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Abstract: In this paper, we evaluate different popular voting strategies for fusion of classifier results.
A convolutional neural network (CNN) and different variants of random forest (RF) classifiers
were trained to discriminate between 15 tree species based on airborne hyperspectral imaging data.
The spectral data was preprocessed with a multi-class linear discriminant analysis (MCLDA) as a
means to reduce dimensionality and to obtain spatial–spectral features. The best individual classifier
was a CNN with a classification accuracy of 0.73 +/− 0.086. The classification performance increased
to an accuracy of 0.78 +/− 0.053 by using precision weighted voting for a hybrid ensemble of the CNN
and two RF classifiers. This voting strategy clearly outperformed majority voting (0.74), accuracy
weighted voting (0.75), and presidential voting (0.75).

Keywords: hyperspectral imaging; tree species; multiple classifier fusion; convolutional neural
network; random forest; rotation forest

1. Introduction

Tree species classification is a challenging and important task for large-area monitoring and
managing of forests. For many applications, it is an important step to first retrieve the tree species in
order to enable the detection of specific traits such as nutrition state, water content, various stresses,
diseases, and other relevant parameters in a species-specific context.

In 2015, Fraunhofer IFF conducted measurement flights over forests in Saxony Anhalt and
Thuringia, Germany for two reasons: (1) to develop new methods for detection of biotic stresses related
to oak feeding society (green oak-leaf roller, Tortrix viridana), mottled umber (Erannis defoliaria), and
winter moth (Operophthera brumata); and (2) to support ground-based forest inventory by airborne
assessment of tree species and tree vitality. Both require reliable detection of oak trees as well as
other tree species in mixed forests. Hyperspectral imaging was chosen as a means to address these
challenging tasks. It is an emerging measurement technique frequently used for optical non-invasive
characterization of surfaces and materials. In contrast to the analysis of conventional digital images,
multiple image channels that correspond to reflected or transmitted light of a certain small wavelength
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range, must be taken into account. A typical hyperspectral image consists of hundreds of image
bands. A good introduction to hyperspectral image classification was provided by Bioucas-Dias et
al. [1]. Challenges mentioned are the limited number of labeled samples and the need to combine
spectral and spatial information to obtain good results. Typically, the high-dimensional nature of the
data and strong correlations among spectral bands require the extraction of suitable features prior to
training of a classifier. The authors also highlight the importance of high spatial image resolution, as
most classification techniques assume a single predominant spectral signature per pixel. In contrast,
a low image resolution leads to mixed pixels, which requires spectral unmixing as an additional
preprocessing step [2].

Wang et al. [3] dedicated a chapter of their book “Remote Sensing of Natural Resources” to
the classification of tree species. They listed principal component analysis (PCA), minimum noisef
fraction (MNF), canonical discriminant analysis, partial least squares regression (PLS), and wavelet
transform as common feature extraction methods. They also provide references where these techniques
have been applied. Moreover, an overview on the application of classifiers containing support vector
machines (SVM), classification and regression trees (CART), and artificial neural networks (ANN)
is given. Fassnacht et al. [4] published a recent survey on tree species classification. The authors
considered different types of discriminant analysis (linear, quadratic, canonical, stepwise, regularized,
and penalized), SVM, random forest, and maximum likelihood classifiers. With reference to experiences
from previous work (e.g., [5]), the authors draw the conclusion that the choice of the classifier is less
important than adequate data preprocessing to obtain good results.

Féret et al. [6] investigated the discrimination of 17 tree species in tropical forests. A comparison of
different parametric and non-parametric methods showed that SVM with linear or radial basis function
kernels outperformed other classifiers given a large number of training samples. For smaller training
sets, the authors recommend regularized discriminant analysis. Richter et al. [7] introduced a modified
version of discriminant analysis based on PLS. The authors compared their approach to random forests
and SVMs on an airborne hyperspectral dataset recorded over a German forest area and obtained
better results compared to these classifiers. In this study, random forests performed notably worse
than SVMs. To a smaller extent, this is also the result of studies in the Southern Alps conducted by
Dalponte et al. [8]. The authors show that the overall accuracy of tree species identification increased
by the integration of LiDAR data in addition to hyperspectral measurements.

Xia et al. [9] have demonstrated successful usage of an ensemble classifier on hyperspectral
benchmark datasets. In addition, the concept of rotation forests, originally introduced by Rodriguez et
al. [10], was successfully applied using CARTs as base classifiers. Compared to MNF, independent
component analysis (ICA), and local Fisher discriminant analysis (LFDA) as transformation approaches,
the choice of PCA yields the highest accuracy in their studies.

