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Abstract: Local climate zones (LCZ) have become a generic criterion for climate analysis among
global cities, as they can describe not only the urban climate but also the morphology inside the
city. LCZ mapping based on the remote sensing classification method is a fundamental task, and
the protocol proposed by the World Urban Database and Access Portal Tools (WUDAPT) project,
which consists of random forest classification and filter-based spatial smoothing, is the most common
approach. However, the classification and spatial smoothing lack a unified framework, which
causes the appearance of small, isolated areas in the LCZ maps. In this paper, a spatial-contextual
information-based self-training classification framework (SCSF) is proposed to solve this LCZ
classification problem. In SCSF, conditional random field (CRF) is used to integrate the classification
and spatial smoothing processing into one model and a self-training method is adopted, considering
that the lack of sufficient expert-labeled training samples is always a big issue, especially for the
complex LCZ scheme. Moreover, in the unary potentials of CRF modeling, pseudo-label selection
using a self-training process is used to train the classifier, which fuses the regional spatial information
through segmentation and the local neighborhood information through moving windows to provide
a more reliable probabilistic classification map. In the pairwise potential function, SCSF can effectively
improve the classification accuracy by integrating the spatial-contextual information through CRF.
The experimental results prove that the proposed framework is efficient when compared to the
traditional mapping product of WUDAPT in LCZ classification.

Keywords: local climate zones (LCZ); spatial-contextual information; self-training; conditional
random fields (CRF)

1. Introduction

The local climate zone (LCZ) scheme is a novel climate-based classification scheme [1], which
skillfully relates the urban climate represented by physical traits with urban morphology depicted
through landscape cover. The LCZ scheme has the potential to be accepted as a standard description for
worldwide cities [2], since its strong performance in indicating the diversity inside cities is also important
for urban study. It has been widely used in various fields, such as a series of studies of the urban
heat island (UHI) effect [3,4], which adopted the LCZ scheme rather than the traditional dichotomic
urban or rural regions to analyze the effects of urban heat islands, making the study of thermal
phenomena more specific. The LCZ scheme has also been found to be superior in portraying urban
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morphology [5,6], where researchers have developed climate-sensitive urban planning strategies aimed
at preventing the acceleration of local urban warming. Other fields such as weather forecasting [7],
urban health studies [8], and urban energy studies [9] have also shown much interest in the LCZ
scheme. It seems that the LCZ scheme is now playing a more and more important role in global
urban studies. To better apply the LCZ scheme in urban studies, generating effective and precise LCZ
maps is a fundamental problem. There are three main methods used in LCZ mapping: (1) on-site
observation; (2) geographic information system (GIS)-based methods; and (3) remote-sensing-based
methods [10]. On-site observation requires professional instruments and the related knowledge and is
thus not only time-consuming but also difficult for the layperson [11]. The GIS-based methods employ
urban-related databases to calculate the relevant LCZ properties [12,13]. This approach can perform
well in a specific city but is difficult to duplicate in other areas; moreover, the acquisition of GIS data is
often difficult, which limits further application [14]. As a result, remote-sensing-based methods are
now in common use.

The remote-sensing-based LCZ methods combined with Earth observation data such as Landsat
and Sentinel images have the potential to map global cities. Considering this fact, an initiative called
the World Urban Database and Access Portal Tools (WUDAPT) project [15,16] adopted the LCZ scheme
to produce its city-level data (level 0 data), using LCZ classification to delineate the coarse urban
morphology. This project proposed an LCZ mapping method for the publicly available Landsat
images, which outperformed random forest (RF) classification [17] on the Google Earth and System for
Automated Geoscientific Analyses (SAGA) [18] platforms. Since the patches in the obtained maps are
too fragmented due to the LCZ concept, majority-filter-based spatial smoothing is added into the final
protocol to generate smoother results. Hence, RF classification and the majority filter make up the
official WUDAPT pixel-based LCZ mapping workflow [19]. This approach has been widely used in a
number of studies. Demuzere et al. [20] adopted this protocol to generate a continental-scale LCZ map
of Europe; Bechtel et al. [21] analyzed the surface urban heat island (SUHI)effect among 50 cities from
the outcome of WUDAPT; and Shi et al. [22] used this LCZ classification scheme to assist in urban air
quality study. Nevertheless, although the well-known WUDAPT LCZ mapping method introduces the
majority filter to mitigate the fragmented pixels, the results are still unsatisfactory when using only the
spatial neighborhood information. This results in the appearance of small, isolated misclassified areas,
which can be solved by considering the spatial-contextual information. Given this fact, three kinds
of improved methods have been developed to date. The first method is the object-oriented LCZ
classification approaches [23,24], which use segmentation regions rather than a single pixel as the
processing unit. However, the classification is seriously influenced by the segmentation scale, which
inadvertently brings a new problem, i.e., how to choose the optimal scale. The second type of
method is based on the spatial-smoothing-based LCZ approach with Markov random fields (MRF) [25].
This method not only can integrate the spatial-contextual information but also avoids the selection of
the optimal scale, whereas MRF only considers the spatial-contextual information among the labels and
ignores the original samples. The third is the deep-learning-based LCZ classification methods [26-28],
which use convolutional and pooling layers to capture spatial-contextual information and to improve
the performance of classification. While the utilization of spatial-contextual information depends on
the depth of the network, a shallow net usually considers the regional area and a deep net considers
global area, which makes the elaborate configuration of the network become another issue.

In this paper, to comprehensively solve these problems, a spatial-contextual information-based
self-training classification framework for LCZs (SCSF) is proposed. In SCSF, the spatial-contextual
information can be directly integrated into the classification step with the flexible ability of conditional
random fields (CRF), which models the spatial-contextual information in both the samples and
the corresponding labels with a strong theoretical basis. CRF has been widely used in image
segmentation [29,30] and image classification [31-34], and although CRF has a powerful modeling
ability for spatial-contextual information, when it comes to LCZ classification, the small number of
expert-labeled samples directly impacts the quality of the probabilistic classification map, resulting
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in unreliable inputs for modeling the potential function in CRF. Considering this fact, we propose
an improved self-training method with spatial information-based pseudo-label selection to provide
a more reliable probabilistic classification map. The proposed SCSF method can help to prevent the
appearance of fragmented pixels, and better predictions can be obtained with the integration of the
classification and spatial-contextual information. The main contributions of this paper are as follows:

1.  The spatial-contextual information based self-training classification framework for LCZs.
Considering that the traditional remote-sensing-based LCZ mapping approaches separate the
classification and the spatial smoothing into two independent components, which causes the
small, isolated areas in LCZ maps, the proposed SCSF method adopts CRF to directly integrate the
spatial-contextual information into the classification with a unified theoretical basis. In addition,
an improved self-training method is used to mitigate the conflict between the shortage of
expert-labeled LCZ samples and the reliable probabilistic classification maps, serving as inputs for
CRE. With the help of spatial-contextual information-based pseudo-label selection, the improved
self-training method is able to iteratively enrich the training set and to retrain the classifier,
which can provide a more confident probabilistic classification map.

2. Conditional random fields (CRF) for LCZ classification.

The traditional classifiers consider each pixel independently, without considering the correlation
between neighbors, which causes the appearance of salt-and-pepper noise. Although the
filter-based spatial smoothing uses spatial constraints to mitigate this problem, the small, isolated
areas still remain due to the lack of a unified framework between the classification and spatial
smoothing steps. Given this fact, a spatial-contextual information-based method—CRF—is
applied to describe the relationship between the samples and labels through the unary potentials
and it simultaneously models the spatial correlation between the labeled and observed data
by the pairwise potentials. With the hypothesis that the neighboring pixels in homogeneous
regions usually have the same label, pairwise CRF-based classification can help to capture the
spatial-contextual information, which is important for LCZ mapping, and can thus present a
smoother classification map.

3.  Probabilistic classification with self-training.

Although CREF has a flexible modeling ability for spatial-contextual information, the potential
function requires a reliable probabilistic classification map. Consider that the quality of the
probabilistic classification map is seriously affected by the small training set; a self-training
method is introduced, in which a pseudo-label selection strategy using the regional information
among the whole image and the local information between neighbors is proposed to identify more
confident predictions. With the assumption that similar data in a homogeneous area are more
likely to have the same label, self-training with spatial-contextual information-based pseudo-label
selection is able to provide a more accurate probabilistic classification map.

