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Abstract: As in conventional error matrix-based accuracy assessments, collocated reference sample
data are often used for characterizing per-pixel (local) accuracies in land-cover change maps so that local
accuracy predictions can be made using direct methods. In that way, correctness in “from-to” change
categorization at sample pixels is assessed and modeled directly. To circumvent the issue of reference
sample data being non-collocated, as is often the case for sample data collected independently for
mono-temporal reference land-cover labeling or those added necessarily to reflect landscape changes,
the PXCOV (Product rule with adjustment for cross-COVariance between single-date classification
correctness) method was developed previously. However, the use of PXCOV becomes complicated
when few or no collocated sample data are available and cross-validation cokriging, a procedure
involving non-trivial geostatistical modeling, has to be incurred for estimation of cross-correlation.
To overcome PXCOV’s lack of practicality when using mostly non-collocated sample data, this paper
presents a simple alternative. It is furnished through stratified approximation of cross-correlation
and features combined use of minimum and multiplication operators. Specifically, in this composite
method (named Fuzzy+Product), minimum operator (resembling fuzzy set “min” operator and thus
named Fuzzy) is applied over no-change pixels stratum where maximum correlation is assumed,
while multiplication operator (i.e., product rule named Product) is applied for change pixels stratum
where cross-correlation is assumed negligible (i.e., minimum correlation), without having to run
cross-validation cokriging as in PXCOV. Studies were undertaken to test the proposed method based
on datasets collected previously concerning GlobeLand30 2000 and 2010 land-cover at five sites in
China. For each site, five model-training samples (being mostly non-collocated) of equal sizes and
one independent model-testing sample (collocated) were used. Logistic regression models fitted
with relevant sample data were applied to predict local accuracies in single-date classifications using
selected map class occurrence pattern indices quantified in optimized moving windows. The area
under the curve (AUC) of the receiver operating characteristic was used for evaluating alternative
methods. Empirical results confirmed that method Fuzzy+Product is more accurate than both Fuzzy
and Product in general and there are no statistically significant differences between it and PXCOV.
This indicates Fuzzy+Product being a method of relative simplicity but reasonable accuracy when
reference data are non-collocated or mostly so. Its value is likely best manifested when local and global
accuracy characterization in multi-temporal change information (discrete and fractional) is concerned.
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1. Introduction

Land-cover information is important for landscape characterization and environmental
monitoring [1,2]. A variety of land-cover information products is generated from different
remote-sensing systems [3–5]. They depict both static cover types and dynamic changes in space
and time. For example, after release of four National Land Cover Database (NLCD) products over
the past two decades: NLCD 1992, 2001, 2006, and 2011, the U.S. Geological Survey (USGS) has
designed a new generation of NLCD products named NLCD 2016 to further establish a long-term
monitoring capability for land resources [6]. Time series of land-cover maps are also common [7,8].
While land-cover information is conventionally represented in categorical format (i.e., encoded as
discrete cover types and/or change class labels), fractional representations of land-cover and change
also become popular [9–11], although this paper focuses on the former type of land-cover change maps.

Scientific replicability and practical usefulness of land-cover information products depend on
their accuracy. However, no land-cover or change maps created from computer processing of remotely
sensed images and auxiliary data can be completely accurate [12,13]. Even visual interpretation of
remote-sensing images cannot guarantee absolute accuracy in resultant maps. It is thus important to
build up accuracy assessment capabilities in production and use of land-cover information. There is
increasing research and developments on accuracy assessments in the aforementioned different types
of land-cover information products [14–17].

The conventional way to describe accuracies in land-cover and land-cover change maps is through
error matrices, from which we can obtain some global summary of map accuracies in terms of overall,
user’s, and producer’s accuracies [14,17,18]. However, we may not be able to get any information
about spatial variation of accuracies below individual map classes from these non-spatial (or global)
accuracy metrics. In contrast, local accuracy descriptors would better support exploratory and
diagnostic analyses of spatial distributions of misclassification errors, hence, better guiding classifier
improvements and information fusion. Spatialized accuracy characterization in land-cover information
products has thus drawn increasing research attention, for both static land-cover classification and
dynamic change-categorization [19–28]. Useful reviews are given in Khatami et al. [29], Zhang et al. [30],
and Zhang et al. [31].

For quantification of local accuracies in change maps specifically, reference sample data are
essential as in conventional non-spatial accuracy assessments. It is preferable to have collocated
sample data to verify true cover types at the same locations but different times to get the information
about correctness of change categorization for individual locations (i.e., map pixels) [32–34]. However,
collocated sample data may be far from enough or even unavailable. On the other hand, non-collocated
sample data are common for reference data collected for mono-temporal maps without consideration
or coordination for change analysis [35]. Such non-collocated data’s assembling and re-use would
help save cost of sampling, especially for ground-based surveys. Re-use of non-collocated sample
data may be made directly or, more effectively, in combination with additionally acquired sample
data. The latter option can be furnished by augmented sample design [36], which is built from a base
design say stratified random sampling (StRS) as used in Zhang et al. [31]. We may collect new sample
data at locations where changes are observed, while collecting repeating sample data at some of prior
sampled locations, with the aim to allocate sample units to strata of “from-to” classes according to
recommendations [37].