Instead of searching for a favorable transformation of the feature space, certain spectral bands
can be selected based on close correspondence to biochemical traits and physical properties of the
observed plants. This concept led to a variety of general or trait-specific vegetation indices. Lausch
et al. [11] list spectral indices related to greenness and other vitality parameters, mainly using bands
in the spectral range of 450–890 nm. A similar overview can be found in a disease detection report
published by Sankaran et al. [12]. Mutanga et al. [13] investigated the relationship between water
content and spectral variables. Besides known water absorption features located at three different
bands, related spectral indices (NDWI [14], WI [15]) and continuum-removed features were included
in their correlation analysis.

Airborne hyperspectral imaging generates a large amount of data of which usually only a small
fraction is labeled with reference data. Therefore, semi-supervised approaches for classifier training
aim to make use of unlabeled data for hyperspectral image classification as well. Here, the term
semi-supervised is used for all approaches that includes both labeled and unlabeled data in the training
of classifiers to enhance the classification performance. It emphasizes the fact that reference data is still
required, but a much larger dataset contributes to the final classifier.
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Ayerdi et al. [16] describe a data augmentation method as a means to use the information of
unlabeled data. After performing a clustering in the spectral domain, labeled pixels propagate their
label to neighboring unlabeled pixels in the spatial domain if they belong to the same cluster.

Wenzhi et al. [17] introduce a semi-supervised feature extraction algorithm named semi-supervised
local discriminant analysis (SELD). The combination of an unsupervised local linear feature extraction
method with linear discriminant analysis (LDA) results in a projection that separates the different
classes while preserving local neighborhoods. In their evaluation, SELD is compared to different
feature extraction methods such as PCA and LDA and obtained the best results on several datasets
with different classifiers.

Since SVMs are reported to perform well on hyperspectral datasets, an extension to the
semi-supervised case is desirable. Vapnik et al. [18] proposed the idea of transductive SVMs,
which was applied to hyperspectral data later on (e.g., by Bruzzone et al. [19]).

It is common practice to use both spectral and spatial information for classification. For the
problem of tree species classification, a popular approach is to identify individual tree crowns (ITCs),
before starting the classification process. Féret et al. [6] used mean shift clustering to segment ITCs
and evaluated two different classification methods: object-based classification of the mean spectrum
per ITC and majority class assignment based on the decisions per pixel within the ITC. The authors
report an increased accuracy for both approaches compared to pixelwise classification without prior
tree crown segmentation. Dalponte et al. [20] incorporated the assumption that all pixels belonging
to an ITC should have the same label within the training process of a semi-supervised SVM. An
improvement over conventional SVMs was observed, especially if the number of training samples is
small. The problems related to small numbers of training samples can also be effectively addressed by
tensor-based linear and non-linear models as proposed by Makantasis et al. in [21].

Ghamisi et al. [22] proposed a spectral-spatial classifier based on hidden Markov random fields
and SVMs. This fully automatic approach performed better than SVMs on widely used datasets. Li et
al. [23] integrate spectral and spatial information in a robust Bayesian framework, addressing problems
related to noise, the presence of mixed pixels, and small number of training samples. The authors
evaluated their algorithm along with several state-of-the-art methods and achieved notably better
results in terms of accuracy. Zhang et al. [24] introduced a sparse ensemble learning method, which
allows for information sharing between neighboring pixels during the optimization process. While
any classifier can potentially be used, the experiments in this study used CARTs. The authors report
not only better accuracy, but also a lower runtime of the trained ensemble compared to traditional
ensemble methods.

Since the extraction of handcrafted features is time consuming and complex, Makantasis et
al. [25] suggest a convolutional neural network (CNN) to automatically construct high-level features.
The dimensionality of the input data is reduced by a PCA first and then three convolutional layers
hierarchically detect features, which are classified by two fully connected layers in the end. The CNN
outperformed different types of SVMs on benchmark datasets.

Ayerdi et al. [16] suggested a regularization step after classification: each pixel adapts its label to
the majority class in its neighborhood. If rather homogeneous tree species distributions in the area
under consideration can be assumed, this technique leads to more plausible results.

