriminative K-SVD; LCKSVD: label consistent K-SVD.

5.2.1. ALS Point Clouds

In this part, Scene1 and Scene2 are tested. The details of the training set and the test set for each
scene are shown in Table 2. Table 4 gives the classification results of different methods shown in Table 3.
Because the source codes of some compared methods are not provided, we cannot get the results of
these methods. For unbiased comparisons, some metric values and results of some methods are not
compared in Table 4 and Figures 7 and 8.

From the results listed in Table 4, we have the following observations:
(1) Our method achieves 96.7%/95.3%, 77.9%/76.0%, 93.6%/90.1%, and 85.4%/84.3% with regard to

OA, mIoU, Kappa, and mF1 on Scene1 and Scene2, which maintains the highest evaluation metric
values and demonstrates the advantages of the proposed method.

(2) For LLC-LDA-SVM and LLC-MP-SVM, these two methods cannot achieve good performance
on cars, and the extracted features are not robust for classification, especially for small objects. However,
our method fuses two features (the global features of the point set and the local distribution features of
the point set) to extract more discriminative features for the point sets representation and classification.
It demonstrates that the introduced LLC-MP features and the fusion with the LLC-LDA features are
effective for point cloud classification.

(3) Methods 3–8 are point cloud classification methods based on single point features, while
other methods classify point clouds based on point set features. From the F1-score of each category
classification and the mF1 of all categories classification in Table 4, it can be seen that classification
methods based on point set features can obtain higher F1-score and mF1 in most cases compared to
classification methods based on single point features, i.e., point set features are more robust than single
point features for point cloud classification. The five point-based methods, i.e., DKSVD, LCKSVD1,
LCKSVD2, MSF-SVM, and AdaBoost, are not robust for most categories classification. The discriminant
features extracted/learned by these methods are not ideal, especially for small sample objects. Although
ECF-SVM and JointBoost can achieve better performance in point-based methods, the anti-noise ability
of these methods still needs to be improved. In addition, BOW-LDA and DD-SCLDA construct more
than two levels of point sets. The point sets constructed by these two methods are not rich enough to
express different scale objects and different regions of the objects. In our experiment, our method only
constructed two levels of point sets, but the proposed method outperforms the comparison methods.

(4) As shown in Table 3, Methods 1–6, Methods 9–12, and the proposed method use similar single
point features. It can be seen from the classification results in Table 4 that learning and representation
of different point cloud features and classifiers have a great influence on the performance of point



Remote Sens. 2019, 11, 2846 17 of 27

cloud classification. As shown in Table 4, the combination of feature learning, feature expression, and
classifier in our method has better performance than other compared methods in most metrics.

(5) Compared with DKSVD, LCKSVD1, and LCKSVD2, our method can achieve at least 15.9%,
30.8%, 32.7%, and 28.8% higher than these three compared methods with regard to OA, mIoU,
Kappa, and mF1 on Scene1/Scene2. It demonstrates that the classification performance of our
method has obvious advantages in the overall classification metrics. This proves that the point
set features constructed by single point features dictionary learning and sparse representation
are more discriminative than the single point features constructed by dictionary learning and
sparse representation.

(6) The OA and the mF1 of our method are at least 31.4% and 38.0% higher than the deep learning
method of PointNet. It demonstrates that our method obviously outperforms PointNet. It also proves
that, when the number of training samples is relatively small, the deep learning method, i.e., PointNet,
cannot extract effective point cloud features for classification. It should be noted that the machine
learning method is relatively more efficient than the deep learning method when the number of training
samples is small.

(7) By making a comparison between SC-LDA-MP and the proposed method, it can be seen that
OA, mIoU, Kappa, and mF1 of our method on Scene1/Scene2 are 1.1%/0.3%, 6.7%/2.8%, 2.3%/0.8%,
and 6.5%/2.6% higher than SC-LDA-MP. It proves that the introduced LLC plays a positive role in the
dictionary learning and the sparse representation for the point cloud classification. It also demonstrates
the introduced LLC is effective for the discriminative improvement of multi-level aggregation features
of point sets.

Table 4. Classification results of Precision/Recall, overall accuracy (OA), mean Intersection over Union
(mIoU), Kappa and F1-score (%) on Scene1 and Scene2. The best results are highlighted in bold.
The symbol “-” stands when the corresponding values are not given.