Accordingly, there are two broad types of methods for mapping local accuracies in land-cover
change maps: direct and indirect, as in change analysis [38]. In the former, collocated sample
data are assumed so that methods designed for mono-temporal land-cover maps can be directly
extended to bi-temporal change maps [27,39]. The latter caters for non-collocated sample data and is
based on mono-temporal accuracy analyses and their proper synthesis [31]. It plays an increasingly
important role in change analyses and accuracy assessments since sample designs become necessarily
complexly configured due to the need to monitor the changing landscape [40]. Zhang et al. [31]
proposed an indirect method, which is actually Method Product with adjustment for cross-correlation
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(i.e., temporal correlation) in bi-temporal classification correctness (hence named PXCOV to stand
for Product with adjustment for cross(X)-COVariance). Method Product evaluates probabilities of
correct change-classification as multiplication of probabilities of correct mono-temporal classifications;
the multiplication operator was previously used by Steele [41] and Pontius and Cheuk [42] for
constructing combined classifiers and comparing fuzzy maps, respectively. Using PXCOV, it is possible
to utilize all reference sample data available, regardless of their being collocated or not, contributing
to cost-saving in sampling for reference data. This is facilitated by estimating local accuracies in
single-date classifications and then synthesizing them properly through accommodating temporal
correlation between single-date accuracies. However, its practicality is limited by the need to estimate
temporal correlation via cross-validation cokriging (a relatively complicated procedure of geostatistical
modeling and computing) when collocated sample data are not available or insufficient (i.e., when
sample data available are non-collocated or mostly so).

To overcome PXCOV’s lack of practicality, this paper presents a simple alternative method.
It is furnished through stratified approximation of temporal correlation in change-classification
accuracies and features combined use of minimum and multiplication operators. Specifically, in
this composite method (named Fuzzy+Product), minimum operator (resembling fuzzy set “min”
operator, thus named Fuzzy) is applied over non-change pixels whereas maximum correlation is
assumed so that minimum values of predicted probabilities of correct classifications in single-date maps
are taken as approximation for probabilities of correct change-classification at individual no-change
pixels [42,43]. For change pixels where temporal correlation is usually very weak and thus assumed
zero approximately, multiplication operator (i.e., the product rule [31,42] named Product) is applied.
Thus, using Fuzzy+Product, we can estimate local accuracies in change-classification easily through
combined use of minimum operator (over no-change pixels) and multiplication operator (over change
pixels), without having to run the complicated procedure of cross-validation cokriging iteratively as in
the original PXCOV implementation.

The research question concerns whether Fuzzy+Product is a reasonably accurate method in
comparison with PXCOV while being simpler than PXCOV. Thus, the objective of this paper is to
investigate performances of the proposed method Fuzzy+Product relative to alternative methods
including PXCOV. As is demonstrated by the experimental results, the answer is positive.

Fuzzy+Product’s benefits are summarized below. First, it is simpler than PXCOV without
compromising accuracy. Second, it holds great potentials for future applications in accuracy
characterization in the context of multi-temporal change analyses, while PXCOV is oriented
to bi-temporal settings only, as is discussed in Section 4.2. Third, its extension to accuracy
analyses in fractional (change) classifications is also promising (see Section 4.2). Lastly, it facilitates
local-global-combined accuracy assessments and modeling with uncertainty quantified while
benefitting area estimate corrections, as discussed in Section 4.3. These advantages manifest themselves
well in the scenarios where reference sample data are non-collocated, or mostly so.

Some clarification about this research in comparison with the work underlying PXCOV [31] is
in place here. First, Fuzzy+Product works by stratified approximation of cross-correlation between
single-date classification accuracies rather than relying on complicated geostatistical modeling as in
PXCOV when there are no or few collocated sample data. Although we used the same datasets as in [31],
the major thrust of contribution in this research is not repetition of the work in [31]. Second, we focus
explicitly on applications of Fuzzy+Product (in comparisons with alternative indirect methods) using
largely non-collocated data while applications of PXCOV were discussed (mainly in comparisons with
direct methods) using both non-collocated and collocated data.

The remainder of the article is as follows. In Section 2, we first describe the study sites and datasets.
Five training sample sets of equal sizes with different but dominating proportions of non-collocated
sample pixels, which were collected at five study sites in China in previous research [31], were used.
This is followed by a description of the proposed method Fuzzy+Product along with alternative
methods: PXCOV, Fuzzy, and Product, with the latter two methods applied to all pixels regardless of
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them being change or no-change pixels. Section 3 describes the results of empirical studies aiming to
test and compare the performances of these methods on the basis of independent validation sample
data. Finally, Section 5 concludes the paper after some discussion in Section 4.

2. Materials and Methods

2.1. Study Area and Datasets

This research is based on the same five sites in China (each of 9 km by 9 km in areal extent) as in
Zhang et al. [31], as shown in Figure 1. They are labeled CE (center), NE (northeast), NW (northwest),
SW (southwest), and SE (southeast), to reflect their relative geographic locations. Site CE is located in
Xi’an, Shaanxi Province, which lies in the center of China. Site NE is situated in Harbin, Heilongjiang
Province, northeast of China. Site NW lies in Fukang, Xinjiang Uygur Autonomous Region, northwest
of China. Site SW is in Kunming, Yunnan, southwest of China, and SE is located in Ganzhou,
Jiangxi Province, southeast of China. As in Zhang et al. [31], GlobeLand30 land cover datasets (for
year 2000 and 2010) of the study area were employed in this research. GlobeLand30 is a global
fine-resolution (30 m spatial resolution) land-cover information product produced by the National
Geomatics Center of China [5]. As an open-access global land cover product, GlobelLand30 was
extracted from >20,000 Landsat and Chinese HJ-1 satellite images using a pixel-objected-knowledge
(POK)-based operational mapping approach, with an estimated overall classification accuracy of over
80%, on average, for single-date land cover [5]. For China, there are 10 land-cover types [5], although
only six cover types (i.e., water bodies, artificial surfaces, cultivated land, forest, grassland, and bare
land) are present in these sites as a whole. The definition of the six land cover types according to
GlobelLand30 classification system is shown in Table 1. Except for site NW, the dominant class of the
other four sites is cultivated land and artificial surfaces, which reflect the profound impact of human
activities on land cover.
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Table 1. Definition of each land cover type in the study sites.