The review of the literature shows a number of promising approaches to classify tree species from
hyperspectral imaging data. It was especially shown that recent advances in image classification with
CNNs are transferable to hyperspectral image classification. However, for any new application and
dataset, several state-of-the-art classifiers and different feature spaces in question must be tested to
prove the suitability and superiority of an approach [26]. Given this requirement, the question arises:
what benefits the combination of the best available classification techniques and turns them into an
ensemble classifier capable of providing for the problem of tree species classification? To answer this
question, we focus on popular voting strategies, which are easy to apply to any group of classifiers.
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2. Materials and Methods

2.1. Datasets

Figure 1 illustrates the acquisition of the datasets. Hyperspectral imaging data has been recorded
during two measurement flights over forests in Saxony Anhalt and Thuringia (Germany) to determine
tree species and investigate oak tree specific biotic stresses. Used cameras were NEO Hyspex VNIR
1600 and NEO Hyspex SWIR 320m-e. Cameras and inertial measurement unit (IMU) Novatel SPAN
CPT were fixed on a stabilized mount (see Figure 1). The recording of the flight path and orientation
of the line scanning camera systems by the IMU is crucial for later alignment of the scanlines into
an image. Experiments reported here are based on Hyspex VNIR 1600 images recorded during the
second flight. The reasons are to minimize potential errors from alignment and interpolation of the
low resolution Hyspex SWIR 320m-e camera to match the grid of the VNIR camera, better weather
conditions during the second flight (no cloud cover), and the recovery of diseased oak trees after
secondary ‘lammas’ shoots [27], which is expected to ease tree species classification.
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Figure 1. Left: Calendar depicts the dates and scopes of the measurement flights. Middle: Measurement
setup for hyperspectral imaging data: (A) Hyspex VNIR 1600, (B) Hyspex SWIR 320m-e, and (C)
Novatel SPAN CPT inertial measurement unit (IMU) mounted on stabilized platform (not depicted).
Images have been recorded at an altitude of ~1000 m above ground level with FOV of 17◦ (VNIR) and
14◦ (SWIR). Right: Trajectory of the flight on 3 August.

Orthorectification of the line scanning data was done with parametric geocoding using the
software PARGE [28]. Radiometric corrections were performed with the software ATCOR-4 [29].

One of the major challenges while classifying tree species is the availability of training data that
represents differences between individual trees of one species, differences between development stages
of individual trees as well as the differences between tree species. In order to account for the variability
and to minimize the necessary fieldwork, existing databases and high-resolution aerial images were
used to determine areas with a single dominant tree species. Figure 2 illustrates the results of the
selection process. As shown, potential error sources such as boundary regions with a mix of tree
species, individual trees and clearings were excluded to compensate for potential minor misalignment
of hyperspectral images as well as discrepancies due to changes between the available historical images
and the current state of the forest cover. Given the locations and shapes of the reference sites, the
training data can be derived directly from the hyperspectral images. From 23 known tree species at the
study sites, a subset of 15 species is represented by sufficiently large reference sites and was therefore
selected to develop and evaluate classifiers. In Table 1, these tree species are listed.
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Figure 2. Identification of reference sites with a dominant tree species using existing information
systems (forest inventory) and validation with existing aerial images. Left image shows a spruce
reference site (1) surrounded by a mix of tree species (2). The right image shows another spruce
reference site (1) with a group of birch and maple (2), large (3) as well as small clearings (4), and other
isolated trees (5). The blue-bordered regions are the finally derived reference sites.

Table 1. List of 23 tree species from existing databases (forest inventory). For 15 tree species (excluded
species marked with *) references sites for the classifier training have been provided forest authorities.
The number of available reference sites and the total area are listed for each species.

Tree Species Pedunculate oak 9 26,046 m2 Littleleaf lime 1 2295 m2

European aspen * Norway spruce 10 20,340 m2 Black pine *
Sycamore maple * Scotch pine 13 37,637 m2 Sessile oak 1 1203 m2

Birch * European white birch 1 1117 m2 Weymouth pine 1 969 m2

Douglas fir 1 1102 m2 Japanese larch * Serbian spruce 1 1630 m2

Oak 10 32,808 m2 European beech 4 15,720 m2 Poplar 2 17,649 m2

European larch 4 8128 m2 Red oak 3 5732 m2 Robinia 1 2439 m2

Ash * Red alder * Sitka spruce*

2.2. Features

As emphasized in the introduction, the selection of an appropriate feature space is crucial for
successful classification. By operating in different feature spaces, diversity among the classifiers should
increase in many cases. This is a crucial concept in the design of ensemble classifiers [30]. In this study,
15 different feature spaces have been selected to investigate these dependencies between feature spaces
and classifiers in terms of improvements in the classification performance. Our choice of feature spaces
is explained below.

The measured and preprocessed spectral data itself is a powerful data source for separation of
image pixels into classes. Hence, the first feature space is the raw 160-dimensional reflectance data
vector per image pixel.