The proposed method was tested on three datasets provided as part of the 2017 IEEE Geoscience
and Remote Sensing Society (GRSS) Data Fusion Contest. Compared with the WUDAPT method,
which uses the RF classifier and spatial smoothing with a majority filter, the proposed method gives
an excellent performance. Other methods including Naive Bayes (NB), Support Vector Machine
(SVM), and improved WUDAPT approach were also further utilized to compare with the proposed
method. Moreover, the LCZ classification framework integrating classification and spatial-contextual
information is effective even with limited data.
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2. Methodology

2.1. The World Urban Database and Access Portal Tools (WUDAPT) Project

LCZs are defined as regions representing horizontal distances of hundreds of meters to several
kilometers with uniform surface cover, structure, materials, and human activity [1]. The LCZ scheme
focuses on the land surface temperature between 1.2-1.5 m above ground, which is greatly influenced
by the landscape factors. In total, 17 different culturally neutral landscape types, including 10 built
types and 7 land-cover types, form the standard LCZ scheme, which is shown in Figure 1. Each type is
related to two kinds of climate-sensitive indicators: qualitative indicators and quantitative physical
properties. The detailed units better depict the diversity and complexity inside cities, which has led to
a revolutionary leap for urban microclimate research [35]. As a result, the LCZ scheme has attracted
interest in various fields. The operable supervised LCZ workflow has been published by the World
Urban Database and Access Portal Tools (WUDAPT) project, and further study is still in progress.
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Figure 1. The local climate zone scheme.

The WUDAPT project [36,37] is an initiative project for the acquisition, storage, and dissemination
of climate-relevant data on the physical traits of global cities. The WUDAPT data collections have
three levels: level 0 provides a rough LCZ classification based on remote sensing data; level 1 provides
more detailed information on the urban form and function via crowdsourcing techniques; and level 2 is
responsible for gathering the finer parameters from these zones. The supervised remote-sensing-based
LCZ mapping approach [19] proposed by WUDAPT in Figure 2 has been utilized to collect level 0
data from the crowdsourcing community. With the help of Google Earth and the open-source SAGA
GIS software, people without any specific knowledge can also map LCZs through data labeling,
supervised classification, and filter-based spatial smoothing steps. Unfortunately, many of the LCZ
labeled samples collected via the crowdsourcing community are ambiguous, resulting in a lack of
high-quality expert-labeled data, which usually causes an inferior prediction. Thus, a method which is
able to perform well in the case of a small number of training samples is required.
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Figure 2. The workflow of the Local Climate Zone (LCZ) mapping approach proposed by the World
Urban Database and Access Portal Tool (WUDAPT) project. ROI-Region of interest; KML-Keyhole
markup language; ViGrA- An image processing library.

2.2. Self-Training Method.

Semi-supervised learning was developed to deal with the limited data issue, and it can help to
unlock the potential of huge unlabeled datasets. The self-training approach proposed by Scudder [38]
is the earliest semi-supervised method [39], which has been widely used in gene prediction [40],
parsing [41], and image classification [42,43] for its simplicity and clarity.

In the traditional self-training method, a base learner is first trained on the original, small, labeled
training set and high-probability pseudo-labels are then used to enrich the original labeled set until the
learner is retrained and reaches the stopping conditions. The unlabeled data provide extra information
to modify the learner, which is usually ignored in the supervised methods, making the description of
the model closer to the real distribution of the data. The procedure of a basic self-training method is
shown in Figure 3 can be summarized as the following four steps:

Step 1—Initialization: Train the base classifier C;,;; on the initial training set (X¢in, Yirain ) from the
given labeled data (X, y;).

Step 2—Selection: Predict the data in unlabeled set X, with classifier C;;;, and select the
high-probability data (X f, Yeonf) as pseudo-labels.

Step 3—Updating: Remove the selected unlabeled samples X, s from the unlabeled set X, and
combine the original data (X, y;) with the pseudo-labeled data (X, s Yeon f) to update the training set
Xtrains Ytrain);

Step 4—Retraining: Retrain the classifier C;,;; with the updated data (X¢4in, Yirein ), and repeat
Steps 2—4 until the stopping conditions are satisfied.
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Figure 3. The framework of the self-training algorithm.

However, the traditional self-training method starts the learning from only a few labeled samples,
with which it is difficult to capture the clear boundaries between classes, and the mislabeled samples
are then brought into the next learning iteration, thereby confusing the classifier. Thus, more powerful
pseudo-label selection strategies are urgently needed. Aydav and Minz [44] developed an improved
self-training approach using granulation to select the most confident data in a block, rather than a
single pixel. Although this approach takes the regional information into account, the confidence
obtained from the predicted probability on only a few labels is still low.

Given this fact, in the proposed approach, the commonly used probability is replaced by a strategy
considering the spatial-contextual information. After a series of selections from homogenous blocks to
candidates and pseudo-labels, the proposed strategy presents a strong performance and provides a
preferable probabilistic classification map for CRE.

2.3. The Spatial-Contextual Information-Based Self-Training Classification Framework (SCSF) for Local
Climate Zones

Spatial-contextual information has been proved important for LCZ classification [24,45]; however,
it is usually independent of the classification step and, without a unified theoretical basis, causes
the appearance of small, isolated noise areas. Considering this fact, the proposed spatial-contextual
information-based self-training framework (SCSF) introduces the conditional random fields (CRF) and
self-training method to provide a better solution. To be specific, CRF is adopted for LCZ classification to
integrate the spatial-contextual information directly into the classification by simultaneously modeling
the relationship between samples and labels and the spatial correlation among samples and labels,
which provides strong theoretical guidance. Furthermore, a probabilistic classification map with the
self-training method which is improved by spatial-contextual information-based pseudo-label selection
is used for the potential function in CRF by enriching the original labeled dataset with pseudo-labels
and by retraining the classifier when the training samples are limited in LCZ mapping.

Firstly, the initial feature space is built with Landsat 8 spectral data and the remote sensing
indices of the modified normalized difference water index (MNDWI), the normalized difference
vegetation index (NDVI), the ratio vegetation index (RVI), the bare soil index (BSI), the normalized
difference building index (NDBI), and the normalized difference impervious surface index (NDISI).
After principal component analysis (PCA) transformation, the features are divided into labeled and
unlabeled sets, and the labeled data are used to train the base classifier. In the meantime, the efficient
graph-based segmentation mask is generated from the input data. Next, the pseudo-labeled samples
are selected according to the segmentation and prediction. With the adjustment of the base classifier,
the performance is gradually improved and becomes much closer to the specific LCZ scheme. Finally,
the CRF models the log-based unary potentials and the edge feature function-based pairwise potentials
to simulate the relationship and spatial correlation between samples and labels, which offers a better
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and smoother prediction. The workflow of the spatial-contextual information-based self-training
framework is shown in Figure 4 and is described in the following.
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Figure 4. The framework of the proposed methodology (spatial-contextual information-based
self-training classification framework (SCSF)).

2.3.1. Feature Extraction Based on Multiple Indices

According to the height, compactness, surface cover, and thermal admittance, the LCZ system
mixes independent land-cover elements, such as building, tree, farm land, and road, to form unique
LCZ types, which leads to an inferior spectral separability, especially for the similar categories. In order
to express the characteristics of the LCZ categories, six beneficial remote sensing indices are extracted:
MNDWI, NDVI, RVI, BSI, NDBI, and NDISI. The indices are introduced in the following.

The MNDWI [46] is a modified formula for extracting water areas, which is, of course, helpful
for LCZ G. Compared with the normalized difference water index (NDWI), the MNDWI changes the
original band combination by replacing the near-infrared with the mid-infrared band, which is more
effective in distinguishing water information from built-up areas.

The NDVI [47] is a common ratio in vegetation identification, and it is beneficial not only for
land-cover types such as LCZ A-D but also for the built types, such as LCZ 1-3. The NDVI can be used
to describe the growth of plants, with a value ranging from —1 to 1, where a negative value means
high-reflectivity objects and a positive value represents vegetation.

The RVI [48] is sensitive to high-density vegetation and sharply decreases when the vegetation
fraction is less than 50%. Green and healthy plants make the RVI much larger than 1, while for land
without vegetation, the value is around 1. The RVI has potential for types such as LCZ A-C, as it can
reflect the sparseness or density of vegetation.
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The BSI [49] is usually used for discriminating bare land from other land covers, such as built-up,
water, and vegetation, since the value is much higher in bare land areas. With the help of the
near-infrared and mid-infrared bands, the BSI is effective in identifying the soil-related LCZ categories,
suchas LCZ7,C,and F.