Type Definition

Cultivated land Land used for agriculture, horticulture, and gardens, including paddy
fields, irrigated and dry farmland, vegetable and fruit garden, etc.

Forest Land covered by trees, vegetation covers over 30%, including deciduous
and coniferous forests, and sparse woodland with cover 10–30%, etc.

Grassland Land covered by natural grass with cover over 10%, etc.

Water bodies Water bodies in land area, including river, lake, reservoir, fish pond, etc.

Artificial surfaces
Land modified by human activities, including all kinds of habitation,

industrial and mining area, transportation facilities, interior urban green
zones and water bodies, etc.

Bare land Land with vegetation cover lower than 10%, including desert, sandy
fields, Gobi, bare rocks, saline and alkaline land, etc.

In production of GlobeLand30 2000 and 2010 land-cover, single-date classifications were run
independently on source images, although inconsistencies between 2000 and 2010 cover type labelings
were checked and corrected (if possible) via spectrally derived change detection [5]. The latter (change
detection-based map updating) is likely only effective for homogeneous pixel segments of relatively
large areal extents. Thus, when using maps generated from independent classifications for change
analyses as for GlobeLand30 products, post-processing is necessary. In this research, for each of the
five study sites, the two single-date classification maps (Figure 2) were compared to create a change
map with specific “from-to” change information. These land-cover change maps were generated after
deleting and re-classifying some non-existing and unlikely change categories (Figure 3).

As mentioned in the introductory section, reference data are required for mapping per-pixel
accuracy. They are usually collected from independent sources of higher accuracy (e.g., fine spatial
resolution images) through spatial sampling. In Zhang et al. [31], 11 training samples (which refer to
reference samples for local accuracy model-building rather than those for training image classifiers)
of equal size but with differing configurations of collocated versus non-collocated sample pixels for
individual study sites were collected. They are of equal sizes (630 pixels, single-date, corresponding
to a sampling intensity of 0.7%), following StRS design. Strata were defined based on “from-to”
classes in individual change maps. In this study, we considered only five of the 11 training sample
configurations [31] for each of the study sites to reflect the goal of this research: to handle sample
configurations 0 through 4, which have entirely or largely non-collocated data (direct methods would
be preferred when sufficient collocated sample data are available, as discussed in [31]). The training
samples used for this research are summarized in Table 2: configuration 0 contains non-collocated data
only (630 sample pixels), while for configuration 1–4 there are 567, 504, 441, and 378 non-collocated
sample pixels, respectively. For comparing the performance of the proposed method relative to
alternative methods, we used an independent set of 630 collocated bi-temporal reference sample pixels
(called validation sample or model-testing sample) collected for each of the study sites [31]. It was
collected following simple random sampling (SRS) design.

It would be better to test the proposed method with more experimental datasets if possible.
The difficulty to obtain more datasets for this research lies in the following. For change-classification
accuracy analyses, we need to have change maps showing some real changes. Moreover, reference
data that are in close (if not perfect) temporal proximity of the maps being assessed are required.
There seem to be no suitable land-cover datasets over China other than the GlobeLand30 map datasets,
which are, however, available only for 2000 and 2010, while 2015 land-cover product is not yet released,
meaning it is not feasible to do model validation over more sites and/or across multiple time points.
The aforementioned land-cover datasets (both maps and reference samples) at two time points for five
sites were what we could furnish in reasonable amount of time to test PXCOV [31]. We believe it was
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acceptable to use a subset (sample configurations) of the datasets for this research as a compromise
between statistical rigorousness and practical feasibility.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 20 
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Figure 2. Land cover maps at the five study sites for time 1 at the left column of subfigures ((a) CE,
(c) NE, (e) NW, (g) SW, and (i) SE)) and time 2 at the right column of subfigures ((b) CE, (d) NE, (f) NW,
(h) SW, and (j) SE)), respectively.
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Table 2. Training samples used for experiments (time 1 for year 2000, time 2 for year 2010).

Configurations Numbers of Sample Pixels

Collocated Non-Collocated

time 1 time 2 time 1 time 2

0 0 0 630 630
1 63 63 567 567
2 126 126 504 504
3 189 189 441 441
4 252 252 378 378

2.2. Methods

PXCOV constitutes a theoretically sound method for estimating probabilities of correct
change-classification by combining probabilities of correct single-date classifications with adjustment
for temporal correlation between them (bi-temporal classification correctness). It supports adaptive use
of all sample data available regardless of their being collocated or not [31]. The formula for PXCOV is:

π1+2(x0) = π1(x0)π2(x0) + covI1I2(x0, x0) (1)

where π1+2(x0) is the probability of correct change-classification at a location x0, π1(x0) and
π2(x0)π2(x0) are pixel x0’s probabilities of correct classification at time 1 and time 2, respectively,
which may be predicted individually using logistic regression [31], and covI1I2(x0, x0) represents
cross-covariance of classification correctness at times 1 and 2. Clearly, PXCOV is reduced to method
Product when assuming covI1I2(x0, x0) = 0, although this is unlikely to be true, as classification
correctness is often temporally correlated.