A vector containing a number of spectral indices (calculated based on the reflectance spectra) is
used as a second feature space. As presented in the introduction, these indices have been developed
to correlate with selected physiological parameters of vegetation, vegetation health, and vegetation
nutrition. The following indices have been chosen and are used as features: DI1, GNDVI, MCARI,
NDVI, PRI, and WI (see Table 2 for definitions and references).

Classification based on raw spectral data, where individual image bands are simply treated as
features as well as using spectral indices as features, represent the most common approaches to the
analysis of hyperspectral imaging data. Here, both approaches serve just as a baseline reference for the
performance of tree species classification.
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Table 2. Selected spectral indices. The values of the indices are combined into a six-dimensional feature
vector and used for classification of tree species. The abbreviation R800 denotes reflectance value in
band with central wavelength of 800 nm.

Spectral Indices Formulas References

DI1 R800 − R550 Lausch et al. (2013)
GNDVI (R780 − R550)/(R780 + R550) Gitelson et al. (1996)
MCARI [(R700 − R670) − 0.2*(R700 − R550)]*R700/R670 Haboudane et al. (2004)
NDVI (R800 − R670)/(R800 + R670) Rouse et al. (1974)

PRI (R531 − R570)/(R531 + R570) Gamon et al. (1992)
WI R900/R970 Penuelas et al. (1997)

The high dimensionality of hyperspectral data imposes a number of problems, which are
summarized as the curse of dimensionality in the literature [31]. Therefore, we included approaches
for reduction of dimensionality prior to classifier training. Principal component analysis (PCA) is
performed to calculate a projection into an orthogonal low dimensional subspace, which covers most
of the variation of the original high dimensional spectral dataset. We chose 5 and 14 as the numbers of
dimensions in the low dimensional representation. This choice is motivated by the number of most
prominent tree species in the observed area. Using reference sites with 15 different tree species, 14 is the
number of required dimensions for LDA. On the other hand, the choice of five dimensions is motivated
by PCA, where the five largest Eigenvalues explain 99.5% of the variation within the spectral dataset.

Multi-class linear discriminant analysis (MCLDA) aims to generate a low dimensional
representation, where a single dimension is a projection allowing a good discrimination between
elements of one class and all the others. As mentioned above, 5 and 14 dimensions are used again.

SELD was included as a semi-supervised feature extraction technique. SELD combines the
supervised method of LDA with the unsupervised method of local linear embedding (LLE). LLE
represents the instances in a graph structure and computes a projection that preserves the local
neighborhood of instances in the feature space. The combination of supervised and unsupervised
feature extraction enables SELD to find features that maximize the class separation and preserve local
neighborhoods in the feature space. Therefore, SELD depends on two parameters: the number of
instances to consider for local neighborhoods and the number of extracted features.

Table 3 gives an overview of the above listed feature spaces. In addition to the pixelwise
transformation of the spectral data into these representations, so-called spatial-spectral features are
derived. Within the predefined square image blocks with a side length of s = 2r + 1, the statistical
measures mean, standard deviation and homogeneity are calculated for each feature and used as new
features, instead. This approach combines the information from the low dimensional representations
of the spectral data with its local spatial distribution. We set r = 5 which corresponds to a side length
4.4 m given the campaigns ground sampling distance of 0.4 m per pixel. This size matches the area of
typical tree crowns of boreal trees within the recorded hyperspectral images.

Table 3. Overview of the 15 selected feature spaces. First row: pixel-based feature spaces, Second
row: spatial-spectral feature spaces. Due to the high number of channels of the hyperspectral
images, the calculation of spatial features was performed for images of reduced dimensionality. PCA:
principal component analysis; MCLDA: multi-class linear discriminant analysis; SELD: supervised
local discriminant analysis.

Reflectance
Spectra Indices PCA

5-dim
PCA

14-dim
MCLDA

5-dim
MCLDA
14-dim

SELD
5-dim

SELD
14-dim

Pixel · · · · · · · ·

Spatial · · · · · · ·
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2.3. Classifiers

In addition to the different feature spaces, a number of classifiers were selected to find the best
classifier/feature space combination for the task of tree species classification.

Differently parameterized random forests, rotation forests, SVMs, and a CNN provide
state-of-the-art classification results as well as a potentially diverse pool of classifiers for integration
into an ensemble classifier.