The NDBI [50] is regarded as a substitute for the building surface fraction (BSF), a ratio of building
plan area to total plan area, in 10 LCZ basic physical properties. The NDBI can provide building
information through its density, usually denoted by a specific value.

The NDISI [51] introduces the thermal infrared band to differentiate impervious surfaces from
soil. Moreover, it has the ability to extract more accurate impervious area information through the
restriction of the negative influence of sand and water. The NDISI is used as a replacement for the
impervious surface fraction (ISF), a ratio of impervious plan area (paved, rock) to total plan area (%).

2.3.2. Probabilistic Classification with Self-Training

In order to provide a more reliable probabilistic classification map in the case of limited
expert-labeled data, a self-training method is considered. Since the spatial-contextual information
is important for LCZ classification, it is also used in the improvement of the self-training method.
The proposed self-training approach with spatial-contextual information-based pseudo-label selection
depends on two main assumptions. The first is that samples with more similar features are more likely
to belong to the same category, which is developed by the regional information-based segmentation
step. The second is that a pixel surrounded by others with the same label is more reliable, which is
achieved through the local information-based candidate identification. The experiments undertaken in
this study confirmed that both the regional constraints and the neighborhood information are beneficial
for more reliable pseudo-label selection. And the improved self-training method is shown in Figure 5.
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Figure 5. The improved self-training method.

1. Segmentation of Features

The Felsenszwalb [52] method in a Python package is used to segment the input features and to
generate a segmentation mask, which introduces the regional spatial information to cluster similar
features. As a classical image segmentation algorithm, it first computes Felsenszwalb’s efficient graph
and then builds a minimum spanning tree. The final segmentation comprehensively considers the
internal difference of a component and the difference between two components.

2. The LCZ Base Classifier

After feature extraction, the dataset D is divided into an unlabeled set D, = {X;} and labeled
set D; = {X;, y;}, and the latter is further split into a training set Dtyiy = {Xtrain, Yrain} and test set
Diest = {Xtest, Ytest}. The base classifier, RF, is then learned on the training set Dyy,;,. RF [53] is a
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diversity-based ensemble method, and its diversity comes from the various training sets with random
samples and features. The randomness in RF comes from the random sample selection, where each
base classifier has its own dataset through the bootstrap strategy. Further randomness comes from the
random attribute selection, where different features are input to the learning process. The final result is
voted for by a group of base classifiers in RF, which provides strong robustness.

There are two reasons for employing the RF classifier. Firstly, RF has an innate advantage in
dealing with a small amount of data due to its bootstrap technique, which can enlarge the original
database by sampling with the replacement. Secondly, the ensemble strategy, i.e., the majority voting
method, makes RF insensitive to noise. One forest includes groups of the base classifier, which are
mostly classification and regression trees (CARTs) [54], and each tree is trained on the diverse dataset.
Even if misclassification appears in some of the results, the final voting will be stable. Above all, RF is
adequate as the base classifier in the case of the label shortage issue.

3. Selection of Candidates

The candidate selection consists of two steps: (1) collecting homogeneous segments and (2) selecting
potential samples. A superimposed map with a prediction and segmentation mask is generated at
this stage, which puts the regional spatial constraints on the unreliable predictions, i.e., incorporating
labels with the input data. According to the first hypothesis introduced previously, i.e., neighboring
pixels in homogeneous regions usually have the same label, one block with lots of the same labels is
defined as a homogeneous region. The most frequent labels inside the homogeneous block then form
the final candidates.

4. Selection of Pseudo-Labels

There are also two procedures used to identify the final pseudo-samples: (1) capturing the
8-neighbor information and (2) sorting the calculated entropy. According to the second assumption
mentioned previously, candidates with a lower entropy are likely to be the most useful pseudo-labels.

To be specific, the neighborhood information is captured by a 3 x 3 size moving window. If there
are k pixels having the same label among the surrounding 8-neighbors, then the label frequency for
each class is defined as follows:

9 ki.”
i n=1 I
V= —5— M

where plj‘. represents the label frequency of class j for the ith pixel in the candidate set, 7 is the neighbor

of the ith pixel in the 8-neighbor region N, and kj." denotes if the neighbor n of the ith pixel belongs to
the classj.
The label frequency p? is then used to calculate the entropy as follows:

|C|
e =- Z{ pilogy )
]:

where €' is the entropy of the ith pixel in the candidate set and |C| represents the number of classes.
The entropy captures the certainty of the prediction, with a higher value denoting greater uncertainty.

5. Update and Stopping Condition

The selected pseudo-labels are updated to enrich the original training set, which can offer more
information for the base classifier. The latest prediction is then output to the base classifier to assist
the new training process. The classifier is gradually modified until a stable classification accuracy is
achieved and the final prediction is produced.
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2.3.3. Conditional Random Fields (CRF) for LCZ Classification

The majority of the existing LCZ mapping methods separate the classification and the consideration
of the spatial-contextual information into independent steps, which causes the appearance of small,
isolated noise regions. However, the concept of an LCZ covers hundreds to thousands of meters,
which means that the local climate of a very small area is usually discarded. CRF [55] is able to solve
this problem by directly bringing the spatial-contextual information into the classification, which also
provides a unified theoretical basis for better exploring the spatial-contextual information.

The most common CREF for the image classification task—pairwise CRF [56]—is used to model
the spatial dependencies among the 8-neighbors. The energy function E(x) is defined as follows:

E(x) = Z Yi(xi,y) + A Z z,bi]-(xi, Xj, y) (3)

ieV i€V, jeN;

where i is the location of the pixel in the image data V = {1, 2, -+ ,K}, K is the total number of images,
x; is the label corresponding to the ith pixel, and y is the original input data. ¥;(x;, y) and lPij(xi/ Xj, y)
represent the unary potentials and pairwise potentials, respectively. A is a nonnegative constant used
to trade off the performance of the unary and pairwise potentials. N; represents the local neighborhood
of pixel .

The unary potentials 1;(x;, y) reflect the correlation between the single pixel and the particular
label and are defined as follows:

Vi(xi,y) = ~In(P(x; = It)) (4)

where P(x; = I;) denotes the probability of x; being labeled as I;, where the probabilistic classification
map from the RF classifier is used.

The pairwise potentials gbi]-(xl-, Xj, y) incorporate the spatial-contextual information with the image
pixels and labels and model a smoothness prior as follows:

0, Zf X; = x]-
i\ Xi, Xj, = i, i . 5
vi ( e y) ﬁi(_l’jgfl, otherwise ©®)
where
2
80, j) = 1+ Gpe el 6)

where g(i, j) is an edge feature function measuring the difference among neighbors, the pair of (i, j)
represents the location of neighboring pixels, 8, controls the degree of smoothing, and 6y, is designed
as the mean-square difference between the spectral vector of adjacent pixels over the whole image.

3. Experimental Results and Discussions

3.1. Experimental Description

To test the performance of the proposed SCSF method, three experiments were conducted,
each using two Landsat 8 images and one ground truth provided as part of the 2017 GRSS Data
Fusion Contest (2017DFC). The ability of the introduced CRF method to integrate spatial-contextual
information was compared with that of two other LCZ mapping methods. The RF classification was
used as a baseline, the widely accepted LCZ mapping workflow proposed by WUDAPT (comprising RF
classification and majority-filter(M])-based spatial smoothing) was used as another reference framework,
denoted as RF+MJ(WUDAPT), and the CRF for LCZ classification was denoted as RF+CRF. In addition,
to evaluate the capacity of self-training-based probabilistic classification, the proposed, improved
self-training method, namely ST, was integrated into the above approaches. The main comparison
experiments were finally divided into two parts: supervised methods (i.e., RE, RE+MJ(WUDAPT),
and RF+CRF) and semi-supervised method (i.e., RF+ST, RF+ST+M], and RF+ST+CRF(SCSEF)). Other
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machine learning classifiers, Naive Bayes (NB) and Support Vector Machine (SVM), which had been
widely used in LCZ classification [57,58], were also conducted in this section. Also, the improved
WUDAPT method [28,45], denoted as CI-WUDAPT, which considered the contextual characteristics
including the mean, minimum, maximum, median, and 25th and 75th quantile values of all pixels in a
3 x 3 window, was also used to compare the performance of the proposed SCSEF.

All the experiments were implemented in Python, while the RF classifier was set with 32 estimators
and 10 as its maximum depth. The range of the majority filter in the WUDAPT method was a 3 X 3
square window size, and the nonnegative constant A in CRF was set as 0.5. It is well known that the
configurations of the training set and testing set play important roles in the assessment of the LCZ
classification [28,45,59]. Since the ground truth data was usually limited, 10 labeled samples were
randomly selected in each class for simulating the insufficiency of labeled samples and the remaining
samples were used as a testing set, which is widely used in many semi-supervised researches [60,61].
Also, the final experimental results were the average performance of 10 run outcomes for providing
better representativeness.