The key to practical applications of PXCOV lies in estimation of temporal correlation between
bi-temporal accuracies. Results obtained by Zhang et al. [31] indicate non-stationarity in temporal
correlation, with no-change pixels showing stronger positive temporal correlation, while change
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pixels exhibit much weaker temporal correlation. In Zhang et al. [31], sample pixels were thus
sensibly stratified into no-change and change strata for estimating temporal correlation either through
cross-validation cokriging (for sample containing non-collocated data only) or by direct estimation
based on collocated sample data if available.

We can make things simpler by stratified approximation of temporal correlation between
mono-temporal classification correctness. Specifically, simplification can be achieved by assuming
maximum (1.0) and minimum (0.0) correlation over no-change stratum and change stratum, respectively,
thus circumventing the complicated process of estimating cross-correlation through cross-validation
cokriging with largely non-collocated sample data. This constitutes an approximate yet reasonably
accurate alternative solution to PXCOV.

For change pixels where zero cross-correlation is assumed, PXCOV is reduced to a multiplication
operator (i.e., product rule, thus named Product in this paper and in Zhang et al. [31]), as discussed
concerning Equation (1) above. For no-change pixels where maximum correlation is assumed,
synthesis of mono-temporal classification accuracies is basically a minimum operator for probabilities
of a pixel being correctly classified at times 1 and 2). Thus, we may compute the probability of pixel x0

being correctly classified (into a “from-to” class) as:

π1+2(x0) = min(π1(x0),π2(x0)) (2)

where π1(x0) and π2(x0) may again be predicted individually using logistic regression as described
in Zhang et al. [31] and later in this section. The minimum operator in Equation (2) resembles fuzzy
minimum operator, which is widely used in the context of fuzzy sets and synthesis of fuzzy membership
values [44,45]. For example, minimum operator was used by Binaghi et al. [43] and Pontius and
Cheuk [42] for assessing accuracies of soft classifications. Moreover, “fuzzy” as a label makes more
intuitive sense in the context of local accuracy predictions, given the inherent uncertainty in quantifying
change-classification accuracies from mono-temporal classification accuracies which are themselves
estimated from empirical models (thus subject to uncertainty). Therefore, the minimum operator
in Equation (2) is referred to as method Fuzzy. For a typical change map depicting both no-change
and change classes, the proposed method applies Fuzzy and Product adaptively and is thus named
Fuzzy+Product (meaning combined use of Fuzzy and Product).

A flowchart for the proposed composite method Fuzzy+Product is provided in Figure 4. As shown
in Figure 4, single-date local accuracies are predicted using sample data pertaining to single-date
classification correctness. These accuracy predictions are combined for estimating local accuracies in
change-classification: minimum values of predicted probabilities of correct classifications in single-date
maps are used as estimates of joint probabilities of correct classification over no-change pixels,
while multiplication operator for joint probabilities of correct classification over change pixels where
class-conditional independence is usually assumed.

As mentioned above, for predictions of per-pixel probabilities of correct classification for single-date
maps, logistic regression modeling is performed based on (model) training sample data, using map
class occurrence pattern indices as explanatory variables. These pattern indices include land-cover
class (class) and several landscape characteristics indices computed over different window sizes (3 × 3,
7 × 7, 11 × 11, 15 × 15, 17 × 17, 19 × 19, and 21 × 21 pixels), such as heterogeneity (het), homogeneity
(hom), dominance (dmg), contagion (con), and entropy (ent). Class is coded by binary variables to
indicate the presence of one of the candidate classes in single-date maps. Heterogeneity (het) refers to
the number of different classes in the moving window. Homogeneity (hom) indicates the number of
pixels with the same class label as the center pixel in the moving window. Dominance (dmg) represents
the deviation value between landscape diversity and maximum diversity in the moving window.
Contagion (con) is the extent to which different patch types are aggregated or clumped. Entropy (ent)
indicates the average uncertainty of class occurrences [31]. The significant explanatory for single-date
classification maps (time 1 and time 2) at individual study sites can be identified, following model
selection procedures [21,31,46].
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To test the performance of the proposed method (i.e., Fuzzy+Product) relative to alternative
methods (i.e., PXCOV, Fuzzy, and Product) for mapping change-classification accuracies, area under
the receiver operating characteristic curve (AUC) can be used. As recommend in the literatures,
AUCs measure the discriminatory powers of classifiers (e.g., alternative accuracy predictors discussed
in the paper) and are often used for prediction-model comparisons, with greater AUC values indicating
more accurate predictions [29,47,48]. AUC-based statistical testing needs to be performed to determine
if one method is significantly more (or less) accurate than another or if there is no significant difference
between a pair of methods’ performance. For this research, the related computation concerning AUC
values and statistical testing of difference between AUC values were carried out using R package
pROC [48].

3. Results

3.1. Model Fitting and Predictions

The optimal model containing the largest number of significant explanatory variables for each
single-date classification maps with samples of different configurations at the five study sites are shown
in Table 3, which is excerpted from Zhang et al. [31]. The numbers after explanatory variables (except
for class) shown in Table 3 are sizes of the moving windows surrounding a sample pixel.
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Table 3. Significant explanatory variables for single-date classification maps with samples of different
configurations at the five study sites for: (a) time 1 and (b) time 2.