Random forests are a realization of the concept of bootstrap-aggregation (bagging) with decision
trees [32]. As single decision trees tend to overfit, the bagging method creates several bootstrapped
sample sets from the original data and trains one tree on each sample set. The resulting ensemble of
trees can classify a new instance via majority voting. An important parameter here is the number of
trees to be trained. This classifier was chosen because it is a standard approach in literature, when
dealing with the classification of tree species from hyperspectral data.

Rotation forests are an advanced form of random forests and were proposed by Rodriguez et al.
in 2006 [10]. We decided to test this classifier because of the good results for hyperspectral data as
previously reported [9]. As in random forests, the trees are trained on bootstrapped sample sets of the
original data. The difference is that the bootstrapping is not performed on a subset of the original data,
but on the whole data set with only a subset of features. The feature space is divided into k subsets.
For each subset, all instances of randomly drawn classes are deleted from the training data and a
bootstrapped sample set with a size of 75% of the original data is created. PCA is performed on each
sample set and the resulting coefficient matrices are merged into a single one. This is equivalent to k
axis rotations. A decision tree is then trained on the whole PCA-transformed data set. This procedure
is repeated for each tree in the ensemble. The two parameters this classifier provides are the number of
trees in the ensemble and the number of subsets the feature space is divided into.

SVMs are another standard classification and regression approach. We therefore chose to include
them in our experiments. An SVM tries to fit a hyperplane that separates two classes while maximizing
the margin between the instances and the plane. The plane can then be described by the instances
nearest to it. These instances are called support vectors. To classify more than two classes, one can
either train an SVM for each pair of classes (1 versus 1) or each class against the rest (1 versus All).
The final decision is then found by majority voting (1 versus 1) or by taking the result of the classifier
with the highest confidence (1 versus All). In order to classify not linearly separable classes, the
data can be transformed into a higher dimensional space where it is linearly separable. To make this
method computable in appropriate time one can use the so-called kernel trick, where the kernel is a
type of nonlinear transformation. As the number of adjustable parameters for an SVM is very large,
we only chose to vary the kernel (linear or polynomial) and whether to use 1 versus 1 or 1 versus
All. We tested several SVM implementations ranging from standard MATLAB classes to native C
libraries connected to MATLAB via the MEX interface. We settled for the LibLinear library [33] from
the National University of Taiwan for 1 versus All and SVMlin [34] by Vikas Sindhwani for 1 versus 1,
both specializing in linear SVM solving. Preliminary tests revealed that polynomial SVMs did not
converge in appropriate time and we therefore abandoned this kernel from further investigation.

Deep neural networks are a recent hot topic in machine learning. As Makantasis et al. [25] were
able to produce good results on hyperspectral data with convolutional deep neural networks, we
added this classification method to our experimental setup. Neural networks are inspired by the
structure of the human brain to learn classification and regression tasks. A neural network consists
of several layers of perceptron units that are interconnected. Via backpropagation, this network
can learn from examples. A deep neural network has significantly more layers than a conventional
network. Deep convolutional networks use filters that are shifted over the input image to generate
new and more high-level features in each layer. It is not possible to test or even enumerate all possible
network structures and parameter configurations. We therefore employed the network structure
shown in Figure 3, which is based on the one used in the original paper [25]. The network starts with a
convolutional layer containing C1 = 3F trainable filters (block size 5 × 5 pixels), where F denotes the
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number of features. The second convolutional layer then contains C2 = 3C1 trainable filters (block size
5 × 5). The output of this layer is then fed to a fully connected network with a hidden layer of size
C3 = 6F. Additionally, we added the option to use a max-pooling layer in between the convolution
layers and an option to apply a specified dropout rate to the fully connected network part. A pooling
layer applies a filter mask for each pixel incorporating its surroundings. Common filters are mean
or maximum filter. A dropout layer randomly omits a perceptron for the next training instance with
a certain probability to avoid early convergence and to improve generalization. The deep learning
library MatConvNet [35] provided all functions needed to build our networks.
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2.4. Fusion Algorithms

Equations (1) and (2) describe the applied framework for fusion of different base classifier results.
Given a feature vector xi, its label l = ỹ(xi) is calculated as follows.

Using Equation (1), a score sl is calculated for each class label from the results of the N base
classifiers. For each label in question, the score is a sum of weights ω for the corresponding base
classifiers. The indicator function I equals one, if its argument is true and zero, if not. Hence, only the
weights of base classifiers with output label L are included.

sl(xi) =
N∑

j=1

ω jI(y j(xi) = l) (1)

ỹ(xi) = argmax
l

sl(xi) (2)

Equation (2) simply denotes the selection of the label with the highest score. Different voting
strategies are implemented by variation of the weights ω.

