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Abstract: Hyperspectral image (HSI) super-resolution (SR) is an important technique for improving
the spatial resolution of HSI. Recently, a method based on sparse representation improved the
performance of HSI SR significantly. However, the spectral dictionary was learned under a fixed
size, empirically, without considering the training data. Moreover, most of the existing methods
fail to explore the relationship among the sparse coefficients. To address these crucial issues,
an effective method for HSI SR is proposed in this paper. First, a spectral dictionary is learned,
which can adaptively estimate a suitable size according to the input HSI without any prior information.
Then, the proposed method exploits the nonlocal correlation of the sparse coefficients. Double `1

regularized sparse representation is then introduced to achieve better reconstructions for HSI SR.
Finally, a high spatial resolution HSI is generated by the obtained coefficients matrix and the learned
adaptive size spectral dictionary. To evaluate the performance of the proposed method, we conduct
experiments on two famous datasets. The experimental results demonstrate that it can outperform
some relatively state-of-the-art methods in terms of the popular universal quality evaluation indexes.

Keywords: hyperspectral image super-resolution; sparse representation; adaptive dictionary learning;
double `1

1. Introduction

Hyperspectral sensors can capture images with many contiguous and very narrow spectral bands
that span the visible, near-infrared, and mid-infrared portions of the spectrum [1,2]. Thus, hyperspectral
image (HSI) can provide fine spectral feature differences, to distinguish various materials, which can
be widely and successfully used for many applications, such as object classification [3,4], tracking [5],
recognition [6], and remote sensing [7,8]. Due to various hardware limitations, real captured HSI
usually has low spatial resolution (LR), which significantly limits its application. However, it is not
effective to enhance spatial resolution by improving the imaging quality of the hyperspectral sensors,
and a breakthrough in hardware will be difficult and costly. Alternatively, HSI super-resolution (SR)
has been proposed to generate a high spatial resolution (HR) HSI by fusing a high spectral resolution
image, such as HSI, with an image, such as panchromatic image [9–16] or a multispectral image
(MSI) [17–30].
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1.1. Related Work

Traditionally, spatial–spectral image fusion methods fuse an LR HSI with an HR panchromatic
image (single band), such as pansharpening [9]. As we know, the famous pansharpening
methods include intensity-hue-saturation (IHS) [10,11], high-frequency information injection [12,13],
and model-based methods [14–16]. Owing to the limited spectral resolution of the panchromatic image,
these methods often produce some spectral distortions. Accordingly, fusing the LR HSI with an HR
MSI (see Figure 1) has attracted increasing attention. Spectral unmixing and sparse representation have
become the mainstream methods for the above fusion [17,18]. Several HSI SR methods have worked by
using these approaches [19–40]. In the following, we will briefly review the two categories of studies.

Figure 1. Hyperspectral image (HSI) super-resolution (SR) is generated by fusing a low-resolution (LR)
HSI with a high-resolution (HR) multispectral image (MSI).

1.1.1. Spectral Unmixing Based Methods

In these methods, latent HSI is often decomposed into endmember and abundance matrices.
The unmixing strategy [23,24] was first applied to the HSI SR problem. Naoto Yokoya et al. [19]
proposed to reconstruct the HR HSI from a multispectral image and the corresponding HSI by a
coupled nonnegative matrix factorization (CNMF) approach. Although this work provided a very
promising result, the solution of nonnegative matrix factorization (NMF) is often not unique [20,21],
and the results are not always satisfactory. By taking the sensor observation models into consideration,
Bendoumi et al. [22] divided the whole image into several sub-images. Thus, the HSI could be
enhanced with small spectral distortions. In general, the abovementioned methods have to unfold the
three-dimensional data of the MSI or HSI into two-dimensional matrices. To break this traditional
practice, the HSI is expressed by a tensor with three modes in the coupled sparse tensor factorization
(CSTF) method [26]. Further, Dian et al. [27] presented a novel HSI SR approach by incorporating both
the nonlocal self-similarity idea and tensor factorization into a unified framework.

1.1.2. Sparse Representation-Based Methods

Inspired by signal sparse decomposition, the final HR HSI is represented by an appropriate spectral
dictionary learned from the real captured HSI [28–30]. A sparse regularization term was carefully
designed in [28], where Qi et al proposed fusing HSI and MSI within a constrained optimization
framework. Taking different spatial and spectral properties into account, the spatial and spectral
fusion model (SASFM) used sparse matrix factorization to enhance the resolution of the input HSI [32].
Thus, correlations of signals in adjacent hyperspectral channels were exploited, based on the assumption
that signals in different channels were jointly sparse in suitable dictionaries [33]. Recently, a nonnegative
structured sparse representation (NSSR) method [38] was investigated to reconstruct an HR HSI from
LR HSI and HR RGB images. To explore the global-structure and local-spectral self-similarity, a
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self-similarity constrained sparse-representation (SSCSR) model was proposed by Han et. al [39].
Owing to the complex structures in HSI, superpixel-based sparse-representation (SSR) model can
extract the spectral features effectively [40].