The quantitative performances are assessed by three kinds of accuracies: (1) the accuracy of each
class; (2) the overall accuracy (OA), which denotes the percentage of correctly classified samples;
and (3) the kappa coefficient (Kappa). Moreover, in order to evaluate the statistical significance of
the difference between the proposed algorithms, McNemar's test [62] was applied under the same
classification conditions. Given two classifiers C; and C,, McNemar’s test can be computed as follows:

(IMyg — My | - 1)°

X% =
My + My

@)

where M, represents the number of pixels misclassified by C; but not by C; and Mj; represents
the number of pixels misclassified by C, but not by Cy. If M1y + My > 20, then this statistic can be
considered as achi-squared distribution x12. McNemar’s test can evaluate whether the difference
between the results of two classifiers is significant. Given the common 5% level of significance,
then )(0,05,12 = 3.841459. Also, if X2 is greater than )(0.05,12, then the performances of the two classifiers
are significantly different.

3.2. Experimental Results and Analysis

3.2.1. Berlin Experiments

As a city with high attention to urban planning, Berlin in Germany has a balanced urban spatial
structure, making itself a model for urban studies. The LCZ types in Berlin are six LCZ built types
(i.e., LCZ 2 compact mid-rise, LCZ 4 open high-rise, LCZ 5 open mid-rise, LCZ 6 open low-rise, LCZ 8
large low-rise, and LCZ 9 sparsely built) and six LCZ natural types (i.e., LCZ A dense trees, LCZ B
scattered trees, LCZ C bush or scrub, LCZ D low plants, LCZ F bare soil or sand, and LCZ G water).
The first experiment was conducted using two down-sampled Landsat 8 images with a 100-m spatial
resolution from 2017DFC, which were acquired on 25th March and 10th April 2014. The experimental
images contained 666 X 643 pixels, with seven multi-spectral bands (1-7) and two thermal infrared
bands (10-11). A false-color image consisting of three bands (Red, green and blue (RGB)) is shown
in Figure 6a. The spatial distribution of the corresponding labels is presented in Figure 6b, and the
number of labeled samples for each type is given in Table 1. In addition, the training data were
randomly sampled from the ground truth for each class.
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Unclassified

1.C7.2 compact mid-rise
1.C7 4 open high-rise
1.C7.5 open mid-rise

1.CZ 6 open low-rise
LCZ 8 large low-rise
LCZ 9 sparsely built
I.CZ A densc trees
1.C7. B scattered trees
LCZ C bush or scrub
LCZ D low plants

LCZ F bare soil or sand
LCZ G water

(b)

Figure 6. Berlin Landsat 8 dataset. (a) RGB false-color image (4, 3, 2). (b) Ground-truth image.

Table 1. Class information for Berlin.

LCZ Class 2 4 5 6 8 9 A B C D F G
Samples 1534 577 2448 4010 1654 761 4960 1028 1050 4424 359 1732

The LCZ classification maps obtained by the different frameworks (i.e., NB, SVM, CI-WUDAPT,
RE, RF+MJ(WUDAPT), RF+CRE, RF+ST, RF+ST+M]J, and RF+ST+CRF(SCSF)) for the Berlin images
are displayed in Figure 7a-i, respectively. As the figures show, classification without spatial-contextual
information, i.e., RF, presents lots of salt-and-pepper noise. After inputting the spatial constraints from
the majority-filter-based spatial smoothing, the other LCZ prediction using the RE+MJ(WUDAPT)
workflow produces a smoother LCZ mapping result with a better visual effect. However, the majority
filter only considers the narrow neighborhood information given by the predictions, and the small,
isolated noise areas remain to be solved. The RF+CRF method generates a much better performance
in mitigating the above problem. Nevertheless, misclassification arises from the insufficient training
samples, as in area 1 of Figure 7d, where the LCZ F bare soil or sand (yellow) is supposed to be
LCZ D low plant (green), which also confuses the CRF modeling, causing the area 1 of Figure 7f
(i.e., RF+CRF) to be mislabeled as LCZ F bare soil or sand. Considering this, the semi-supervised
self-training methods were then applied to improve the initial predictions. Supported by the enriched
training samples from the pseudo-labels, the RF+ST method provides a cleaner map than RF and the
comparison between the results of RE+ST+M] and RF+M]J also reveals the same case. Moreover, area 1
of Figure 7g,h is corrected to LCZ D low plants (green). The RF+ST+CRF(SCSF) workflow exhibits
a competitive performance in solving the misclassified noise, with the help of the use of unlabeled
data through the improved self-training method and the unified spatial-contextual information-based
classification through CRF. Furthermore, results of NB and SVM shown in Figure 7a,b present relatively
poor performance with lots of fragile segments. For the prediction of CI-WUDAPT, the smoother
boundaries among different classes are presented after the extraction of regional spatial-contextual
from features, while heavy misclassified phenomena appeared with the limited training samples
(10 samples per class), such as massive LCZ G water (blue) being obviously misclassified to LCZ C
bush or scrub (light blue). From the aspect of visual performance, the proposed SCSF delivers the
better solution in handling the fragile segments and misclassified areas, which proves the superior
capability of the SCSFE.
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(8) (h) (1)
LCZ 2 compact mid-rise LCZ 8 large low-rise . LCZ C bush or scrub
LCZ 4 open high-rise LCZ 9 sparsely built LCZ D low plants
LCZ 5 open mid-rise LCZ A dense trees LCZ F bare soil or sand
LCZ 6 open low-rise L.CZ B scattered trees - LCZ G water

Figure 7. The classification maps for the Berlin Landsat 8 data: (a) Naive Bayes (NB), (b) Support
Vector Machine (SVM), (c) the improved WUDAPT method (CI-WUDAPT), (d) random forest
(RF), (e) WUDAPT, (f) RF+conditional random fields (CRF), (g) RF+self-training method (ST),
(h) RF+ST+majority filter(M]), and (i) SCSF.

In addition, Table 2 provides the pairwise comparison between the nine methods (i.e., NB, SVM,
CI-WUDAPT, RE, RE+MJ(WUDAPT), RF+CRF, RF+ST, RF+ST+M], and RF+ST+CRF(SCSF)) using
McNemar’s test. The value of McNemar’s test indicates the difference between the two results of
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classifiers, while if the value is greater than )(0.05,12 (3.841459), it is considered a significant difference.
Furthermore, the greater the value, the more significant the difference. Data shows that all the values
are greater than )(0.05,12, especially for the method between SCSF and SVM, which has a considerably
big value, 2970.46, showing the significant difference among two approaches. Moreover, significant
differences among every two methods are provided from the statistical aspect in Berlin.

Table 2. McNemar's test for the Berlin Landsat 8 data.

SCSF RF+ST+M] RF+ST RF+CRF WUDAPT RF CI-WUDAPT SVM NB
SCSF NA 502.12 1533.52 309.06 700.33 1750.63 449.52 2970.46  1610.06
RF+ ST+MJ NA 653.09 213.40 144.18 802.29 105.69 1907.11 733.18
RF+ST NA 847.38 248.97 115.85 327.02 788.59 163.26
RF+CRF NA 404.54 1438.25 224.40 243448  1220.01
WUDAPT NA 691.54 79.91 1488.81 495.67
RF NA 528.75 466.36 116.25
CI-WUDAPT NA 1780.09 494.02
SVM NA 482.81
NB NA