Majority voting is defined by setting ∀i, j : ωi = ω j. If a majority of the N base classifiers assigns
the same label, the corresponding score sL is maximized. In our study, majority voting serves as a
baseline for the performance of classifier fusion as it is a commonly used method.

Presidential voting is defined by setting ωi = N − 1.5 and ∀ j,i : ω j = 1, where the index i denotes
a prior chosen classifier, e.g., the one with the best overall accuracy. Due to this constraint, the label
assigned by the chosen classifier determines the ensemble result in most cases. Only if all other
classifiers agree on the same divergent result, a different label is assigned.

Accuracy weighted voting uses a classification accuracy estimate to weight the different classifiers.
According to the definitions in [35], the average accuracy is calculated from the elements of the
confusion matrix C of each classifier. A subset of the reference data is used to determine C and to
estimate the weights ω.
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Hence, for the j-th classifier the weight ω j is defined with Equation (3) as the average accuracy [36]
which measures the average per-class effectiveness of a classifier.

ω j =

∑L
i=1

tpi+tni
tpi+tni+ f pi+ f ni

L
(3)

The L× L confusion matrix C is transformed into L 2× 2 confusion matrices to obtain the required
true positive tpi, true negative tni, false positive f pi, and false negative f ni values.

For precision weighted voting, a similar approach to calculate the weights is used. The precision
measure is calculated with Equation (4) as follows

ω j =

∑L
i=1 tpi∑L

i=1(tpi + f pi)
(4)

This fusion framework is a means to investigate how different popular approaches to weight a
classifier influence the quality of the joint decision-making of an ensemble classifier.

3. Results

Tables 4–7 summarize the results of SVM, random forest, rotation forest, and CNN classifiers.
Each table contains the mean accuracy values and standard deviations obtained with multiple runs of
holdout testing. In the tables, for each feature space the best results per table row are emphasized as
bold text. In addition, the feature space with the best overall classification accuracy is emphasized
and the corresponding accuracy has been underlined. In each run, a complete reference site with a
single dominant tree species was only used for testing the classifier, which was trained with data from
the remaining reference sites. See Table 1 for the total number of reference sites and areas. If only a
single reference site is available it is divided into non-overlapping sites for training and validation of
equal size. Each row corresponds to one of the selected feature spaces. We discriminate between the
results of pixelwise and spatial classification, where statistical measures (mean, standard deviation,
homogeneity) of the original features are used as features instead.

Table 4. Overall accuracies and standard deviations for Multi-Class-SVM classifier with linear kernel
using a 1-vs.-all strategy depending on the choice of feature space (1st column), pixelwise (2nd column)
or with inclusion of spatial information from surrounding pixels (3rd column). The best performance
within each row and the best method are emphasized with bold font to highlight the better performance
of the spatial approaches.

Feature Space Pixelwise Spatial

Reflectances (160 dim) 0.227 ± 0.075 -
Indices (7 dim) 0.097 ± 0.061 0.098 ± 0.04

PCA (5 dim) 0.231 ± 0.062 0.195 ± 0.082
PCA (14 dim) 0.26 ± 0.114 0.273 ± 0.113

MCLDA (5 dim) 0.428 ± 0.049 0.616 ± 0.064
MCLDA (14 dim) 0.459 ± 0.033 0.651 ± 0.08

SELD (5 dim) 0.398 ± 0.1 0.421 ± 0.071
SELD (14 dim) 0.415 ± 0.097 0.571 ± 0.053

We report results for different ensemble sizes of random forest (Table 5) and rotation forest (Table 6)
classifiers separately to assess the impact of this parameter and the trade-off for using a compact
ensemble of 20 decision trees instead of a large ensemble of 100 decision trees.
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Table 5. Overall accuracies and standard deviations for the random forest classifier with different choices
of feature space (1st column) and varying complexity of models (# trees) for pixelwise classification
and with consideration of spatial information from surrounding pixels. The best performance within
each row and the best method are emphasized with bold font to highlight the better performance of the
spatial approaches.