1.2. Motivation and Contributions

Although the aforementioned methods gave us impressive recovery performance, we can produce
even better fused results from two aspects. On the one hand, the spectral basis (or the dictionary)
generally has many atoms, whose sizes range from hundreds to hundreds of thousands, according to
the training data. Thus, learning an adaptive size dictionary can represent the data compactly and
accurately. On the other hand, due to the nonlocal correlations existing in natural images [41,42],
the sparse coefficients are not randomly distributed. Therefore, it is possible to generate the high
spatial resolution HSI faithfully by exploiting the nonlocal similarity of these coefficients.

In this paper, we propose an adaptive dictionary learning and double `1 regularized
sparse-representation model for HSI SR. In particular, this novel model mainly contains three parts.
First, the proposed method learns an adaptive spectral dictionary whose atoms reflect the spectral
signatures of materials in the HSI. It should be noted that the learning framework learns the spectral
dictionary and estimates the number of atoms concurrently. Then, a transformed dictionary can be
generated by choosing the corresponding bands from the adaptive spectral dictionary, which reflects
the spectral signatures of the MSI. Due to the nonlocal correlations present in natural images, it is
impossible for the sparse coefficients to be distributed randomly. To exploit the nonlocal similarity,
a double `1 model is used to characterize the corresponding coefficients, which are obtained by
decomposing pixels on the transformed dictionary. Finally, the HR HSI is estimated by the adaptive
spectral dictionary and the coefficients. The detailed flowchart is presented in Figure 2.

Figure 2. The flowchart of the proposed method.

The proposed method has the following distinct features.
(1) To represent the complex structures of HSI more effectively, an efficient adaptive size strategy

is introduced to learn the spectral dictionary instead of using a fixed size dictionary.
(2) The proposed adaptive learning framework helps save time and effort in finding the correct

sizes according to the content of the HSI.
(3) To improve the performance of HSI SR, a double `1 constraint of the sparse coefficients,

based on the adaptive-size dictionary, is exploited to capture the nonlocal similarity the
spectral-spatial information.

(4) The proposed model can be easily and effectively solved. In addition, extensive experimental
results on different HSI datasets validate the superiority of our method.
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2. Mothodology (or Materials and Methods)

2.1. The Traditional Sparse-Representation Method

Let X ∈ RB×n be the LR HSI, where n = a1 × a2. Terms a1 and a2 are the width and height of X
in spatial resolution, respectively. Term B indicates the spectral dimension. The acquired HR MSI is
Y ∈ Rb×N, where N = a3 × a4, a3 � a1, a4 � a2 and B� b. Therefore, HSI SR aims to estimate an HR
HSI Z ∈ RB×N by using X and Y. In general, the relationship between X, Y, and the latent HSI Z can be
modelled as follows:

X = ZH (1)

Y = PZ (2)

where H ∈ RN×n denotes a degradation operator, and P ∈ Rb×B is a transform matrix.
As a promising fusion technique, sparse representation has achieved great success [32,34,38,39].

In these methods, each pixel, zi ∈ RB, in Z ∈ RB×N is often represented via the following linear
combination:

zi = Dαi + ei (3)

where D ∈ RB×K represents a spectral dictionary, αi ∈ RK is the corresponding representation coefficient
assumed to be sparse, and ei is the representation error.

According to Equation (1), each pixel, xi ∈ RB, can also be represented as follows:

xi =
n∑

j=1
Hi, jzi =

n∑
j=1

Hi, j(Dαi) = D
n∑

j=1
Hi, jαi

= Dβi + ti

(4)

where βi ∈ RK is the representation coefficient in the spectral dictionary, D, Hi, j denotes the element
of the i-th row and the j-th column, and ti is the residual. According to Equations (2) and (3), pixel,
yi ∈ Rb, of the MSI, Y, can be mathematically formulated as follows:

yi = Pzi ≈ PDαi (5)

By combining Equations (4) and (5), it is easy to obtain the spectral dictionary, D, as well as the
corresponding coefficients matrix, A = [α1,α2, . . . ,αN] ∈ RK×N. Finally, we can generate the HR HSI,

Z, from the following equation:
Z ≈ DA (6)

2.2. The Proposed Method

Due to the complex structures in HSI, it is not reasonable that different variations are
represented by a dictionary with a fixed size in traditional methods. In other words,
the traditional sparse-representation model cannot represent the complex structures of HSI accurately.
Thus, we propose the learning of a spectral dictionary with an adaptive size, according to the context
in the captured area. Furthermore, double `1 prior of the sparse coefficients is exploited to improve
HSI SR quality.

2.2.1. Adaptive Spectral Dictionary Learning

Traditionally, the spectral dictionary D ∈ RB×K was usually learned from a set of training exams
{x1, . . . , xn}:

min
D,B

1
n

n∑
i=1

{∥∥∥xi −Dβi
∥∥∥2

2 + λ
∥∥∥βi

∥∥∥
1

}
(7)
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where λ is a balance parameter, and B = [β1,β2, . . .βn] is the corresponding coefficients matrix. K is
the dictionary size, which was selected empirically. As previously mentioned, a spectral dictionary
with a fixed size cannot reflect complex structures of HSI accurately. Thus, we can select the dictionary
size adaptively by introducing a size penalty. Motivated by [43], the size penalty was modelled
with a row-sparse norm. Based on this concept, we alternatively define β̂ j =