To better assess the effectiveness of the proposed SCSF method, a quantitative comparison
of the different methods (i.e.,, NB, SVM, CI-WUDAPT, RE, RF+MJ(WUDAPT), RF+CREFE, RF+ST,
RF+ST+M]J, and RF+ST+CRF(SCSF)) is provided in Table 3. This shows that the classification workflows
considering spatial-contextual information (i.e., C-WUDAPT, RF+MJ(WUDAPT), RF+CRF, RF+ST+M],
and RF+ST+CRF(SCSF)) give a great improvement of nearly 5-18% in OA over the single classification
results (i.e., NB, SVM, RF, and RF+5T) and an improvement of 0.06-0.2 in Kappa, proving the significance
of the spatial-contextual information for LCZ mapping. Furthermore, the CRF-based classification
workflows (i.e., RF+CRF and RF+ST+CRF(SCSF)) deliver an enhancement of approximately 4% in
terms of OA and 0.05 in Kappa, compared with the independent majority-filter-based approaches
(i.e., RF+M] and RF+ST+M]J), which means that simultaneously modeling the correlation between
labels and samples, in addition to the spatial relationship among samples, is very helpful.
In addition, the accuracies of the self-training-based semi-supervised methods (i.e., RF+ST, RE+ST+M],
and RF+ST+CRF(SCSF)) are higher than those of the supervised methods (i.e., RF, RE+MJ(WUDAPT),
and RF+CRF), with improvements of nearly 2% and 0.2 in OA and Kappa, respectively, demonstrating
the effectiveness of the generated pseudo-labels. The SVM classifier generates the worst accuracy with
18% lower than the SCSF in OA, which may be optimized through complex adjustment of its parameters.
The CI-WUDAPT gives relatively high accuracy among the supervised methods; however, there is still
a gap of 5% OA and 0.06 Kappa compared with the SCSE. The proposed RF+ST+CRF(SCSF) workflow
shows the best quantitative performance among all the compared methods with only 10 labeled
samples for each class, and the accuracies of 79.83% and 0.77 for OA and Kappa are also acceptable.
However, the scattered LCZ types (i.e., LCZ 4 open high-rise, LCZ B scattered tree, and LCZ C bush or
scrub) present inferior accuracies with semi-supervised methods, showing that the spatial-contextual
information is insufficiently obtained from these LCZ types, which reduce the accuracies.
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Table 3. Accuracies of the different methods for the Berlin data.

Accuracy Supervised Semi-Supervised
NB SVM  CI-WUDAPT  RF WUDAPT RF+CRF RF+ST RF+ST+MJ]  SCSF

LCZ2 70.90%  87.90% 86.40% 81.90% 92.60% 89.90%  83.00% 94.80% 92.70%
LCZ 4 62.70%  33.80% 78.40% 57.70% 78.40% 82.10%  54.50% 74.50% 76.50%
LCZ5 36.90%  40.30% 57.20% 36.20% 39.20% 48.00%  37.90% 41.80% 50.50%
LCZ 6 5720%  66.60% 68.40% 65.60% 74.90% 7720%  63.40% 72.60% 77.60%
LCZ 8 50.70%  18.90% 74.20% 43.80% 52.90% 59.10%  41.90% 51.40% 62.60%
LCZ9 54.20%  51.80% 58.50% 62.90% 74.10% 76.70%  65.20% 73.30% 73.70%
LCZA 81.90%  71.20% 87.00% 83.20% 86.10% 86.30%  88.30% 90.40% 92.20%
LCZB 60.10%  46.40% 65.80% 68.10% 75.90% 82.10%  66.00% 74.90% 81.40%
LCZC 51.10%  28.30% 54.30% 50.50% 55.70% 65.80%  43.90% 47.30% 53.30%
LCZD 83.20%  64.30% 73.30% 65.70% 70.30% 78.40%  75.30% 78.60% 84.90%
LCZF 75.10%  65.60% 73.60% 79.10% 83.70% 88.90%  79.20% 83.60% 87.00%
LCZG 91.00%  100.00% 92.50% 100.00%  100.00% 100.00%  100.00% 100.00% 100.00%

OA 67.85%  61.25% 74.49% 67.57% 73.54% 77.52%  69.70% 75.35% 79.83%
Kappa 0.64 0.57 0.71 0.64 0.70 0.75 0.66 0.72 0.77

3.2.2. Sao Paulo Experiments

The second experimental area is Sao Paulo, Brazil, a city in the southern hemisphere with a more
diverse urban form. The LCZ types in Sao Paulo cover almost all the built and natural classes except
for LCZ 7 lightweight low-rise and LCZ C bush or scrub. Two cloudless Landsat-8 images from
2017DFC acquired on 8th February 2014 and 23rd September 2015 constituted the second experimental
dataset. As in the first experiment, the images were down-sampled to a 100-m spatial resolution with a
1067 x 871 pixel dimension. Nine bands (i.e., bands 1-7 and 10-11) covering the infrared to visible
spectrum were prepared. The RGB (i.e., bands 4, 3, 2) false-color image and the spatial distribution
of the labeled data are shown in Figure 8a,b, respectively. Information about the class numbers is
provided in Table 4.

Unclassified
LCZ 1 compact high-rise
1.C/.2 compact mid-rise

LCZ 3 compact low-rise
LCZ 4 open high-rise
1.C/.5 open mid-rise
- LCZ 6 open low-rise
1.C/ 8 large low-rise
1.CZ 9 sparsely built
1.CZ 10 heavy industry

L.CZ A dense trees

1.CZ B scattered trees
1.C7 D low plants

- LCZ E barc rock or paved
1.C7Z. T bare soil or sand

- LCZ G water

(a) (b)
Figure 8. Sao Paulo Landsat 8 dataset: (a) RGB false-color image (4, 3, 2). (b) Ground-truth image.

Table 4. Class information for Sao Paulo.

LCZ Class 1 2 3 4 5 6 8 9 10 A B D E F G
Samples 955 134 5308 482 244 1862 1915 335 179 6359 302 376 109 144 3492
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The LCZ maps produced by the different approaches (i.e., NB, SVM, CI-WUDAPT, RF,
RF+MJ(WUDAPT), RF+CRF, RF+ST, RF+ST+M]J, and RF+ST+CRF(SCSF)) are shown in Figure 9a-i.
Differing from Berlin, much more salt-and-pepper noise appears in Sao Paulo with the RF-based
classification (i.e., RF), which shows obvious changes after the majority-filter-based spatial smoothing
(i.e., RF+M]J) and the CRF-based classification (i.e., RF+CRF). Although the prediction of RF+CRF
presents much smoother class boundaries than the first two maps, the provided low-quality probabilistic
map, which directly influences the modeling of the potential function, still brings a huge amount of
misclassification. In particular, area 1 (green) of Figure 9f is supposed to be water, while the mislabeled
spatial context confuses the CRF model, and the blue water region becomes green vegetation. Area 2 of
Figure 91 is also heavily influenced by its surrounding mislabeled data, where LCZ 3 compact low-rise
(rose red) is misclassified as LCZ 2 compact mid-rise (dark red). To relieve the above phenomena,
the improved self-training-based classification (i.e., RF+ST, RF+ST+M], and RF+ST+CRF(SCSF))
was further adopted. Further improvements are apparent in Figure 9g—i with the improved
self-training-based classification workflows (i.e., RF+ST, RF+ST+M], and RF+ST+CRF(SCSF)), and the
appearance of scattered noise is much relieved when compared with the supervised results (i.e., RF,
RE+MJ(WUDAPT), and RF+CREF). In particular, areas 1-2 of Figure 9i are accurately predicted to
be real LCZ types, i.e., LCZ G water (blue) and LCZ 3 compact low-rise (rose red). The LCZ map
generated by the proposed SCSF method provides not only an apparent visual improvement in better
boundaries than the non-spatial-contextual information classification workflow (i.e., RF+ST) but also a
cleaner and more accurate prediction than the result without self-training (i.e., RF+CRF). Moreover,
the classifications of the NB, SVM, and CI-WUDAPT deliver quite different performances from that
of SCSE. There are lots of misclassified noises that appear in Figure 9a,b and large misclassified
areas stand out in Figure 9c, which prove that the visual performance of the SCSF is better than the
previous researches.

Moreover, McNemar’s test between different methods (i.e., NB, SVM, CI-WUDAPT, RF,
RF+MJ(WUDAPT), RF+CRF, RF+ST, RF+ST+M], and RF+ST+CRF(SCSF)) is shown in Table 5. All the
values obtained among pairwise classification workflow are much greater than )(0.05,12(3.841459),
which means significant differences were found for the compared methods. The value of McNemar’s
test between NB and SCSF is the biggest, indicating that the proposed workflow gives a significant
statistical improvement compared with the classification of NB.

Table 5. McNemar's test for the Sao Paulo Landsat 8 data.