Scene1 Tree Building Car OA mIoU Kappa F1-score mF1

Our method 96.6/97.7 98.6/96.0 47.9/87.0 96.7 77.9 93.6 97.2/97.3/61.8 85.4
LLC-LDA-SVM 97.6/86.7 89.0/98.6 24.6/18.0 92.8 65.8 86.3 91.8/93.6/20.8 73.1
LLC-MP-SVM 98.3/85.7 88.2/98.6 37.9/39.5 87.3 59.2 75.6 91.6/93.1/38.7 69.5

DKSVD 85.4/71.3 76.4/88.1 1.6/1.6 79.2 44.6 59.0 77.7/81.8/1.6 53.7
LCKSVD1 84.3/59.2 71.1/86.7 2.6/10.1 72.8 39.8 47.6 69.6/78.1/4.1 50.6
LCKSVD2 88.2/70.7 77.0/90.3 3.0/4.4 80.2 45.9 60.9 78.5/83.1/3.6 55.1
MSF-SVM 91.0/82.3 84.0/93.1 0.0/0.0 87.0 51.8 74.2 86.4/88.3/0.0 58.2
ECF-SVM 99.2/84.9 86.8/99.3 99.9/42.7 91.9 − − 91.5/92.7/59.8 81.3
JointBoost 89.7/98.1 97.9/89.1 65.2/46.6 92.9 − − 93.7/93.3/54.4 80.5
AdaBoost 85.7/92.9 92.0/83.8 56.9/54.7 87.9 − − 89.2/87.7/55.8 77.6
BOW-LDA 94.8/93.8 93.5/92.3 41.2/66.7 92.6 − − 94.3/92.9/50.9 79.4
DD-SCLDA 93.1/96.0 95.2/92.6 73.3/62.2 93.7 − − 94.5/93.9/67.3 85.2
SC-LDA-MP 98.3/93.7 93.8/98.5 55.6/37.3 95.6 71.2 91.3 95.4/95.7/43.4 78.9

PointNet 65.1/93.7 95.6/19.5 93.4/8.2 65.3 − − 76.8/32.4/15.1 41.4

Scene2 Tree Building Car OA mIoU Kappa F1-score mF1

Our method 93.4/92.7 99.2/97.5 52.4/73.9 95.3 76.0 90.1 93.1/98.4/61.3 84.3
LLC-LDA-SVM 93.9/90.6 97.7/97.3 48.9/68.8 94.3 73.6 88.1 92.2/97.5/57.2 82.3
LLC-MP-SVM 76.2/93.2 99.1/88.3 49.4/53.0 88.7 64.7 77.2 83.8/93.4/51.2 76.1

DKSVD 66.0/79.5 88.2/83.2 4.4/0.8 79.4 44.0 56.7 72.1/85.6/1.4 53.0
LCKSVD1 47.1/79.6 87.1/54.3 5.0/10.2 60.7 31.9 30.6 59.2/66.9/6.7 44.3
LCKSVD2 67.7/76.3 88.2/83.5 9.7/8.4 78.8 45.2 56.0 71.7/85.8/9.0 55.5
MSF-SVM 77.1/81.5 88.7/90.6 0.0/0.0 84.9 49.0 66.9 79.3/89.6/0.0 56.3
ECF-SVM 83.2/92.9 98.5/92.8 62.6/65.7 92.0 − − 87.8/95.6/64.1 82.5
JointBoost 86.8/91.2 96.8/95.5 44.1/34.8 92.2 − − 88.9/96.1/38.9 74.6
AdaBoost 73.9/91.2 93.6/88.2 29.5/25.4 87.2 − − 81.6/90.8/27.3 66.6
BOW-LDA 90.3/93.9 97.6/96.5 49.4/42.0 94.1 − − 92.1/97.0/45.4 78.2
DD-SCLDA − − − − − − − −

SC-LDA-MP 90.8/94.4 98.0/97.6 66.4/46.4 95.0 73.2 89.3 92.6/97.8/54.6 81.7
PointNet 78.2/91.4 90.4/20.1 87.1/12.3 41.3 − − 84.3/32.9/21.6 46.3
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5.2.2. MLS and TLS Point Clouds