[
β1, j, . . . , βn, j

]
(1 ≤ j ≤ k),

where βi, j denotes the j-th element of βi. Then, the traditional dictionary-learning framework can be
updated to the following equation:

min
D,B

1
n

n∑
i=1

{∥∥∥xi −Dβi
∥∥∥2

2 + λ
∥∥∥βi

∥∥∥
1

}
+ µ

K∑
j=1

E
(
β̂ j

)
(8)

where E
(
β̂ j

)
=

{
0 i f β̂ j = 0
1 otherwise

, and µ is a balance parameter. For zero vectors, the size penalty outputs

0; otherwise, the result is 1. It should be noted that the dictionary is not initially constrained to
containing zero vectors. Fortunately, Equation (8) can automatically determine the number of nonzeros.
Thus, we can learn a spectral dictionary with an adaptive size through this model.

The objective function in Equation (8) contains multivariate indicator terms. Inspired by [44],
we introduce a penalty Rδ(b) to avail optimization, which is defined as follows:

Rδ(b) = min
v∈Rn

δ‖b− v‖22 + E(v) (9)

If the parameter δ is large enough, Rδ(b) can successfully approach the multivariate indicator
function, E

(
β̂ j

)
[44].

In summary, the adaptive spectral dictionary, D, will be obtained through the following
optimization problem:

min
D,B,V

1
n

n∑
i=1

{∥∥∥xi −Dβi
∥∥∥2

2 + λ
∥∥∥βi

∥∥∥
1

}
+ µ

K∑
j=1

[
δ
∥∥∥β̂ j − v̂ j

∥∥∥2
2 + E

(
v̂ j

)]
(10)

where vi is the column vector, and v̂ j denotes the corresponding row vector in V. The optimization
of Equation (10) performs in an alternative scheme over three stages, which correspond to
Equations (11)–(19).

In the “dictionary update” stage, the sparse coefficient B and the variable V are fixed, and we can
obtain the dictionary as follows:

min
D

L(D) = min
D

1
n

n∑
i=1

∥∥∥xi −Dβi
∥∥∥2

2 (11)

The stochastic gradient descent algorithm [45] is employed to update D iteratively. In the it-th
iteration, we get the following equation:

D(it) = D(it−1)
− δg∇DL(D

(it−1)
) (12)

where δg is a learning rate, and ∇D represents the gradient operator of D. We substitute ∇DL(D
(it−1)

) =

1
n

n∑
i=1

(
xi −D(it−1)βi

)
βi

T into Equation (12) and obtain the following:

D(it) = D(it−1)
− δg

1
n

n∑
i=1

(
xi −D(it−1)βi

)
βi

T (13)
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Similar to the “dictionary update” stage, with the other variables fixed, we update the sparse
coefficient B according to the following equation:

min
B

1
n

n∑
i=1

{∥∥∥xi −Dβi
∥∥∥2

2 + λ
∥∥∥βi

∥∥∥
1

}
+ µ

K∑
j=1

δ
∥∥∥β̂ j − v̂ j

∥∥∥2
2

= min
B

1
n

n∑
i=1

{∥∥∥xi −Dβi
∥∥∥2

2 + λ
∥∥∥βi

∥∥∥
1 + nµδ

∥∥∥βi − vi
∥∥∥2

2

} (14)

For each i, Equation (14) is independent. Thus, finding the optimal
{
βi

}
solves the following

independent problems of the form:

min
βi

∥∥∥xi −Dβi
∥∥∥2

2 + λ
∥∥∥βi

∥∥∥
1 + nµδ

∥∥∥βi − vi
∥∥∥2

2 (15)

Let

1 

 

Υ =

[
xi√

nµδvi

]
, Θ =

[
D√
nµδI

]
, and Equation (15) can be written as follows:

min
βi

∥∥∥

1 

 

Υ −Θβi
∥∥∥2

2 + λ
∥∥∥βi

∥∥∥
1 (16)

This is a combination of the quadratic and `1 sparse terms; thus, the iterative shrinkage
thresholding algorithm [46] is popular for solving this efficiently. In the it-th iteration, we obtain the
following equation:

βi
(it) =

 υ(it−1)
− 2λ · sgn

(
υ(it−1)

)
0

∣∣∣

1 

 

Υ (it−1)
∣∣∣ > 2λ∣∣∣

1 

 

Υ (it−1)
∣∣∣ ≤ 2λ

(17)

where υ(it−1) = 1
2βi

(it−1) +
(
Θ(it−1)

)T(

1 

 

Υ (it−1)
−Θ(it−1)βi

(it−1)
)
.