Study Sites Configurations

0 1 2 3 4

(a)

CE class + ent21 +
con9

class + dom19 +
het19 + ent21 +

hom7

class + ent21 +
con9

class + ent21 +
con9

class + ent21 +
con17 + hom3

NE class + con5 class + con5 class + het5 +
ent19

class + het5 +
ent21 class + het5

NW hom21 + class +
ent21

hom21 + class +
ent21

hom21 + class +
ent21 class + ent21 class + ent21

SW class + hom3 class + hom5 class + dom3 class + con5 +
het5 + dom15 class + het3

SE class + hom5 +
dom9

class + ent5 +
dom17 + dom5
+ dom9 + het9

+ con5

class + ent5 +
dom19 + con7

+ ent11

class + ent5 +
dom19 +

con7 + ent11

class + ent5 +
het19

(b)

CE
con7 + class +

dom13 + hom3 +
dom3 + ent3 + het7

con7 + class +
dom13

class + ent7 +
het15 + ent21 +
con15- + dom3

+ ent3 + hom5 +
con17 + ent11 +
ent19 + het19 +

het21

con7 + class +
het15 + ent21 +
con15 + dom3 +
ent3 + het19 +

het21 + con19 +
ent11 + het7

con7 + class +
dom19 + dom21
+ dom3 + ent3 +

hom13

NE
con7 + class +

hom3 + hom5 +
hom17

ent3 + dom5 +
class

ent3 + dom7 +
class

ent3 + class +
con17

ent3 + class +
ent15

NW

class + hom9 +
con7 + dom21 +
het19 + dom13 +
con11 + dom9 +
hom15 + het15

class + hom9 +
dom21 + het19

+ dom13

class + hom9 +
dom21 + het19

+ dom13

class + hom9 +
dom21 + het19 +

dom13

class + hom9 +
dom21 + het19 +
dom13 + het5 +

hom21 + con13 +
het13

SW
con15 + class +
con3 + dom7 +
dom9 + dom11

con15 + class +
het3 + dom7 +
dom9 + dom11

con15 + class +
het3 + dom7 +
het9 + het11

con13 + class +
het3 + dom11

con13 + class +
het3 + dom11 +
dom7 + dom9

SE ent3 + class + ent15 ent3 + class +
ent15

ent3 + class +
ent15

ent3 + class +
ent19 + het21

+ dom21

ent3 + class +
ent21 + het21

+ dom21

The optimal models identified for mono-temporal classification maps allowed for computing
probabilities of correct change-categorization at validation sample pixels by methods Fuzzy, Product,
and Fuzzy+Product straightforwardly. The estimated probabilities were then compared with reference
data for performance evaluations, as described in Section 3.2.

For PXCOV, depending on availability of collocated sample data, there are two options: one is
cross-validation co-kriging when collocated sample data are not available or insufficient, the other is
direct estimation using collocated sample data when available [31]. Note that sample pixels need to be
stratified into change and no-change strata for temporal correlation estimation in PXCOV, as described
in Zhang et al. [31]. Results are reported in Table 4, where estimates of temporal correlation were
actually obtained through cross-validation cokriging (configuration 0) and collocated sample data
(configurations 1–4), respectively.

As shown in Table 4, temporal correlation is generally large for no-change pixels (up to 1.0) but
quite small for change pixels, confirming the appropriateness of using the minimum and multiplication
operators for no-change stratum and change stratum, respectively. Exceptions are with study site
CE (configuration 1, change stratum; configuration 3, no-change stratum) and site SE (configuration
0, no-change stratum), as shown in Table 4. This may be due to special landscape patterns depicted
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by the relevant maps and indicates potential problems in estimating temporal correlation either by
computation (cross-validation cokriging) or based on modest amount of collocated sample data.

Table 4. Temporal correlation coefficients estimated for change and no-change stratum of different
configurations at individual study sites in PXCOV.

Study Sites Sample Configurations

0 1 2 3 4

CE
change 0.00 −0.48 −0.18 −0.10 −0.14

no-change 0.83 1.00 1.00 0.51 0.78

NE
change 0.00 −0.04 −0.02 −0.02 −0.03

no-change 1.00 1.00 1.00 1.00 0.70

NW
change 0.00 −0.21 −0.10 −0.11 −0.06

no-change 1.00 1.00 1.00 0.92 0.80

SW
change 0.00 −0.05 −0.07 −0.08 −0.01

no-change 1.00 0.79 0.94 1.00 0.86

SE
change 0.00 0.06 0.08 −0.01 0.00

no-change 0.45 1.00 1.00 0.77 0.77

As for other methods tested in this research, estimated probabilities at validation sample pixels by
PXCOV were used for performance evaluations. This is described in Section 3.2.

The probability maps of correct change categorization could be generated based on different sample
configurations at five study sites. An example is given in Figure 5a–e, showing the accuracy surfaces
derived from Fuzzy+Product based on samples of configuration 0 at five study sites. Figure 5a–e reveal
that the greater accuracy is predicted for persistent classes, in particular, water bodies (no-change)
and cultivated land (no-change). This can be explained by their easy identification from remotely
sensed images. Additionally, this reflects the facts that greater accuracies in single-date classifications
(e.g., certain single-date static cover types, such as water bodies) tend to lead to greater accuracies in
change-classification (e.g., corresponding persistence types) and that class is a significant explanatory
variable for logistic regression modeling concerning probabilities of correct (single-date) classifications.
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3.2. Performance Evaluations

As mentioned towards the end of Section 2.2, AUC (area under the receiver operating characteristic
curve) was used to evaluate performances of different methods for mapping change classification
accuracies at individual study sites. Based on an independent set of 630 collocated bi-temporal
validation sample pixels collected for each of the study sites, AUCs values of different methods based
on different configuration samples were computed using the R package pROC [48], as shown in Table 5.
Almost all model predictions shown in Table 5 are reasonable (with AUC measures exceeding 0.70).
There are obvious variations in AUC measures across different study sites and by different methods,
although those among sample configurations are decreased.