To verify the applicability of the proposed algorithm to different types of point clouds, Scene3 and
Scene4 are tested in this section. The training set and the testing set of experimental data are shown
in Table 2. Table 5 shows the classification results of our method and Methods 1–6. From Table 5,
our method obtains the highest values on Scene3 and Scene4, reaching 87.5%/77.5%, 60.8%/45.8%,
77.2%/39.6%, and 72.3%/55.9 with regard to OA, mIoU, Kappa, and mF1. It also demonstrates the
advantage of the proposed method. For Scene3, our method can achieve the best overall classification
performance for the objects with fewer training samples such as poles. For Scene4, the classification
performances of all methods are not ideal. Although the LLC-MP features can get the highest F1-score
values of pedestrians and cars, our method gets the highest values for other classification metrics.
This proves that LLC-MP features have more effective features representation for objects with fewer
samples, such as smaller objects of pedestrians and cars. Compared with the classification results of
Scene3 and Scene4, the best results of each classification evaluation metrics belong to point set-based
classification methods, from which our method achieves the best performance.

Table 5. Classification results of Precision/Recall, OA, mIoU, Kappa, and F1-score (%) on Scene3 and
Scene4. The best results are highlighted in bold.

Scene3 Pole Building Car Tree OA mIoU Kappa F1-score mF1

Our method 33.1/36.4 90.6/94.6 77.0/87.4 96.4/71.8 87.5 60.8 77.2 34.7/92.6/81.9/82.3 72.3
LLC-LDA-SVM 47.7/17.5 92.8/55.9 34.1/85.0 90.5/86.0 66.5 44.8 49.3 25.6/69.8/48.8/88.2 58.1
LLC-MP-SVM 24.2/36.4 87.1/93.4 77.7/81.2 96.8/68.9 85.6 58.1 73.3 29.1/90.1/79.4/80.5 69.8

DKSVD 1.4/0.8 70.3/86.7 31.0/4.5 58.7/62.7 66.4 27.9 31.8 1.0/77.6/7.9/60.6 36.8
LCKSVD1 3.0/6.0 74.6/65.3 24.6/13.5 42.0/71.4 56.7 25.3 26.3 4.0/69.6/17.4/5.9 36.0
LCKSVD2 5.0/9.6 71.2/82.1 29.3/4.0 50.6/62.0 63.5 26.8 29.2 6.6/76.3/7.0/55.7 36.4
MSF-SVM 0.0/0.0 72.9/95.7 0.0/0.0 78.7/77.5 74.1 33.7 44.8 0.0/82.8/0.0/78.1 42.7

Scene4 PedestrianBuilding Car Tree OA mIoU Kappa F1-score mF1

Our method 72.6/23.7 76.4/100.0 100.0/7.7 77.3/99.7 77.5 45.8 39.6 35.7/87.1/14.3/86.6 55.9
LLC-LDA-SVM 90.5/14.7 23.9/99.8 71.3/5.7 75.2/81.3 63.7 27.0 22.0 25.3/78.1/10.6/38.6 38.1
LLC-MP-SVM 86.0/28.9 58.9/40.4 98.2/13.1 75.2/99.4 75.4 36.8 31.1 43.3/85.6/23.1/47.9 50.0

DKSVD 8.7/1.3 23.9/77.4 24.3/1.2 74.9/87.2 64.9 23.0 18.3 2.3/80.6/2.3/36.5 30.4
LCKSVD1 10.5/3.8 18.2/28.0 35.0/6.6 73.5/91.0 66.1 22.4 13.6 5.6/81.3/11.1/22.1 30.0
LCKSVD2 12.0/1.7 23.6/51.4 33.5/0.9 74.5/93.4 67.8 23.1 17.5 3.0/82.9/1.8/32.3 30.0
MSF-SVM 0.0/0.0 35.1/89.4 0.0/0.0 75.7/94.2 70.1 26.5 24.2 0.0/83.9/0.0/50.4 33.6

In order to more intuitively show the point cloud classification performances of different methods,
Figures 7 and 8 show the partial results of different classification methods on Scene1 and Scene2. As
shown in Figures 7 and 8, we know that the building classifications of LLC-MP-SVM, JointBoost,
and AdaBoost are relatively poor, and there are many misclassifications for building and tree. This
constrains the applications of these methods. For LLC-LDA-SVM, BOW-LDA, and SC-LDA-MP, there
are still many noise points of different categories. We find that our results are approaching the ground
truth. SC-LDA-MP and ours have better classification performance on the building class. They can
obtain more complete building contour information. According to the comparisons of Figure 7c,d and
Figure 8c,d, the classification method based on LLC-LDA features and the classification method based
on LLC-MP features can produce a certain complementarity.