Finally, we update the variable V fixed D and B:

min
v̂ j∈V

K∑
j=1

[
δ
∥∥∥β̂ j − v̂ j

∥∥∥2
2 + E

(
v̂ j

)]
, (18)

which can be decomposed to K independent functions with respect to j:

min
v̂ j
δ
∥∥∥β̂ j − v̂ j

∥∥∥2
2 + E

(
v̂ j

)
(19)

According to [44], we can obtain its solution as follows:

v̂ j =

 δ
∥∥∥β̂ j

∥∥∥2
2

1

∥∥∥β̂ j
∥∥∥2

2 <
1
δ

otherwise
(20)

Algorithm 1: Adaptive Spectral Dictionary Learning

Input: the training examples {x1, . . . , xn}, the regularization parameters λ= 0.2, µ= 0.001.
Initialize δ= 1, it = 1, V0 = 0K×n,
while δ < 106 do
Input Vit−1, Dit−1, update Bit by (17);
Input Bit, update Vit by (20);
Input Bit and Dit−1, update Dit by (13);
it← it + 1 ;
δ← 2δ
end while
Output: the spectral dictionary D = Dit
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2.2.2. Double `1 Regularization

This subsection addresses the problem of how to obtain the sparse coefficient αi from the HR MSI,
Y, and the spectral dictionary, D, associated with Equation (5). Traditionally, αi is obtained with a `1

constraint as follows:
αi = argmin

αi

∥∥∥yi −Dαi
∥∥∥2

2 + λ1‖αi‖1 (21)

where D = PD. In Equation (21), the sparse coefficient of each αi is computed independently.
Actually, each pixel has a strong correlation with its nonlocal similar neighbors in the HR HSI. Thus, it is
impossible for the sparse coefficients to be distributed randomly. In other words, even better SR results
will be produced if the nonlocal similarities of the sparse coefficients are considered.

In Figure 3, we randomly plot the distributions of αi −
∑

j∈NN(i)
pi jα j corresponding to the 23rd

and 57th atoms (other atoms exhibit similar distributions) in the dictionary, D. Term NN(i) is the

index set of similar neighbors of αi. Moreover, pi j =
1
c exp

(
−

∥∥∥αi −α j
∥∥∥2

2

)
are the weighting coefficients

based on the similarity of αi and α j, and c is a positive constant. The number of nearest neighbors is
selected as 10 in NN(i). We can observe that the empirical distributions are highly peaked at zero and
can be effectively characterized by `1 functions, while `2 functions have a much larger fitting error.
Hence, this motivates us to improve the super-resolution quality by modelling the nonlocal similarity
of the sparse coefficients by an `1 prior.

Figure 3. The distribution of αi −
∑

j∈NN(i)
pi jα j corresponding to the 23rd (a) and 57th (b) atom in

the dictionary.

Based on this consideration, we incorporate the nonlocal geometric structure into the single `1

constraint model as another regularization term for HSI SR as follows.

αi = argmin
αi

∥∥∥yi −Dαi
∥∥∥2

2 + λ1‖αi‖1 + λ2

∥∥∥∥∥∥∥∥αi −
∑

j∈NN(i)

pi jα j

∥∥∥∥∥∥∥∥
1

(22)

where λ1 and λ2 are two regularization parameters. The second term is the sparse constraint on the
coefficients, while the last term emphasizes the nonlocal similarity for the sparse coefficients.

Furthermore, αi can be solved iteratively [47]. In the l-th iteration, we define κ(l) =
∑

j∈NN(i)
pi jα j

(l)

and initialize κ(0)= 0. Then we solve the single `1 constraint model (21) to get αi
(1)(i = 1, 2, . . . , N).

Based on
{
αi

(1)
}N

i=1
, we can find similar sparse coefficients α j

(1) ( j ∈ NN(i)). In the next iteration

of sparse coding process, αi
(2) is the solution of Equation (22), and the second term is updated as
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∥∥∥∥∥∥∥αi
(2)
−

∑
j∈NN(i)

pi jα j
(1)

∥∥∥∥∥∥∥
1

. Such a procedure is iterated until convergence. Thus, Equation (22) can be

transformed as follows:

αi
(l) = argmin

αi

∥∥∥yi −Dαi
(l)

∥∥∥2
2 + λ1

∥∥∥αi
(l)

∥∥∥
1 + λ2

∥∥∥∥∥∥∥∥αi
(l)
−

∑
j∈NN(i)

pi jα j
(l−1)

∥∥∥∥∥∥∥∥
1

(23)

Regarding the l-th iteration, κ(l−1) =
∑

j∈NN(i)
pi jα j

(l−1) is a constant. We simply rewrite Equation (23)

as follows:
αi

(l) = argmin
αi

∥∥∥yi −Dαi
(l)

∥∥∥2
2 + λ1

∥∥∥αi
(l)

∥∥∥
1 + λ2

∥∥∥αi
(l)
− κ(l−1)

∥∥∥
1 (24)

Equation (24) is a double `1 regularized least squares problem, which we solve by employing the
surrogate functions [48]. Here, we introduce the following surrogate function:

ρ(αi, a) = C‖αi − a‖22 −
∥∥∥Dαi −Da

∥∥∥2
2 (25)

where the constant, C, is chosen (
∥∥∥∥D

T
D

∥∥∥∥2

2
< C) to make ρ(αi, a) convex, and a denotes an auxiliary

variable. Then we define the following function:

f
(
αi

(l), a
)
=

∥∥∥yi −Dαi
(l)

∥∥∥2
2 + λ1

∥∥∥αi
(l)

∥∥∥
1 + λ2

∥∥∥αi
(l)
− κ(l−1)