AUC-based statistical testing was performed to examine whether there exist significant differences
between a pair of methods’ performance, leading to results shown in Table 6. R package pROC [48]
was also used to perform significance tests.

Firstly, as shown in Tables 5 and 6, the proposed method is significantly more accurate than Fuzzy
and Product in general. Their differences in AUC values are quite large for some cases (e.g., those at
site CE), although they become small and insignificant in other cases, in particular, sites NE and NW,
for most sample configurations.

Secondly, as shown in Table 6, there are no significant differences between the results obtained
by Fuzzy+Product and PXCOV at all study sites. Their differences in AUC values are quite small,
although they become large at site CE. We elaborate on the evaluation results below.

Table 5. AUC measures for the model training sample sets of different configurations at individual
study sites using methods: (I) Fuzzy+Product, (II) PXCOV, (III) Fuzzy, and (IV) Product.

Study Sites Methods
Configurations

0 1 2 3 4

CE

I 0.84 0.84 0.83 0.84 0.84
II 0.86 0.89 0.86 0.84 0.86
III 0.77 0.74 0.76 0.78 0.76
IV 0.78 0.78 0.79 0.80 0.79

NE

I 0.72 0.70 0.70 0.72 0.72
II 0.73 0.71 0.72 0.72 0.72
III 0.72 0.70 0.71 0.71 0.71
IV 0.72 0.70 0.70 0.70 0.71

NW

I 0.75 0.78 0.78 0.79 0.79
II 0.75 0.79 0.79 0.80 0.79
III 0.73 0.76 0.77 0.78 0.78
IV 0.75 0.78 0.79 0.80 0.79

SW

I 0.80 0.81 0.81 0.81 0.81
II 0.81 0.81 0.81 0.82 0.81
III 0.78 0.79 0.78 0.79 0.79
IV 0.78 0.78 0.79 0.79 0.79

SE

I 0.71 0.71 0.71 0.71 0.71
II 0.71 0.72 0.72 0.71 0.71
III 0.70 0.69 0.70 0.69 0.70
IV 0.70 0.70 0.70 0.69 0.70
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Table 6. AUC differences between alternative methods for accuracy predictions based on model
training sample sets of different configurations at individual study sites (*: significant at a level of 5%):
(I) Fuzzy+Product, (II) PXCOV, (III) Fuzzy, and (IV) Product.

Study Sites Methods Pairs
Configurations

0 1 2 3 4

CE
I versus II −0.02 −0.05 −0.03 −0.00 −0.02
I versus III 0.07 * 0.09 * 0.07 * 0.06 * 0.08 *
I versus IV 0.07 * 0.05 * 0.04 * 0.04 * 0.06 *

NE
I versus II −0.01 −0.01 −0.02 −0.01 −0.01
I versus III 0.00 −0.01 −0.00 0.01 * 0.00
I versus IV 0.00 −0.00 0.01 0.01 * 0.00

NW
I versus II −0.01 −0.01 −0.01 −0.01 −0.00
I versus III 0.01 * 0.01 * 0.01 * 0.01 * 0.01 *
I versus IV −0.01 −0.00 −0.01 −0.01 −0.00

SW
I versus II −0.01 −0.01 −0.01 −0.01 −0.00
I versus III 0.02 * 0.02 * 0.02 * 0.02 * 0.02 *
I versus IV 0.02 * 0.02 * 0.02 * 0.02 * 0.02 *

SE
I versus II 0.00 −0.01 −0.01 −0.00 −0.00
I versus III 0.01 * 0.01 * 0.02 * 0.02 * 0.01 *
I versus IV 0.01 * 0.01 * 0.01 * 0.01 * 0.01 *

As shown in Table 6, some greater AUC differences were tested as being insignificant, while some
smaller ones registered significance. This is because Z statistic used in significance testing depends
not only on the magnitude of differences but also their variance. As the variance depends on the
covariance of the ROC curves (var(y1 − y2) = var(y1) + var(y2) − 2cov(y1,y2)), strongly (positively)
correlated ROC curves can have similar AUC values and still be significantly different (since Z = (y1 −
y2)/[var(y1 − y2)] 1/2) [48–52].

Consider the varying AUC values at the five study sites. Our understanding is that performances
(indicated by AUC values) of alternative indirect methods reflect the predictive accuracies of the
models they are based on. For change maps, AUC values are affected by the predictive accuracies
of logistic models for single-date classification maps, the accuracies in cross-correlation estimation,
and those in differentiation between true change versus true no-change pixels. As logistic models
use a selection of map class occurrence pattern indices as explanatory variables, predictive accuracies
of single-date classifications are clearly dependent on the peculiarity of the landscape mapped at a
site. Thus, site CE’s higher AUC value reflects the collective effects of relatively higher accuracies
in single-date classification accuracy predictions (due to site map class pattern), cross-correlation
estimation, and differentiation of change versus no-change pixels than at other sites.

As for the greater differences in AUC values at site CE, our understanding is that alternative
methods’ differing performances are probably best manifested there. All other factors being the same,
accuracy in estimating cross-correlation may be a major contributor to the differences: cross-correlation
is estimated based on sample data in PXCOV but approximated in Fuzzy+Product. The relationships
between relative performances of alternative methods and the aforementioned possible factors certainly
merit consideration.