5.3. Parameters Sensitivity Analysis

Our method consists of five key parameters, i.e., number of maximum point thresholds T in the
point set, number of dictionary words M, dictionary learning regular term parameter λ. local region
parameter Kn, and number of latent topics `. In this paper, T is selected from the set: {100, 200, 300,
400}. M is selected from the set {64, 128, 256, 512}. λ is selected from the set: {0.0001, 0.0005, 0.001,
0.005, 0.01}. Kn is selected from the set {5, 10, 15, 20}. ` is selected from the set: {8, 10, 12, 14, 16}.
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5.3.1. Sensitivity Analysis of Parameter T

To discuss the influence of the point sets generation threshold of the finest layer on the point
cloud classification, different number of maximum points in point set T are selected to generate point
sets with different sizes. Other parameters are fixed. Point clouds classification experiments are carried
out on Scene1 (ALS) and Scene3 (MLS) with M = 128, λ =0.0001, Kn = 5, and `= 16. The classification
results of different thresholds T are shown in Figure 9. For Scene1, the F1-score values of trees and
buildings are more than 90%, and the F1-score values of cars are more than 50%, as shown in Figure 9a.
According to Figure 9a, we can see that T has a certain influence on the classification effects. However,
when the T is selected at the appropriate range, there is relatively little influence on the point cloud
classification. As shown in Figure 9b, for Scene3, when T = 100, 200, and 400, the gaps of OA, mIoU,
and Kappa are less than 5%. For the F1-score values of each category, the larger maximum point
number of the point set in the finest layer is set, which obtains worse classification performance of the
poles. Besides, the other categories have relatively little difference. According to Figure 9a,b, except for
the case of T = 300, the gaps of overall evaluation metrics in other cases are less than 5%. Therefore,
the number of maximum points in the point set of the finest layer has a relatively small impact on the
point cloud classification. In addition, shape, density, and size of the single objects, which belong to the
same kind of category in Scene1, have slight differences, while those in Scene3 have great differences
(e.g., poles and trees). As shown in Figure 9, T has a relatively large influence on cars and poles. This
is because there are few cars/poles samples for training, and the number of points in the point sets of
cars/poles is relatively small. For relatively large objects such as buildings and trees, the classification
performance is improved when the size of point set in the finest layer increases within a certain range.
For point clouds in different scenes, the threshold T can be adjusted according to the density and the
shape of the objects in the point cloud. Thereby, the local information of the objects can be adequately
expressed by the finest layer point sets, and enough object points can be ensured in the point sets.
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Figure 9. Point cloud classification performance with different numbers of maximum points in the
point sets. (a) Scene1; (b) Scene3. Among them, the line charts are the curves of the overall evaluation
metrics, i.e., OA, mIoU and Kappa (%), and the histograms are the F1-score values (%) of each
category classification.

5.3.2. Sensitivity Analysis of Parameters on Dictionary Learning and Sparse Representation

The number of dictionary words, the regular term, and the local region range are important
parameters for dictionary learning and sparse representation. To evaluate the effects of these parameters
in dictionary learning and sparse representation for point cloud classification, we implement an
experiment using Scene1 and Scene3 datasets. Firstly, we fix T = 200, λ =0.0001, Kn = 5, and `= 16.
We use the different values of dictionary words M (e.g., 64, 128, 256, and 512) to test the accuracy of
classification results, as shown Figure 10. As shown in Figure 10a, the F1-score values of the building
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show an upward trend with the number of dictionary words increasing. For trees and cars, the
classification performance can be improved when the number of dictionary words is within a certain
range. When it exceeds the appropriate range, the classification performance may be poor. For the
overall evaluation metrics, the changes of the number of dictionary words have less influence on
OA but have great influence on classification consistency (Kappa) and mIoU. For Scene3, Figure 10b
shows that, when the number of dictionary words changes, the values of overall evaluation metrics,
i.e., OA, mIoU, and Kappa, are changed slightly (less than 5%). However, the number of dictionary
words has a relatively large impact on the classification of poles and trees. The influence trend of the
dictionary words number is the same as Scene1. To this end, when the number of dictionary words is
at the range of 128~256, our method can achieve relatively good classification results. In addition, for
categories with fewer samples, e.g., cars and poles, the performance of point cloud classification is
greatly influenced by the number of dictionary words.