∥∥∥
1

+C
∥∥∥αi

(l)
− a

∥∥∥2
2 −

∥∥∥Dαi
(l)
−Da

∥∥∥2
2

= C
∥∥∥αi

(l)
− τi

(l)
∥∥∥2

2 + λ1
∥∥∥αi

(l)
∥∥∥

1 + λ2
∥∥∥αi

(l)
− κ(l−1)

∥∥∥
1 + const

(26)

where τi
(l) = 1

C

(
D

T
yi −D

T
Da

)
+ a and const =

∥∥∥yi

∥∥∥2
2 +C‖a‖22−

∥∥∥Da
∥∥∥2

2−C
∥∥∥τi

(l)
∥∥∥2

2. The objective function

of (26) can be simplified further, as follows:

f
(
αi

(l)
)
=

∥∥∥αi
(l)
− τi

(l)
∥∥∥2

2 + µ1
∥∥∥αi

(l)
∥∥∥

1 + µ2
∥∥∥αi

(l)
− κ(l−1)

∥∥∥
1 (27)

where µ1 = λ1
C and µ2 = λ2

C are regularization parameters. We can obtain the scalar version of the
above minimization problem as follows:

g(m) = (m−m1)
2 + µ1|m|+ µ2|m−m2| (28)

where m, m1, and m2 are the scalar components of αi
(l), τi

(l), and κ(l−1), respectively. Then, the solution
to Equation (24) is given by the following equation:

αi
(l+1) =

 Sµ1,µ2,κ(l−1)

(
τi

(l)
)

κ(l−1)
≥ 0

−Sµ1,µ2,−κ(l−1)

(
−τi

(l)
)

κ(l−1) < 0
(29)

The generalized shrinkage operator Sµ1,µ2,r2(r) is defined by the following:

Sµ1,µ2,r2(r) =



r + µ1 + µ2 r < −µ1 − µ2

0 −µ1 − µ2 ≤ r ≤ µ1 − µ2

r− µ1 + µ2 µ1 − µ2 < r < µ1 − µ2 + r2

m2 µ1 − µ2 + r2 ≤ r ≤ µ1 + µ2 + r2

r− µ1 − µ2 µ1 + µ2 + r2 < r

(30)
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Algorithm 2: Double `1 Regularized Sparse Coding

Input: the pixel set
{
y1, . . . , yN

}
, the spectral dictionary (D), the transform matrix (P), the regularization

parameters (λ1 and λ2), and the number of iterations (L = 5).
For i = 1 to N do
Initialize αi

(0) = 0;
For l = 1 to L do
κ(l−1) =

∑
j∈NN(i)

pi jα j
(l−1)

τi
(l) = 1

C

(
(PD)Tyi − (PD)TDa

)
+ a

αi
(l+1) =

 Sµ1,µ2,κ(l−1)

(
τi

(l)
)

κ(l−1)
≥ 0

−Sµ1,µ2,−κ(l−1)

(
−τi

(l)
)

κ(l−1) < 0
End For
End For
Output: the sparse coefficients A = {α1, . . . ,αN}.

Algorithm 3: HSI SR by Adaptive Dictionary Learning and Double `1 Regularized Sparse Representation

Input: LR HSI (X), HR MSI (Y), and the regularization parameters (λ1 and λ2).
(1) Learn the spectral dictionary, D, from X by using Algorithm 1;
(2) Obtain the sparse representation, A, from Y and D by using Algorithm 2.
Output: the HR HSI Z = DA.

3. Experimental Results and Analysis

In this section, we demonstrate the effectiveness of the proposed method on some popular
datasets, using a series of experiments. Both qualitative and quantitative metrics are used to evaluate
the performance.

3.1. Datasets and Experimental Setup

We performed verifying experiments on Cuprite and Pavia Center datasets, as shown in Figure 4.
There are 105 spectral bands in the Cuprite and 102 bands in the Pavia Center dataset. We cropped
each dataset to 480× 480 pixels in spatial resolution. The real HSI of these two datasets were treated as
ground-truth, and they were used to produce the simulated LR HSI and HR MSI. Specifically, the LR
HSI, X, was generated by first applying a 9 × 9 Gaussian kernel of standard deviation 2 to the real
HSI and then averaging pixels within an s× s window, where s is the scaling factor (e.g., s= 8, 16, 32).
For each dataset, we directly chose the blue, green, red, and near-infrared channels (corresponding
to bands 7, 15, 25, and 42 in Cuprite, and bands 13, 33, 58, and 101 in Pavia Center, respectively) of
ground-truth, to simulate the HR MSI, Y. To facilitate the numerical calculation, the intensities of each
band in HSI were normalized to [0, 255].

Figure 4. The data cubes: (a) Cuprite and (b) Pavia Center.
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The proposed method is compared with five representative algorithms: SASFM [32],
G-SOMP+ [34], SSR [40], NNSR [38], and SSCSR [39]. To ensure the reliability of the results,
we repeat each super resolution method 20 times on the test datasets.

3.2. Quality Metrics

We adopt three quantitative measures for the evaluation: relative dimensionless global error in
synthesis (ERGAS) [49], root mean square error (RMSE), and spectral angle mapper (SAM) [50].