4. Discussion

The proposed method (i.e., Fuzzy+Product) has been shown to be more accurate than both Fuzzy
and Product in general, while being comparable to PXCOV (which was previously recommended for
the mapping of local accuracies in change-classifications when collocated data are not available or
insufficient). This suggests that we should use Fuzzy+Product for balance between simplicity and
accuracy, given its being much easier to use than PXCOV.

Below, we give some retrospective and prospective views on this research. In particular,
the proposed method’s advantages and disadvantages relative to its major competitor, PXCOV,
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are assessed in the light of what were revealed in this research. Prospectively, future work on
Fuzzy+Product’s extensibilities to accuracy characterization in multi-temporal change analyses and
fuzzy/fractional change-classification is discussed, while that on linking up local and global accuracy
analyses (including area estimation) is briefly elaborated on where locally constrained error matrices [22]
play an essential role.

4.1. Fuzzy+Product versus PXCOV

Consider limitations of PXCOV, Fuzzy+Product’s major competitor, in terms of prediction
accuracy (i.e., AUC reported in Section 3.2). Apart from inaccuracy in single-date model predictions,
as with all methods tested in this research, inaccuracy in temporal correlation estimation has a direct
effect on PXCOV. Although not reported, we explored ways to improve estimation of temporal
correlation for possible enhancement of PXCOV. Emphasis was placed upon stratified estimation of
temporal correlation (assuming availability of reasonable amount of collocated sample data) with
strata being specific persistence cover types and one single stratum of change. Results showed that
stratified estimation does not improve predictions. This is probably due to much smaller sample
sizes in individual strata. Increasing sample sizes of collocated data would be out of the question for
PXCOV, as it has advantages over direct methods only when data available are largely non-collocated
(direct methods would be preferred when given sufficient collocated data). At a fundamental level,
predicting joint probabilities of correct classification through synthesis of single-date probabilities by
PXCOV is a kind of approximation after all, and thus, subject to uncertainty. Moreover, estimation
of temporal correlation by cross-validation cokriging would become extremely complicated and
technically infeasible when dealing with accuracy analyses in multi-temporal change categorization
(see discussion below). In addition, uncertainty in estimation of temporal correlation (if it is possible to
do so at all) is likely to propagate quickly in accuracy analyses in the context of long-term land-cover
monitoring, reducing theoretical benefits of using PXCOV. These argue for Fuzzy+Product being a
sensible and cost-effective alternative to PXCOV.

The performance of Fuzzy+Product depends on the accuracy with which local accuracies in
single-date classification maps are estimated and is limited by the inaccuracy due to approximating
temporal correlation with 1.0 and 0.0 for no-change stratum and change stratum, respectively. As the
maps being analyzed are subject to misclassification errors, stratification of unsampled pixels into
change or no-change stratum is subject to error. The net result is that local accuracy predictions
by Fuzzy+Product suffer from propagation of various errors, as with change detection based on
post-classification comparisons. This should be noted when interpreting and using results obtained
with Fuzzy+Product. Moreover, the inherently uncertain nature of accuracy predictions actually
indicates the merits of fuzzy logic-based approaches [25,43,53–57] in evaluating and analyzing
change-classification accuracies, as is further discussed towards the end of Section 4.2.

Fuzzy+Product and all alternative methods considered in this paper are applied in the ways they
are designed regardless of how change maps are derived (i.e., whether from independent classifications
of mono-temporal images or spectrally based change detection [4]). For Fuzzy+Product, in particular,
the assumption about maximum and minimum cross-correlation over no-change and change pixels,
respectively, is made regardless how the change maps are produced. However, it makes sense to
revisit that assumption by investigating how it is affected by the ways change maps are produced
(i.e., independent classifications versus change detection followed by map updating). It is asserted that
independent classifications tend to induce minimum correlation even over no-change pixels (which
explains why Product’s performance is not inferior to that of PXCOV by a large margin of AUC values),
while change detection followed by change-classification likely makes maximum correlation more
plausible (not only over no-change pixels but also change pixels). This is definitely a topic worth
exploring in the future.
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4.2. Extensions of Fuzzy+Product to Multi-Temporal Change Analyses and Fuzzy/Fractional Classifications

Further research should be pursued on topics related to or as an extension of the work reported
in this paper. One of them is the extension of the proposed method from a bi-temporal context to a
multi-temporal one. With more time points considered in multi-temporal change analyses [7,8,16],
there is an increase of the number of “from-to” classes, while the sample data are always limited. In such
cases, the Fuzzy+Product method will be very valuable as non-collocated sample data become more a
norm than an exception, although current NLCD land-cover product validation are predominately
based on collocated reference data [14]. For example, local accuracy characterization in change analyses
over long time series and/or across arbitrary multiple time intervals would be well supported by
Fuzzy+Product. We can do this cumulatively and progressively as time-specific new reference data
and additional maps are incorporated for accuracy analyses. Fuzzy+Product’s easy extension to
multi-temporal applications originates from its simplicity: minimum and multiplication operators are
applied straightforwardly across multiple time points. In contrast, complicated geostatistical modeling
is involved in use of PXCOV (even in a bi-temporal setting), which may not be able to provide accuracy
predictions in a multi-temporal setting by simple applications of two-point variogram modeling and
cross-validation co-kriging.