Remote Sens. 2019, 11, x FOR PEER REVIEW 23 of 29 

The number of dictionary words, the regular term, and the local region range are important 
parameters for dictionary learning and sparse representation. To evaluate the effects of these 
parameters in dictionary learning and sparse representation for point cloud classification, we 
implement an experiment using Scene1 and Scene3 datasets. Firstly, we fix T = 200, 𝜆 =0.0001, Kn = 5, 
and ℓ= 16. We use the different values of dictionary words M (e.g., 64, 128, 256, and 512) to test the 
accuracy of classification results, as shown Figure 10. As shown in Figure 10a, the F1-score values of 
the building show an upward trend with the number of dictionary words increasing. For trees and 
cars, the classification performance can be improved when the number of dictionary words is within 
a certain range. When it exceeds the appropriate range, the classification performance may be poor. 
For the overall evaluation metrics, the changes of the number of dictionary words have less influence 
on OA but have great influence on classification consistency (Kappa) and mIoU. For Scene3, Figure 
10b shows that, when the number of dictionary words changes, the values of overall evaluation 
metrics, i.e., OA, mIoU, and Kappa, are changed slightly (less than 5%). However, the number of 
dictionary words has a relatively large impact on the classification of poles and trees. The influence 
trend of the dictionary words number is the same as Scene1. To this end, when the number of 
dictionary words is at the range of 128~256, our method can achieve relatively good classification 
results. In addition, for categories with fewer samples, e.g., cars and poles, the performance of point 
cloud classification is greatly influenced by the number of dictionary words. 

  

(a) (b) 

Figure 10. Point cloud classification performance with different numbers of dictionary words. (a) 
Scene1; (b) Scene3. Among them, the line charts are the curves of the overall evaluation metrics, i.e., 
OA, mIoU, and Kappa (%), and the histograms are the F1-score values (%) of each category 
classification. 

The regular term parameter 𝜆 and the local region parameter Kn are often coupled with each 
other and have an impact on dictionary learning and sparse representation. To test their impact on 
classification accuracy, we set T = 200, M = 128, ℓ= 14 and 16. The result is shown in Figure 11 when 
parameter 𝜆 is set to 0.0001, 0.0005, 0.001, 0.005, and 0.01 and Kn is set to 5, 10, 15, and 20, accordingly. 

For Scene1, as shown in Figure 11a,b, the number of latent topics is 14 and 16, and when Kn is 
chosen in the range [5,10], the value of metric OA can achieve a relatively good performance. When 
Kn is greater than 10, OA tends to decline. When 𝜆 is at the range of 0.0001~0.05 with Kn at the given 
range, the OA of the point cloud classification shows a downward trend. However, when 𝜆 is 0.1, the 
OA of the point cloud classification has a certain increase, while there is still a certain gap compared 
with the OA with 𝜆= 0.0001. As shown in Figure 11c,d, it can be seen that the mIoU has similar 
distribution trends with OA, but the difference of classification performance caused by the change of 
each parameter for mIoU is more obvious than OA, which is mainly due to the parameter sensitivity 
for the small samples classification. 

 

Figure 10. Point cloud classification performance with different numbers of dictionary words. (a)
Scene1; (b) Scene3. Among them, the line charts are the curves of the overall evaluation metrics, i.e., OA,
mIoU, and Kappa (%), and the histograms are the F1-score values (%) of each category classification.

The regular term parameter λ and the local region parameter Kn are often coupled with each
other and have an impact on dictionary learning and sparse representation. To test their impact on
classification accuracy, we set T = 200, M = 128, `= 14 and 16. The result is shown in Figure 11 when
parameter λ is set to 0.0001, 0.0005, 0.001, 0.005, and 0.01 and Kn is set to 5, 10, 15, and 20, accordingly.