The RMSE measures the deviation between the reference HR HSI, R, and the reconstructed HR
HSI, Z:

RMSE =

√
‖R−Z‖2F

BN
(31)

The ERGAS metric [49] calculates the average amount of spectral deviation in each band, as defined
below:

ERGAS =
100

s
·

√
1
B

∑ RMSE(rb, zb)

µrb

(32)

where s is the scaling factor, rb and zb represents the b-th band of R and Z, respectively, and µrb is the
mean of rb.

At last, we calculated SAM [50], which is defined as the angle between two spectral vectors, rb and
zb, averaged over all pixels:

SAM =
1
N

∑
arccos

 rb
Tzb

(rb
Trb)

1/2
· (zb

Tzb)
1/2

 (33)

According to the above definition, the smaller the RMSE, ERGAS, and SAM metrics, the better the
super-resolution performance.

3.3. Performance Comparison of Different Methods

Table 1 shows the average RMSE, ERGAS, and SAM results of the two datasets under different
downsampling factors by the six compared methods. Our approach outperforms the others in terms of
the RMSE, ERGAS, and SAM results, which clearly indicates that the adaptive learned dictionary can
exploit the underlying structures in the HSI. The double `1 regularized sparse representation illustrates
the superior performance over other competing methods. Thus, these numerical results validate the
power of the proposed model for HSI super-resolution.

To facilitate visual comparison, Figure 5c–h shows the reconstructed HR HSI of band 100 by
different competing approaches, with a scaling factor of s= 8 on the Cuprite dataset. We can see that
all compared methods can generate spatial structures very well. To describe the differences of different
methods more intuitively, Figure 5i–n presents a comparison of the differences (absolute value) in pixel
values between each reconstructed image and the reference HR image. The mountain and river regions
are not well preserved, resulting in large errors in the SASFM. The NNSR and SSCSR methods deliver
a better result, but still cannot recover the missing details in the mountain. By contrast, our method
can recover more details. Thus, the smallest reconstruction errors are achieved in Figure 5n.

To illustrate the consistency of the overall performance, we present the related results of the same
band (band 100) with another scaling factor (s= 32) on the Cuprite dataset in Figure 6. We can draw
the same conclusion that the six compared methods can significantly enhance the spatial resolution of
the input LR HSI. However, it should be noted that our method achieves the best result.
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Figure 5. SR results of the 100th band of the Cuprite dataset with a scaling factor of s= 8. The second
row presents the reconstructed images achieved by the different methods. The third row shows the
corresponding error images. (a) LR image, (b) original HR HSI image, and SR results by different
methods: (c) SASFM, (d) G-SOMP+, (e) SSR, (f) NNSR, (g) SSCSR, (h) Proposed; corresponding error
images: (i) SASFM, (j) G-SOMP+, (k) SSR, (l) NNSR, (m) SSCSR, (n) Proposed.
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Figure 6. SR results of the 100th band of the Cuprite dataset with a scaling factor of s= 32. The second
row presents the reconstructed images achieved by the different methods. The third row shows the
corresponding error images. (a) LR image, (b) original HR HSI image, and SR results by different
methods: (c) SASFM, (d) G-SOMP+, (e) SSR, (f) NNSR, (g) SSCSR, (h) Proposed; corresponding error
images: (i) SASFM, (j) G-SOMP+, (k) SSR, (l) NNSR, (m) SSCSR, (n) Proposed.
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Table 1. Quantitative measures by different methods on Cuprite and Pavia Center.

Downsampling
Factor

Methods
Cuprite Pavia Center

RMSE ERGAS SAM RMSE ERGAS SAM

s= 8

SASFM 1.0065 0.5987 2.1624 1.8734 0.7003 2.3561
G-SOMP+ 0. 8410 0.5683 1.8999 1.5552 0.5826 1.9708

SSR 0.7627 0.5511 1.8239 1.2390 0.5747 1.9089
NNSR 0.6373 0.4562 1.6120 1.1537 0.5521 1.8295
SSCSR 0.5663 0.3318 1.2278 0.0990 0.5159 1.7566

Proposed 0.4852 0.2961 0.9088 1.0574 0.4975 1.6388

s= 16

SASFM 1.1818 0.3136 1.9852 2.1621 0.3519 2.4395
G-SOMP+ 0.9109 0.2796 1.7674 1.7861 0.3009 2.1477

SSR 0.8567 0.2788 1.7585 1.3697 0.2978 2.1344
NNSR 0.7629 0.2005 1.5662 1.2790 0.2977 1.9591
SSCSR 0.6937 0.1811 1.3039 1.2190 0.2891 1.8889

Proposed 0.5474 0.1695 1.0157 1.1904 0.2837 1.8650

s= 32

SASFM 1.4076 0.1629 2.0011 4.2323 0.3002 4.0387
G-SOMP+ 1.1267 0.1436 1.8117 3.8084 0.2511 3.3054

SSR 0.9845 0.1397 1.7546 3.4486 0.2332 2.9203
NNSR 0.8393 0.1128 1.4658 2.8099 0.2008 2.5580
SSCSR 0.7654 0.1095 1.3267 2.2790 1.1744 2.3016