We have to admit that when working on PXCOV previously it was difficult to acquire real
datasets (both maps to be assessed and corresponding reference sample data) suitable for bi-temporal
change product validation, let alone those for multi-temporal applications, as mentioned in Section 2.1.
The situation has not improved yet since this research was undertaken. On the other hand, use of
simulated datasets is cautioned since simulated data may not be able to reflect misclassification patterns
as complex and unique as in real datasets. Thus, we were not able to test the proposed method with
real multi-temporal datasets, although this is certainly a research topic worth pursuing in the future.

It should be noted that Fuzzy+Product may not be directly used for mapping local accuracies in
soft or fuzzy classifications of land-cover change per se, as the underlying logic for fuzzy classification
is fuzzy sets, while discussion of land-cover and change in this research is based on crisp sets. Proper
methods are discussed by authors including Khatami et al. [25]. However, if fuzzy accuracy measures
(i.e., fuzzy membership values for the class of pixels being correctly classified) are treated as probabilistic
ones for single-date and change classifications and we are willing to relax the probabilistic assumptions
underlying this research, Fuzzy+Product may be applied to compute accuracies in a change map based
on single-date classification accuracies at pixel level (and the change map itself for computing map
class occurrence pattern indices). Similarly, for fractional land-cover maps (or percent cover maps),
if areal proportions of candidate land-cover classes within a pixel are used as surrogates of probabilities
of correctly classifying a pixel as the corresponding classes and if we consider only the primary classes
(which have the maximum proportions in individual pixels, with the maximum proportions being
used as probabilistic measures of accuracy), we may apply the proposed method to predict class
proportions (“from-to” classes, to be exact), which can be viewed as accuracy estimates for “from-to”
class labels on change maps derived from single-date fractional cover maps. Following this reasoning,
Fuzzy+Product’s extension to multi-temporal fractional maps would be straightforward. Nevertheless,
further work is required if both primary and alternate class labels are considered for assessing class
agreement in local change-classification accuracy mapping.

4.3. Accuracy Characterization: from Local back to Global

With maps of local accuracies created from the proposed method (e.g., those in Figure 5), it is
definitely interesting to find out if the accuracy of the entire map can be derived from the local versions.
However, the answer is not so straightforward, as explained below.

As this research focuses on the settings where reference sample data are largely non-collocated,
it would be problematic to undertake global accuracy assessment (for an entire map) directly based on
error matrices that would require availability of sufficient collocated sample data. The method proposed
in this paper provides a possible solution for this. The predicted per-pixel change-classification accuracy
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may be summed over the whole map and averaged to give a coarse approximation of the overall
accuracy (OA); even for a single-date classification map, the local accuracy predictions can only be used
to derive a coarse approximation of OA. A fix would be to apply the so-called model-assisted methods
as discussed in McRoberts et al. [58]. There have been many research efforts applying model-assisted
and other related methods in the literature (e.g., 38, 59–62). It is important to note that estimators need
to account for specific sampling design (e.g., stratified random sampling (StRS) versus simple random
sampling (SRS)).

For user’s and producer’s accuracies (i.e., UA and PA) assessed of the entire map, the aforementioned
local accuracy predictions are of little use. Adapted use of the method (Fuzzy+Product) for localized
UA and PA followed by bias-corrections through model-assisted methods may be usefully explored.
However, unless SRS sample data are used, the local-to-global transfers of UA and PA are not direct or
linear, let alone estimation of their uncertainties.

We need to revisit the design-based and model-based inference approaches [58–62]. This is to
construct error matrices, with their cell proportions (for combinations of map class i and reference
class j) properly estimated based on sample weighting. Accuracy measures including OA, UA, and
PA can be easily derived from properly estimated cell probabilities. Area estimates from maps may
also be corrected based on the aforementioned error matrices, with confidence intervals evaluated,
as by-products of standard accuracy assessments [63,64]. This prompts for predictions of localized error
matrices (with cell proportions estimated properly) [18,28]. They (error matrices) may then be analyzed
using model-assisted approaches to derive globally aggregated error matrices, which can in turn be
used to derive accuracy measures (including OA, UA, and PA) for the entire map and their confidence
intervals. Areal estimate corrections may also be done based on globally summarized error matrices.
Having said so, we are aware that there exist numerous issues for the aforementioned local-to-global
accuracy characterization in change maps using largely non-collocated reference sample data.

5. Conclusions

This paper has tested a simple extension method (i.e., Fuzzy+Product) to PXCOV for mapping
per-pixel change-classification accuracies, when sample data are non-collocated or mostly so (typically
being the case when reference data for mono-temporal classifications are collected independently).
By this method, minimum operator (labeled Fuzzy as it is similar to fuzzy set “min” operator) is applied
over no-change pixels’ stratum: the minimum values of predicted probabilities of correct classifications
in single-date maps are used as approximation of joint probabilities of correct change-classifications
with the understanding that temporal correlation over persistence classes is usually strong. For change
pixels’ stratum, multiplication operator (method Product) is applied by assuming zero temporal
correlation (as it is usually very weak over change pixels). Both operators are applied over their
corresponding strata regardless of sample configurations concerned. Empirical results confirmed
that Fuzzy+Product is more accurate than both Fuzzy and Product in general and that there are no
significant differences between Fuzzy+Product and PXCOV (which is hardly more accurate but involves
use of a complicated procedure of cross-validation cokriging) in terms of AUC. This indicates that
Method Fuzzy+Product offers a simpler but reasonably accurate alternative to PXCOV. Future research
and developments on refining it, extending it to accuracy characterization in multi-temporal change
analyses and fuzzy/fractional change-classifications, and utilizing it for bridging the gap between local
and global change accuracy analyses when reference sample data are largely non-collocated should
be promoted.
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