Pixelwise Spatial Pixelwise Spatial

# trees 20 20 100 100

Reflectances 0.435 ± 0.055 - 0.447 ± 0.057 -
Indices 0.352 ± 0.032 0.622 ± 0.039 0.361 ± 0.034 0.633 ± 0.040

PCA (5 dim) 0.357 ± 0.029 0.582 ± 0.056 0.366 ± 0.031 0.594 ± 0.085
PCA (14 dim) 0.441 ± 0.05 0.553 ± 0.088 0.452 ± 0.05 0.572 ± 0.053

MCLDA (5 dim) 0.487 ± 0.04 0.642 ± 0.055 0.495 ± 0.042 0.653 ± 0.055
MCLDA (14 dim) 0.522 ± 0.038 0.663 ± 0.052 0.533 ± 0.039 0.684 ± 0.049

SELD (5 dim) 0.367 ± 0.027 0.621 ± 0.03 0.377 ± 0.029 0.63 ± 0.03
SELD (14 dim) 0.486 ± 0.041 0.622 ± 0.06 0.499 ± 0.042 0.639 ± 0.059

Table 6. Overall accuracies and standard deviations for the Rotation Forest classifier with different
choices of feature space (first column) and varying complexity of models (number of trees) for pixelwise
classification and with consideration of spatial information from surrounding pixels (neighborhood).
The best performance within each row and the best method are emphasized with bold font to highlight
the better performance of the spatial approaches.

Pixelwise Spatial Pixelwise Spatial

# trees 20 20 100 100

Reflectances 0.501 ± 0.043 - 0.517 ± 0.043 -
Indices 0.33 ± 0.025 0.609 ± 0.039 0.331 ± 0.028 0.619 ± 0.038

PCA (5 dim) 0.342 ± 0.031 0.561 ± 0.053 0.347 ± 0.032 0.575 ± 0.055
PCA (14 dim) 0.442 ± 0.05 0.525 ± 0.078 0.45 ± 0.052 0.548 ± 0.081

MCLDA (5 dim) 0.467 ± 0.042 0.658 ± 0.048 0.472 ± 0.042 0.665 ± 0.047
MCLDA (14 dim) 0.522 ± 0.038 0.683 ± 0.044 0.539 ± 0.04 0.705 ± 0.044

SELD (5 dim) 0.345 ± 0.031 0.615 ± 0.033 0.351 ± 0.03 0.624 ± 0.033
SELD (14 dim) 0.487 ± 0.041 0.615 ± 0.059 0.498 ± 0.042 0.634 ± 0.058

Transformation of the reflectance data with MCLDA into a low dimensional representation yields
the best results for all tested classifiers in separating between the 15 tree species. Moreover, inclusion
of the spectral-spatial features significantly improves classification accuracy compared to pixelwise
classification of spectral features in most cases. The best individual classifier was the CNN (see Table 7)
with an overall accuracy of 0.732 ± 0.086, followed by a rotation forest of 100 decision trees with an
overall accuracy of 0.705 ± 0.044. The CNN intrinsically combines spectral and spatial information.
Hence, the CNN operating on raw or preprocessed hyperspectral image data achieved a similar
performance to fandom rorests and SVMs, which make use of handcrafted spectral and spatial-spectral
features. However, even the CNN the initial transformation with MCLDA was crucial to achieve the
gain in overall accuracy.

The results of combining a small number of base classifiers into a hybrid ensemble are summarized
in Figure 4. The diagram shows the accuracies and standard deviations of individual base classifiers
together with results of different voting strategies. An accuracy gain of 5.1% was achieved by precision
weighted voting compared to the best individual classifier. It significantly outperformed the three
other tested voting methods.

To better understand these improvements, Figure 5 shows net diagrams of class-wise performance
measures precision and recall. The subplots A–C show the performances of the included base classifiers,
while subplot D represents the performance of the fusion framework with precision weighted voting
using Equation (4) to calculate the weights.
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Table 7. Overall accuracies and standard deviations for the CNN classifier. The gaps in the table reflect
the stepwise approach to identify the best CNN configuration. First, we identified a best performing
image transformation, second we evaluated different promising modifications of the chosen CNN. Bold
setting and underlining highlight the parameter combination with best overall accuracy.

Pixelwise
Dropout = 0
no Pooling

Pixelwise
Dropout = 0
with Pooling

Pixelwise
Dropout = 0.5

no Pooling

Pixelwise
Dropout = 0.5
with Pooling

Spatial
Dropout = 0
no Pooling

Indices 0.485 ± 0.054 - - - -
PCA (5 dim) 0.443 ± 0.072 - - - -

PCA (14 dim) 0.439 ± 0.086 - - - -
MCLDA (5 dim) 0.589 ± 0.074 - - - -

MCLDA (14 dim) 0.665 ± 0.072 0.656 ± 0.077 0.675 ± 0.08 0.664 ± 0.087 0.732 ± 0.086
SELD (5 dim) 0.47 ± 0.058 - - - -

SELD (14 dim) 0.412 ± 0.058 - - - -
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The expected general improvement of class-wise precision values is shown by the more convex
shape and the much larger area within the precision curve in subplot D. The recall value of the hybrid
ensemble is still dominated by the best base classifier, the CNN (compare subplots B and D, dotted
curves). However, a class0wise direct comparison reveals a few minor differences. For some tree
species the recall values increase (e.g., poplar, robinia, oak), while for a few others (e.g., larch, Douglas
dir) they decrease slightly.