SCSF  RF+ST+MJ] RF+ST RF+CRF WUDAPT RF CI-WUDAPT SVM NB
SCSF NA 484.38 1888.02 389.10 1063.39 2381.71 1056.86 2062.36  3635.94
RF+ST+M] NA 934.36 261.99 367.00 1244.79 386.98 1092.81  2364.92
RF+ST NA 1076.55 213.15 151.35 309.99 194.60 962.25
RF+CRF NA 606.68 1759.44 543.28 1271.60  2889.08
WUDAPT NA 487.55 77.45 339.69 1492.06
RF NA 553.46 14491 572.27
CI-WUDAPT NA 354.67 1548.63
SVM NA 629.39

NB NA
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(8) (h) (®)

LCZ 1 compact high-rise - L.CZ 6 open low-rise L.CZ B scattered trees
LCZ 2 compact mid-rise LCZ 8 large low-rise LCZ D low plants

L.CZ 3 compact low-rise - LCZ 9 sparsely built LCZ E bare rock or paved
LCZ 4 open high-rise LCZ 10 heavy industry LCZ F bare soil or sand
L.CZ 5 open mid-rise LCZ A dense trees - LCZ G water

Figure 9. The classification maps for the Sao Paulo Landsat 8 data: (a) NB, (b) SVM, (c) CI-WUDAPT,
(d) RF, (e) WUDAPT, (f) RF+CREF, (g) RF+ST, (h) RF+ST+M]J, and (i) SCSF.

A quantitative report of the accuracies of the different methods (i.e., NB, SVM, CI-WUDAPT,
RE, RE+MJ(WUDAPT), RF+CRE, RF+ST, REF+ST+M], and RF+ST+CRF(SCSF)) is given in Table 6.
To evaluate the ability of the spatial-contextual information, the accuracies of RF and RF+ST
serve as a baseline in the main part of the experiments and are compared with other workflows
(i.e., RF+MJ(WUDAPT), RF+CRF, RF+ST+M], and RF+ST+CRF(SCSF)). The accuracies of the
majority-filter-based spatial smoothing methods (i.e., RE+MJ(WUDAPT) and RF+ST+M]) present an
improvement of about 7% in OA and 0.07-0.08 in Kappa, while the CRF-based methods (i.e., RF+CRF
and RF+ST+CRF(SCSF)) show a great improvement of nearly 12% in OA and 0.13-0.14 in Kappa.
In addition, the generation of pseudo-labels from the self-training method provides an improvement
of 3-4% in OA and 0.03-0.04 in Kappa for the supervised workflows (i.e., RF, RE+MJ(WUDAPT),
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and RF+CRF) and the corresponding semi-supervised approaches (i.e., RF+ST, RF+ST+M]J, and
RF+ST+CRF(SCSF)), which demonstrates the effectiveness of the proposed strategy. Moreover, the NB
classifier presents the worst performance with just 65.27% OA and 0.6 Kappa, which may prove that this
kind of method is unsuitable for a city with diverse urban form in the case of limited samples. With the
direct utilization of the spatial-contextual information, CI-WUDAPT shows 5-13% improvement in OA
with the traditional approaches (i.e., NB, and SVM); however, the proposed SCSF method delivers a
more superior performance in terms of OA and Kappa, with 86.4% and 0.84, respectively. Nevertheless,
the LCZ types (i.e., LCZ 2 compact mid-rise, LCZ 4 open high-rise, LCZ 5 open mid-rise, LCZ B
scattered trees, LCZ D low plants, LCZ E bare rock or paved, and LCZ F bare soil or sand) with relatively
small testing samples present poor performance, which can be explained by the testing samples in
Sao Paulo being clustered in the center areas and unable to reflect well the comprehensive condition.

Table 6. Accuracies of the different methods for the Sao Paulo data.

Accuracy Supervised Semi-Supervised

NB SVM  CI-WUDAPT  RF WUDAPT RF+CRF RF+ST RF+ST+MJ]  SCSF
LCZ1 54.70%  70.40% 72.90% 68.30% 75.80% 85.00%  70.50% 88.50% 88.80%
LCZ2 37.30%  13.80% 40.90% 36.30% 28.40% 60.50%  32.70% 48.00% 48.70%
LCZ3 58.00%  77.30% 81.10% 59.90% 87.00% 75.30%  66.70% 78.80% 81.40%
LCZ4 43.20%  31.50% 48.80% 35.20% 41.70% 51.90%  34.70% 42.80% 49.40%
LCZ5 34.40%  23.30% 40.70% 35.40% 30.80% 58.40%  31.40% 43.80% 60.00%
LCZ6 44.20%  26.70% 44.80% 40.90% 42.40% 65.20%  44.30% 59.20% 72.40%
LCZ 8 49.20%  26.60% 75.00% 40.00% 52.70% 68.40%  40.40% 52.50% 73.50%
LCZ9 48.00%  40.40% 65.20% 58.50% 63.10% 82.20%  56.20% 77.40% 81.40%
LCZ 10 43.10% 8.30% 39.90% 39.20% 12.10% 81.10%  41.00% 60.00% 78.60%
LCZ A 79.00%  98.10% 91.50% 96.10% 93.90% 98.30%  98.80% 99.90% 99.30%
LCZB 50.60%  31.10% 55.30% 46.30% 48.10% 67.40%  41.30% 46.70% 60.70%
LCZD 58.00%  44.00% 50.70% 41.50% 42.10% 63.10%  44.60% 49.60% 62.00%
LCZE 43.40% 5.80% 28.80% 38.90% 9.70% 54.30%  37.80% 46.60% 57.40%
LCZF 66.30%  57.40% 68.90% 61.80% 60.30% 71.70%  61.60% 68.30% 66.40%
LCZG 85.30%  99.00% 91.10% 98.60% 93.00% 99.30%  99.00% 99.70% 99.20%
OA 65.27%  73.21% 78.65% 71.78% 78.11% 83.64%  74.62% 81.96% 86.40%

Kappa 0.60 0.68 0.75 0.67 0.74 0.80 0.70 0.78 0.84

3.2.3. Paris Experiments

The city of Paris in France was selected as the last experimental study area to assess the performance
of the proposed SCSF method in a high-density city. The LCZ types are seven built types (i.e., LCZ 1
compact high-rise, LCZ 2 compact mid-rise, LCZ 4 open high-rise, LCZ 5 open mid-rise, LCZ 6 open
low-rise, LCZ 8 large low-rise, and LCZ 9 sparsely built) and five natural types (i.e., LCZ A dense
trees, LCZ B scattered trees, LCZ D low plants, LCZ E bare rock or paved, and LCZ G water), revealing
the multiformity of the urban region in Paris. The third experimental dataset comprised two Landsat 8
images of 1160 X 988 pixels provided by 2017DFC individually acquired on 19th May 2014 and 27th
September 2015. The spatial resolution was again equal to 100 m after down-sampling, and the band
information was the same as before, i.e., bands 1-7 and 10-11, amounting to nine channels. Figure 10a
shows the false-color RGB image (i.e., bands 4,3,2), and an overview of the corresponding types is
presented in Figure 10b. The sample numbers of each class are listed in Table 7.
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LCZ 1 compact high-rise
1.C7.2 compact mid-rise
LCZ 4 open high-rise
1.C7.5 open mid-rise
LCZ 6 open low-rise
1.C7 8 large low-rise
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LCZ B scattered trees
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LCZE bare rock or paved
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(a) (b)
Figure 10. Paris Landsat 8 dataset: (a) RGB false-color image (4, 3, 2). (b) Ground-truth image.

Table 7. Class information for Paris.

LCZ Class 1 2 4 5 6 8 9 A B D E G
Samples 56 2705 366 446 2419 748 60 4497 394 7688 214 234

The performance of the different methods (i.e., NB, SVM, CI-WUDAPT, RE, RF+MJ(WUDAPT),
RF+CRE RF+ST, RF+5T+M]J, and RF+ST+CRF(SCSF)) is shown in Figure 10a—i. The visual appearance
of the salt-and-pepper noise in Paris seems more serious than for Berlin and Sao Paulo, while the
variation of the categories is moderate. Compared with the results in the second column (i.e., RF
and RF+ST), the other classification workflows (i.e., RFE+MJ(WUDAPT), RF+CRF, RF+ST+M]J, and
RF+ST+CRF(SCSF)) show an improvement in alleviating the noise issue with the further information
from the spatial context. However, as in the Sao Paulo experiments, confusion appears in the results of
RF+CREF, where the LCZ 4 open high-rise (rose red) in area 1 of Figure 11f is supposed to be LCZ 6
open low-rise (brown) and the LCZ C bush or scrub (light blue) in area 2 of Figure 11f is supposed to be
LCZ A dense trees (green), which may have been caused by the insufficient training samples. The LCZ
maps in the third row are the improved approaches (i.e., RF+ST, RF+ST+M], and RF+ST+CRF(SCSF)),
and supported by the enrichment of the training data, the confused pixels decrease a lot from the
beginning of the classification, compared with Figure 11d,f, which proves the significance of the
training information. In particular, the misclassified areas 1-2 of Figure 11f are corrected to the real
types, i.e., LCZ 6 open low-rise (brown) and LCZ A dense trees (green). The classifications of NB,
SVM, and CI-WUDAPT in Paris are better than the above cities, which have less evident misclassified
segments. However, the LCZ G water nearly disappears in Figure 11a and fragile noises or areas
still stand out in Figure 11b,c. In addition, the developed SCSF workflow produces the best visual
performance, with the elimination of the isolated pixels and the small, isolated areas.