For Scene1, as shown in Figure 11a,b, the number of latent topics is 14 and 16, and when Kn is
chosen in the range [5,10], the value of metric OA can achieve a relatively good performance. When Kn

is greater than 10, OA tends to decline. When λ is at the range of 0.0001~0.05 with Kn at the given
range, the OA of the point cloud classification shows a downward trend. However, when λ is 0.1, the
OA of the point cloud classification has a certain increase, while there is still a certain gap compared
with the OA with λ= 0.0001. As shown in Figure 11c,d, it can be seen that the mIoU has similar
distribution trends with OA, but the difference of classification performance caused by the change of
each parameter for mIoU is more obvious than OA, which is mainly due to the parameter sensitivity
for the small samples classification.

For Scene3, as shown in Figure 11e,g, the changes of λ and Kn have little influence on the OA, and
the general trend is similar to that of Scene1. From Figure 11f,h, we can see that the mIoU is obviously
affected by the parameter Kn, and the larger Kn is, the lower mIoU value is. However, mIoU is less
affected by λ, and the overall trend is similar to that of Scene1.

The above comparative analysis demonstrates that, when Kn and λ are set at the range of 5~10
and 0.0001~0.0005, respectively, promising point cloud classification performance can be obtained.
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Figure 11. Point cloud classification performances with different trade-off parameter values and local
region range parameter values in dictionary learning and sparse representation. (a) and (b) are different
OAs obtained with different λ and Kn on Scene1 when the number of latent topics are 14 and 16. (c)
and (d) are different mIoUs obtained with different λ and Kn on Scene1 when the number of latent
topics are 14 and 16. (e) and (f) are different OAs obtained with different λ and Kn on Scene3 when the
number of latent topics are 14 and 16. (g) and (h) are different mIoU obtained with different λ and Kn

on Scene3 when the number of latent topics are 14 and 16.

5.3.3. Sensitivity Analysis of Latent Topics Number `

The number of latent topics determines the dimensions of the point set LLC-LDA features. In order
to discuss the influence of the latent topics number on the point cloud classification, we set T = 200,
M = 128, λ =0.0001, and Kn = 5, and select 8, 10, 12, 14, and 16 latent topics to conduct experiments,
respectively. Point cloud classification experiments are performed on Scene1 (ALS) and Scene3 (MLS).
The influence of different latent topic numbers on point cloud classification is shown in Figure 12.
As shown in Figure 12, when the different latent topics number m is selected, the classification accuracy
of some categories has a certain degree of difference. It is to note that the proportion of these objects
in training samples is very small, i.e., taking up to 4.8% and 2.8% of all training points, respectively.
Therefore, the latent topics number affects the classification performance of categories with fewer
samples. However, as shown in Figure 12, the overall classification metrics, i.e., OA, mIoU, and Kappa,
have little difference (less than 5%) with various latent topics numbers. We conclude that the latent
topics number at the range of 8~16 has a relatively small impact on the point cloud classification.
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6. Conclusions

This paper presents a novel point set features extraction method via multi-level global and local
features aggregation for point cloud classification. The proposed method firstly generates different
levels of point sets by means of multi-level clustering. The point sets of each level have different sizes,
which can express the different parts and structures of objects. In this step, we provide robust and
significant point set features. Afterwards, the LLC-LDA and the LLC-MP multi-level aggregation
features of the point set are extracted based on the covariance eigenvalues features and the spin image
features. In the point set features extraction, LLC-based dictionary learning and sparse representation
are used to make full use of the locality between each neighboring point, which makes the sparse
representation more significant. Finally, point clouds can be classified based on multi-level aggregation
features of point sets followed by fusing the global and the local information representations of different
hierarchical point sets, i.e., LLC-LDA features and LLC-MP features. The experimental results show
that the multi-level point set features extracted by our method are significantly discriminative, and the
extracted features can effectively express different types of complex objects. Moreover, the point cloud
classification of our method outperforms other comparison algorithms in most evaluation metrics.

Although our method achieves more accurate classification results in the data set shown in
Table 2, our method still has certain drawbacks. (1) As the more robust and significant point set
multi-level aggregation features and classification model need more training samples to generate, larger
datasets with labels are needed, which requires more time in labeling the data and training the model.
(2) Integration of local and global features by simply concatenating them together does not achieve
optimal results for the expression of these two types of features. How to effectively integrate features
from different perspectives is the focus of future works. In addition, based on the proposed framework,
combining deep learning methods for features extraction and fusion is also an improvement direction
for future research.
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