Proposed 0.6826 0.1015 1.1990 2.1847 0.1575 2.0664

To verify the robustness of the proposed method, Figures 7 and 8 present the SR results of different
methods on the Pavia Center dataset, which has more varied content in the captured area. When the
scaling factor (s= 8) is small, the building regions are not well reconstructed by the SASFM method, as
shown in Figure 7i. When we increase the scaling factor (s = 32), larger errors occur in the SASFM
reconstructed image (the edges of the buildings and the river are clearly visible in Figure 8i). This is
because SASFM ignored the structural similarity in the MSI during the SR process. Although the
GSOMP+ method made use of the structure similarity, it was only exploited with a fixed window; hence,
it cannot use the spatial information sufficiently. Accordingly, the outlines of the buildings and the
river are still visible in Figures 7j and 8j. Figures 7l and 8l demonstrate that the nonnegative structured
sparse-representation model can efficiently preserve many details and edges. From Figure 7m,n and
Figure 8m,n, we can observe that the proposed method slightly outperforms the SSCSR method [30] in
recovering the details of the original HSI.
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Figure 7. SR results of the 48th band of the Pavia Center dataset with a scaling factor of s= 8. The second
row presents the reconstructed images achieved by the different methods. The third row shows the
corresponding error images. (a) LR image, (b) original HR HSI image, SR results by different methods:
(c) SASFM, (d) G-SOMP+, (e) SSR, (f) NNSR, (g) SSCSR, (h) Proposed; corresponding error images: (i)
SASFM, (j) G-SOMP+, (k) SSR, (l) NNSR, (m) SSCSR, (n) Proposed.



Remote Sens. 2019, 11, 2809 15 of 22

Figure 8. SR results of the 94th band of the Pavia Center dataset with scaling factor of s= 32. The second
row presents the reconstructed images achieved by the different methods. The third row shows the
corresponding error images. (a) LR image, (b) original HR HSI image, SR results by different methods:
(c) SASFM, (d) G-SOMP+, (e) SSR, (f) NNSR, (g) SSCSR, (h) Proposed; corresponding error images: (i)
SASFM, (j) G-SOMP+, (k) SSR, (l) NNSR, (m) SSCSR, (n) Proposed.

3.4. Effects of the Adaptive Size Dictionary

(1) In Figure 9, we present the values of objective function (10) vs. the iteration times. This proves
that the proposed algorithm terminates in finite steps. The optimal value of the objective function
is achieved after 15 iterations for each dataset. In Algorithm 1, a random dictionary is selected for
the initialization. Thus, further experiments are conducted to evaluate the sensitivity of our learning
algorithm to different starting points. For each dataset, we generate 200 different initial dictionaries
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randomly, starting from which we can train different dictionaries. The related statistics on the final
learned dictionary sizes are listed in Table 2. The variance of the sizes is very small. The minimum size
is very similar to the maximum size. This suggests that different initial dictionaries have little effect on
the final training results.

Figure 9. Value of the objective function evaluated by the proposed learning method with a scaling
factor of 32 on different datasets: (a) Cuprite and (b) Pavia Center.

Table 2. Average sparse reconstruction errors by different learning methods on Cuprite and Pavia Center.

Downsampling
Factor

Cuprite Pavia Center

Traditional Adaptive Traditional Adaptive

s= 8 11.1233 2.1488 19.0409 6.3434
s= 16 2.1488 1.9752 15.5154 2.9938
s= 32 0.6115 0.5165 10.3444 0.7820

(2) To evaluate the adaption of our learning strategy, the traditional dictionary learning method
(i.e., Equation (7)) and our proposed method are applied to the test datasets (see Figure 4). The dictionary
size is set to 300, according to Equation (7), while 38 and 43 reflectance vectors are sufficient to represent
the structure variations by our adaptive strategy for the Cuprite and Pavia Center datasets, respectively.
The experimental results indicate that the sizes of the learned dictionaries vary significantly according
to different learning methods. This demonstrates that our estimated dictionary sizes are adaptive

and suitable. For quantitative evaluation, the average sparse reconstruction error, 1
n

n∑
i=1

∥∥∥xi −Dβi
∥∥∥2

2,

is calculated for each test dataset in Table 2. We can see that our learned dictionaries can reduce
the redundancy effectively and avoid the interference of nonspecific errors. This demonstrates the
efficiency of the proposed optimization algorithms.

(3) As we know, K-SVD [51] is popular for learning fixed-size dictionaries. Thus, we compare the
proposed adaptive dictionary learning method with the K-SVD method. To ensure the reliability of
the K-SVD algorithm, we executed 50 iterations to train the spectral dictionary by using orthogonal
matching pursuit (OMP) [52] for sparse coding with T = 6 (T is the sparsity of each trained atom).
Finally, the number of atoms for K-SVD is chosen as 300, which is the best or nearly the best atom
number according to 20 experiments. Although the resultant images produced by K-SVD have
good visual quality, K-SVD is less able to sharpen the details in the mountain area. Fortunately, the
adaptive dictionary can effectively reconstruct most spatial details with less obvious spectral distortions,
as shown in Figure 10e,f. In other words, it is not effective to reflect the complex structures of HSI by a
dictionary with a fixed size. Their numerical results from different test datasets are reported in Table 3.
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Figure 10. Images of the 70th band of the Cuprite dataset. (a) LR image; (b) original HR image; (c) and
(d) are the SR results by K-SVD and adaptive dictionary learning method, respectively; (e) and (f) are
the corresponding error images.