(a) (b) (©)

Figure 11. Cont.
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LCZ 1 compact high-rise - LCZ 6 open low-rise LCZ B scattered trees
LCZ 2 compact mid-rise LCZ 8 large low-rise LCZ D low plants
LCZ 4 open high-rise LCZ 9 sparsely built LCZ E bare rock or paved
LCZ 5 open mid-rise LCZ A dense trees LCZ G water

Figure 11. The classification maps for the Paris Landsat 8 data: (a) NB, (b) SVM, (c) CI-WUDAPT,
(d) RF, (e) WUDAPT, (f) RF+CREF, (g) RF+ST, (h) RF+ST+M]J, and (i) SCSE.

Moreover, in order to give the statistical comparisons, McNemar’s values between the
abovementioned methods (i.e., NB, SVM, CI-WUDAPT, RF, RE+MJ(WUDAPT), RF+CRF, RF+ST,
RF+ST+M]J, and RF+ST+CRF(SCSF)) are given in Table 8. Similar to the other two cities, all the values
of McNemar's test in Paris are also greater than )(0.05,12 (3.841459), while the value between RF+CRF
and SCSF (35.66) is relatively small compared with the RF and RF+CRF methods (1854.59) and the
RF and SCSF methods (1854.51), showing that, although the semi-supervised approach gives some
improvements in Paris, the spatial-contextual information-based CRF methods perform with more
statistical significance.

Table 8. McNemar's test for the Paris Landsat 8 data.

SCSF  RF+ST+M] RF+ST RF+CRF WUDAPT RF CI-WUDAPT SVM NB
SCSF NA 107.12 906.88 35.66 617.95 1854.51 597.03 2519.43  1433.92
RF+ST+M] NA 787.45 57.15 415.52 1640.60 424.96 2277.86  1184.57
RF+ST NA 678.61 101.75 489.50 133.66 947.55 464.72
RF+CRF NA 590.18 1854.59 493.44 2351.13  1297.77
WUDAPT NA 944.55 245.38 1247.83 638.13
RF NA 641.06 215.03 434.37
CI-WUDAPT NA 1218.63 358.97
SVM NA 477.69

NB NA
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In terms of the quantitative performance shown in Table 9, the experimental accuracies for Paris
are much better than expected and reach the highest level among all three experiments. As in the
previous experiments, the accuracies present different improvements with the assistance of the spatial
context and the use of unlabeled data. To be specific, the result of the proposed SCSF method shows
an improvement of about 7% in OA and 0.1 in Kappa compared with RF+ST; however, this is not
apparent in the comparison with RF+ST+M] and RF+CRE. The explanation for this is that, when the
initial classification is already acceptable, the performance improvement of the proposed approach
may not be that significant, since SCSF is aimed at solving the unreliable probability issue. Moreover,
the accuracies of SCSF prevail over those of NB, SVM, and CI-WUDAPT, presenting about 6-16% and
0.08-0.2 improvement in OA and Kappa, respectively. In particular, LCZ types with an aggregation
effect, such as LCZ D low plants, are obviously improved after fusing the spatial-contextual information.
In contrast, the accuracies of some LCZ types which have dispersed spatial distribution and relatively
small testing samples (i.e., LCZ 9 sparsely built, LCZ B scattered trees, and LCZ E bare rock or paved)
present a decreased trend. Reasons can be explained as follows: (1) the SCSF is a spatial-contextual
information-based method and, when the LCZ types are scattered or sparse, the spatial-contextual
information is provided insufficiently, which may degrade the accuracies of these LCZ types; (2) the
small number of testing samples for these LCZ types are unable to credibly evaluate the real condition.

Table 9. Accuracies of the different methods for the Paris data.

Accuracy Supervised Semi-Supervised

NB SVM CI-WUDAPT RF WUDAPT RF+CRF RF+ST RF+ST+MJ SCSF
LCZ1 68.00% 64.50% 88.30% 69.10% 91.50% 86.00% 63.50% 91.20% 89.90%
LCZ 2 65.70%  79.50% 86.10% 77.20% 89.20% 89.90%  78.30% 90.40% 90.30%
LCZ 4 44.50% 40.00% 53.40% 41.60% 51.90% 55.50% 40.20% 51.70% 57.20%
LCZ5 40.70% 49.30% 58.80% 47.70% 60.40% 64.20% 42.30% 54.40% 62.20%
LCZ 6 61.70%  60.10% 61.90% 69.50% 76.30% 71.80%  72.20% 79.60% 74.40%
LCZ 8 65.00% 73.70% 80.40% 72.50% 85.60% 89.70% 67.40% 83.10% 87.20%
LCZ9 63.40% 68.60% 87.40% 72.20% 88.80% 90.80% 59.80% 73.60% 46.00%
LCZA 7850%  91.80% 88.70% 90.70% 94.70% 96.30%  92.70% 96.30% 97.50%
LCZB 68.50% 72.90% 87.10% 74.00% 77.10% 76.70% 63.00% 64.90% 61.40%
LCZD 98.00% 69.40% 92.80% 76.10% 83.40% 96.10% 90.60% 94.10% 97.40%
LCZE 55.30%  47.40% 57.10% 54.60% 59.60% 60.00%  56.60% 61.20% 53.80%
LCZ G 83.10% 93.90% 91.90% 92.70% 96.00% 95.30% 92.30% 95.60% 95.60%
OA 79.89% 73.99% 84.73% 77.27% 84.72% 89.87% 83.31% 89.30% 90.54%

Kappa 0.74 0.68 0.80 0.72 0.81 0.87 0.78 0.86 0.88

In brief summary, for the main experimental part, the proposed SCSF gives the best performance
in all three study areas compared with other five methods (i.e., RF, RF+MJ(WUDAPT), RF+CRE, RF+ST,
and RF+ST+M]J) in terms of OA and Kappa, showing that the spatial-contextual information-based
self-training classification framework for LCZs is undoubtedly effective. The values from McNemar’s
test between the proposed SCSF with others are considerably large, which represents the significant
differences from the statistical aspect. Moreover, the methods considering the spatial-contextual
information (i.e., RF+MJ (WUDAPT), RF+CRF, RF+ST+M], and RF+ST+CRF(SCSF)) performed better
than the other approaches (i.e., RF, and RF+ST), especially the CRE-based methods (i.e., RF+CRF,
and RF+ST+CRF(SCSF)), which produce the best accuracies in OA and Kappa. Moreover,
the semi-supervised approaches (i.e., RF+ST, RF+ST+M], and RF+ST+CRF(SCSF)) in the three
experiments provide different improvements compared with the supervised methods (i.e., RF, RF+M],
and RF+M] (WUDAPT)).

Furthermore, the performances of the different methods (i.e., NB, SVM, and CI-WUDAPT) in
three study areas are also considered to compare with the proposed SCSE, and the NB and SVM present
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relatively poor performances with many salt-and-pepper noises and misclassified areas. Moreover,
the spatial-contextual information-based approaches (i.e., CI-WUDAPT, and SCSF) generate smoother
predictions and SCSF delivers the best visual performance. Compared with the traditional machine
learning classifier (i.e., NB and SVM), the proposed SCSF gives improvements of 10.65%—-21.23%
in OA with 0.13-0.24 in Kappa and 13.19%-18.58% in OA with 0.16-0.2 in Kappa, respectively.
For CI-WUDAPT, the SCSF also outperforms it with 5.34%-7.75% in OA and 0.06-0.09 in Kappa,
which proves the effectiveness of SCSF with the consideration of spatial-contextual information and
self-training method.

4. Discussions

4.1. Effects of the Self-training Method

In order to test the effects of the improved self-training method, which applied the regional to
local spatial-contextual information-based pseudo label selection as the strategy, different methods
were used to make comparisons. To be specific, the proposed improved self-training method was
compared with two other reference strategies. One benchmark was the original self-training approach,
named ST-1, based on high-probability labels, which is usually unreliable, especially in the beginning.
The other was the improved self-training method developed by Aydav and Minz, named ST-2 [44],
based on the average probability in one granulation. The proposed self-training method based on
regional and local information is denoted as STS. All of these methods were compared with the original
REF classification results without the self-training step, which is denoted as RF. The OAs before and
after the three different self-training approaches in the Berlin (BL), Sao Paulo (SP), and Paris (PA)
datasets are listed in Table 10. The mean accuracy, denoted as mean, was also calculated to reflect the
generic performance.