4. Discussion

The need for a reliable tree species classification motivated our investigation of several
state-of-the-art classifiers as well as their combination into an ensemble classifier. This demand
has led to the development of a processing pipeline, where the positions of suitable training sites with
one dominant tree species are obtained from existing databases of the forest authorities. Hence, it was
possible to create a large training dataset covering 15 tree species without additional groundwork. The
alternative, the assessment of tree species of individual trees in mixed forests by experts to create a
reference database, either from ground or from aerial stereo imagery is expensive, time-consuming,
and error-prone.

Although, we developed a promising framework for classifier fusion and did careful validation,
the method was not validated against ground truth data from real mixed forests. This is due to the fact
that a large-scale validation would require the same efforts to obtain the reference data as mentioned
above for the classifier training. However, the method was successfully applied to classify the complete
forest in our hyperspectral dataset. This tree species map can then be used to select a number of
individual trees and to validate the assigned class label in the field.

The performance of classification models based on this kind of training data was extensively tested
with a combination of cross-validation and hold-out-testing. Compared to standard cross-validation
not only a subset of randomly chosen pixels or patches were excluded from training for testing, but
complete areas. This allowed us to study the performances on independent data. However, the
spectral data belongs to a single measurement flight and has undergone the same preprocessing (e.g.,
radiometric and atmospheric corrections). Hence, the trained classifiers are adapted to the development
stages of the trees and the conditions on the day of flight. To our best knowledge, the proposed method
to acquire training data directly from the hyperspectral images at predefined locations with dominant
tree species is the best way to learn classification models for future flights. Otherwise, many test flights
and expenses are required to acquire training data that cover all possible appearances of leaves and
needles beforehand. Locations with a single dominant tree species can be determined by an expert
using existing databases and aerial images. For any region, this could be done once stored in a database
and then be used for future measurement flights.

The per-class assessment of the classification performance of the fusion approach shows differences
depending on the tree species. The net diagram in Figure 5 reveals that the precision of the class
assignment was improved to large extends, but for some tree species the fraction of successfully
detected trees remains low. However, compared to the state-of-the-art CNN a significant loss is only
observed for Douglas firs. On the other hand, the rate of true Douglas firs among the reported ones
increased significantly. There are different reasons, which possibly explain this behavior. First, the
dataset contains a number of tree species with only subtle differences like oaks, sessile oaks, red oaks,
and pedunculate oaks. While this information is of interest for the forest authorities and motivates
the use of hyperspectral imaging to detect subtle differences, it might be better to take a hierarchical
approach, which first detects all oaks and then tries to discriminate between oak species. Second, some
of the tree species are more common than others. We account for this by balancing the dataset to have
an equal number of samples for all tree species. However, the number of reference sites for rare species
is also low and the natural variation between trees is better covered for frequent tree species. Here, our
strict validation with holding back complete reference sites for testing may penalize the rare species.
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With Scotch pines, Norway spruces, oaks, and beeches being the most frequent tree species
in Saxony-Anhalt as well as Thuringia the results show, that our approach for analysis of airborne
hyperspectral images already provides a useful tool to support forest inventory and to detect oak trees
for subsequent analysis of vitality parameters. Moreover, the proposed fusion framework allows to
easily add any other classifier.

5. Conclusions

In this paper, we applied a general and easy-to-use fusion framework based on voting to the
problem of tree species classification from hyperspectral aerial images. The proposed hybrid multiple
classifier system enhances the results of a state-of-the-art CNN with two random forest classifiers
of different size and operating in different feature spaces. It was shown that this approach yields a
significant gain in overall classification accuracy. This improvement results from a gain in precision of
the class assignments by weighted fusion of the CNN and random forest results by an estimate of their
individual precisions. The comparison to other popular voting techniques showed the superiority
of the approach. The results provide evidence that even the best available classifiers for image data
analysis can be further improved by incorporating their decisions into a multiple classifier system.
MCLDA performs best among the different dimensionality reduction methods for hyperspectral
imaging data. Even the CNN performance is enhanced by using MCLDA transformed images instead
of the hyperspectral images as input data.
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