Table 3. Super-resolution results by K-SVD and adaptive dictionary learning on the Cuprite (the top
values) and Pavia Center (the bottom values) datasets.

Method RMSE ERGAS SAM

K-SVD 1.0451
3.2085

0.1322
0.2288

1.6000
3.0525

Adaptive dictionary 0.6826
2.18747

0.1015
0.1575

1.1900
2.0664

3.5. Parameters Analysis

The regularization parameters, λ1 and λ2, balance the different contributions of regularization
terms and need to be carefully tuned in Equation (21). Thus, many experiments are performed to
demonstrate the effectiveness of the proposed regularizations. Figures 11 and 12 present the curves
of RMSE variations with different parameters and scaling factors (s = 8, 16, 32) on the Cuprite and
Pavia Center datasets, respectively. With a smaller value of λ1 (between 0.005 and 0.01), the proposed
method generates unsatisfactory results. As λ1 increases, better results can be achieved, as shown by
the top rows in Figures 11 and 12. However, we also note that the performance exhibits a descending
trend with increasing values of λ1 (larger than 0.02). Nonetheless, when the values of λ1 are between
0.01 and 0.02, the RMSE measurements are stable. According to the bottom rows in Figures 11 and 12,
we can see that the optimal value of λ2 is 8 × 10−5. Moreover, when the values depart significantly
from 8 × 10−5, the corresponding RMSE values clearly fluctuate. The above experimental results
demonstrate that our proposed combination can achieve promising results. In view of this, to achieve
optimal or nearly optimal performance, we recommend setting λ1 ∈ [0.01, 0.02] and λ2 = 8× 10−5.
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Figure 11. RMSE curves of different parameters and scaling factors on the Cuprite dataset. The top
and bottom rows show the RMSE results with different values of λ1 and λ2, respectively. From left to
right, RMSE variations with different scaling factors: (a,d) s = 8; (b,e) s = 16; and (c,f) s = 32.

Figure 12. RMSE curves of different parameters and scaling factors on the Pavia Center dataset. The
top and bottom rows show the RMSE results with different values of λ1 and λ2, respectively. From left
to right, RMSE variations with different scaling factors: (a,d) s = 8; (b,e) s = 16; and (c,f) s = 32.

3.6. Discussion on Computational Complexity

The proposed SR method incurs major costs from two aspects: the spectral dictionary learning
and the sparse representation. For each step in Algorithm 1, the computation of the spectral dictionary
learning is O

(
K2n + 2KnB

)
. For the parameter δ, it needs log2δ steps to achieve the optimal result.

The overall complexity of Algorithm 1 is O
(
log2δ

(
K2n + 2KnB

))
. In Algorithm 2, the complexity

of updating the sparse coefficients is O(LK) for each pixel; therefore, N pixels need approximately
O(NLK).

The CPU times of different SR methods are presented in Table 4. All the algorithms were
implemented with MATLAB on an Intel Core i7-6820 2.7-GHz CPU. The SASFM method has the fastest
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running time through the sparse coding technique of OMP [52]. The SSR and SSCSR methods have
a long processing time due to the clustering-based sparse representation framework. Our proposed
method runs quite slowly and requires approximately 5 min. In the future, we can expect to speed up
the proposed algorithm by using a graphics-processing unit.

Table 4. Average running time (seconds) of the compared methods on the simulated datasets with a
scaling factor of 32.

Method SASFM G-SOMP+ SSR NNSR SSCSR Proposed

Time 11 235 579 146 723 276

4. Discussion

Compared to other methods, the proposed method achieves a superior SR performance. There are
mainly two reasons why. First, the adaptive dictionary can represent different variations reasonably
compared with traditional dictionary learning methods. Second, the nonlocal similarities of the sparse
coefficients are exploited to improve the HSI SR quality.

From the parameter analysis, we can find that the RMSE stay relatively stable, without any
incremental performance, when the parameters are set to the recommended values (see Figures 11
and 12). In other words, the performance of our proposed method is robust. From the comparison of
the execution time, we observe that the proposed model is not computationally efficient (see Table 4).
However, our method could achieve better performance in comparison with other methods on the two
hyperspectral datasets. In light of this, it will be interesting to design an architecture with multicore
CPU [53], to optimize the execution time.

5. Conclusions

This paper proposed a new and effective method for HSI super-resolution based on sparse
representation. There are two distinctive features of the proposed method. On the one hand,
an adaptive learning strategy is used to learn a spectral dictionary, which represents different content
and features reasonably. On the other hand, double `1 regularized constraints are employed to
characterize the similarities of the sparse coefficients, to improve the HSI SR quality. Extensive
experimental results from two popular HSI datasets validate the superior performance of the proposed
method over other competitive methods. The experiments of the parameters demonstrate the robustness
of the proposed method.

In the future, we can combine the tensor model [54] and the shape-adaptive technique [55,56]
to explore the spatial–spectral information adaptively and sufficiently. Deep-learning approaches
have recently gained great attention in many fields [57–64]. It will be a new task to design a deep
architecture to improve the performance of the HSI SR.
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