Table 10. Accuracies in different areas (%).

BL SP PA MEAN
Method
OA Kappa OA Kappa OA Kappa OA Kappa
RF 67.57% 0.64 71.78% 0.67 77.27% 0.72 72.21% 0.67

ST-1 65.16% 0.61 70.66% 0.65 73.08% 0.67 69.64% 0.64
ST-2 66.23% 0.62 73.45% 0.68 76.48% 0.71 72.05% 0.67
STS 69.70% 0.66 74.62% 0.70 83.31% 0.78 75.88% 0.71

Notes: BL-Accuracies in Berlin; SP-Accuracies in Sao Paulo; PA-Accuracies in Paris; MEAN-Average accuracies in
the whole three cities.

The quantitative report of the accuracies in Table 10 demonstrates that the ST-1 and ST-2
self-training approaches usually degrade the classification performance in both OA and Kappa, except
for Sao Paulo (SP), where the accuracy of ST-2 is slightly increased. The explanation for this is that,
since the initial classification accuracies (i.e., RF) are usually poor, the probability of predictions
may be unreliable, while the strategy of ST-1 totally trusts high-probability pseudo-labels and ST-2
believes in the average probability among one granulation, resulting in misclassified noises which
usually confuse the classifier. Given this fact, the proposed improved self-training method (i.e., STS)
substitutes the spatial-contextual information from regional to local scales for the unreliable probability
of the predictions, and the accuracy is enhanced by about 2-5% in OA and 0.02-0.07 in Kappa for
the different cities. The generic results in the MEAN column also show the same trend, in that the
proposed STS strategy presents the highest accuracies, which prove the effectiveness of the improved
self-training method.

The LCZ maps conducted with the above approaches (i.e., RF, ST-1, ST-2, and STS) are shown
in Figure 12a-1. Compared with the initial classification (i.e., RF), the LCZ maps based on ST-1 in
the second column of Figure 12 generate lots of obvious misclassified noises over the whole image.
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Although the ST-2-based results represented by the third column although a lot compared with those
of ST-1, noises still appear. Moreover, the classification results obtained using the STS strategy present
more distinct class boundaries with less misclassified noises, which is evident in the visual performance.
However, there are still many small, isolated areas appearing in the predictions, meaning that further
consideration of the spatial-contextual information, i.e., the proposed CRF-based LCZ classification,
is necessary.

LCZ 2 compact mid-rise - LCZ 6 open low-rise LCZ A dense trees - LCZ D low plants
L.CZ. 4 open high-rise LCZ 8 large low-rise L.CZ B scattered trees .CZ F bare soil or sand
L.CZ 5 open mid-rise - LCZ 9 sparsely built LCZ C bush or scrub 1.CZ G water

(a) (b) (c) (d)

LCZ 10 heavy industry

LCZ A dense trees - L.CZ E bare rock or paved
LCZ B scattered trees LCZ F bare soil or sand
LCZ D low plants LCZ G water

L.CZ 1 compact high-rise - LCZ 5 open mid-rise
1.C7.2 compact mid-risc [ -CZ 6 open low-rise
1.C7.3 compact low-rise 1.CZ 8 large low-rise
LCZ 4 open high-rise - LCZ 9 sparsely built

(e) (®) (8) (h)

LCZ 1 compact high-rise - LCZ 5 open mid-rise LCZ 9 sparsely built LCZ D low plants
LCZ 2 compact mid-rise - LCZ 6 open low-rise L.CZ A dense trees LCZ L bare rock or paved
L.CZ 4 open high-rise LCZ 8 large low-rise L.CZ B scattered trees 1.C7. G water

@ () (k) @

Figure 12. Classification results for different methods. Berlin: (a) RE (b) ST-1, (c) ST-2, and (d) STS; Sao
Paulo: (e) RF, (f) ST-1, (g) ST-2, and (h) STS; and Paris: (i) RF, (j) ST-1, (k) ST-2, and (1) STS.
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4.2. Effects of the Sample Number

To analyze the effects of the initial sample number for the proposed SCSF, extra experiments were
conducted in this section. Different sample numbers, i.e., 5, 10, 25, and 50 samples per class, were set
to assess the proposed method, while the WUDAPT method was used as a reference. The generic
results calculated by averaging the accuracies over all three areas are denoted as MEAN. Similar to the
configuration of Section 3, the final experimental accuracies were the average performance of 10 run
outcomes and the training samples were randomly selected in the whole ground truth data while the
remaining was used as testing set.

As shown in Figure 13a—d, all the classifications exhibit a similar trend with the increase of the
number for training samples. The experiments prove that the proposed SCSF has superior performance
compared to WUDAPT in all the designed conditions. In terms of the performance in different areas,
the biggest improvements between SCSF and WUDAPT are in Berlin, with 3-7% in OA. In more
complex areas, i.e., Sao Paulo (SP) and Paris (PA), SCSF achieves a 1-7% improvement of OA. For the
generic comparisons shown in the last column of Table 11 and Figure 13, the SCSF also presents a good
performance. However, the accuracies of the LCZ maps with relatively large improvement using the
SCSF have actually lower values than others, which means the proposed SCSF is more suitable to
enhance the accuracy when the initial classification is really poor.

Effects of the Training Samples of the Training Samples Effects of the Training Samples Effects of the Training Samples

Fizip i

=8—WUDAPT SCSF

(a) (b) (0) (d)

Figure 13. The OA of different sample numbers, with three study areas and the average performance:
(a) Berlin, (b) Sao Paulo, (c) Paris, and (d) MEAN.

Table 11. The OA with different sample numbers (%).

BL SP PA MEAN
Samples
WUDAPT SCSF WUDAPT SCSF WUDAPT SCSF WUDAPT SCSF
5 65.83% 72.81% 73.91% 80.75% 71.21% 77.71% 70.32% 77.09%
10 73.54% 79.83% 78.11% 86.40% 84.72% 90.54% 79.27% 85.59%
25 81.22% 86.05% 87.29% 90.65% 90.02% 92.50% 86.18% 89.73%
50 85.82% 89.15% 90.52% 92.12% 92.24% 93.65% 89.53% 91.64%

Furthermore, the proposed SCSF shows a strong performance, especially with a small number of
training samples, but the OA shows a higher growth with 5/10 samples compared to 25/50 samples
per class; for instance, when the accuracy with 25 or 50 samples in Paris (PA) is already over 90%,
the improvement is only about 1-2%. Moreover, the proposed SCSF method is capable of generating an
equivalent accuracy to the WUDAPT method with fewer training samples. In particular, the OA with
five samples in Sao Paulo (SP) shows a similar performance to the WUDAPT method using 10 samples
per class. In terms of OA, the SCSF method shows great improvement with different sample numbers
(i.e., 5,10, 25, and 50 samples per class) compared with WUDAPT, which shows that the SCSF is really
helpful for LCZ classification.



Remote Sens. 2019, 11, 2828 25 of 28

5. Conclusions

In this paper, we have proposed a spatial-contextual information-based self-training classification
framework (SCSF) for LCZs, which introduces CRF for LCZ classification to better utilize the
spatial-contextual information and probabilistic classification with self-training to provide more
reliable inputs for CRF. Three experiments using Landsat 8 images from three diverse areas—Berlin,
Sao Paulo, and Paris—confirmed the effectiveness of the proposed SCSF method with the widely used
protocol developed by WUDAPT.

To be specific, the CRF provides a unified theoretical foundation for directly bringing the
spatial-contextual information into classification, mitigating both the appearance of salt-and-pepper
noise and small, isolated noise areas. In addition, probabilistic classification provided with an
improved self-training-based approach is adopted to consider the lack of high-quality expert-labeled
data. Through the enrichment of the limited training data with pseudo-labels, the predicted probability
used for the potential function modeling is more reliable.

Moreover, the effects of the improved self-training method and the sensitivity to different sample
numbers were also investigated. Overall, the proposed SCSF method showed powerful quantitative
and qualitative performances in LCZ mapping not only in the multiform city but also in the high-density
city, especially when the training data were limited. In our future work, we will explore the use
of a deep learning method for LCZ classification, and other data and larger study areas will also
be considered.
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