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Abstract: Post-fire recovery trajectories in ponderosa pine (Pinus ponderosa Laws.) forests of the
southwestern United States are increasingly shifting away from pre-burn vegetation communities.
This study investigated whether phenological metrics derived from a multi-decade remotely sensed
imagery time-series could differentiate among grass, evergreen shrub, deciduous, or conifer-dominated
replacement pathways. We focused on 10 fires that burned ponderosa pine forests in Arizona and
New Mexico, USA before the year 2000. A total of 29 sites with discernable post-fire recovery
signals were selected within high-severity burn areas. At each site, we used Google Earth Engine to
derive time-series of normalized difference vegetation index (NDVI) signals from Landsat Thematic
Mapper, Enhanced Thematic Mapper Plus, and Operational Land Imager data from 1984 to 2017. We
aggregated values to 8- and 16-day intervals, fit Savitzky–Golay filters to each sequence, and extracted
annual phenology metrics of amplitude, base value, peak value, and timing of peak value in the
TIMESAT analysis package. Results showed that relative to post-fire conditions, pre-burn ponderosa
pine forests exhibit significantly lower mean NDVI amplitude (0.14 vs. 0.21), higher mean base
NDVI (0.47 vs. 0.22), higher mean peak NDVI (0.60 vs. 0.43), and later mean peak NDVI (day of
year 277 vs. 237). Vegetation succession pathways exhibit distinct phenometric characteristics as
early as year 5 (amplitude) and as late as year 20 (timing of peak NDVI). This study confirms the
feasibility of leveraging phenology metrics derived from long-term imagery time-series to identify
and monitor ecological outcomes. This information may be of benefit to land resource managers who
seek indicators of future landscape compositions to inform management strategies.

Keywords: phenology; Pinus ponderosa; drylands; NDVI; wildfires; vegetation recovery; Google
Earth Engine

1. Introduction

In the dryland ponderosa pine (Pinus ponderosa Laws.) forests of the southwestern United States,
the primary disturbance regime—fire—is amplified by warming temperatures [1–3] and a legacy of
human forest use activities and management policies [4,5]. Prior to Euro-American settlement in the
mid to late 1800s, the characteristic fire regime in this ecosystem consisted of frequent, low-severity
surface fires that maintained landscape mosaics of multi-aged ponderosa stands interspersed with open
meadows [6–11]. More than a century of fire suppression efforts, extractive forest use, and livestock
grazing have altered forest structure dramatically [8,12,13]. Contemporary ponderosa pine ecosystems
typically feature dense, unbroken tracts of even-aged pine with a thick understory of shade-tolerant
species [9,12,14]. The abundance of dry ladder fuels that promote destructive crown fires [10,15] has
primed wildfires to exceed historical norms of severity and extent [12]. These conditions coincide
with pronounced warming trends throughout the southwestern US [16,17] that can exacerbate fire
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potential [2,3,18,19]. Currently, fire seasons in the western US tend to start earlier and consume more
acreage [3] and feature greater numbers of large [20,21] and stand-replacing fires [22].

Larger proportions of southwestern forests are recovering from high-severity fires during periods
of warmer and drier climatic conditions [23], which complicates the nature of forest recovery. Climatic
variability shapes the pace and character of ponderosa pine forest regeneration over extended time
periods [14,23]. Precipitation and/or temperature have been linked to the survival of individual
fire-damaged trees [24], the relative proportions of native and exotic vegetation species [25], and the
germination and survival of tree seedlings [14,26]. Ponderosa pine regrowth depends on the periodic
concurrence of viable seed availability with sufficient and timely precipitation [27]. The repeated
failure of one or both conditions can deflect recovery trajectories following high-severity fires toward
grassland, shrubland, or deciduous replacements of the formerly coniferous ecosystems [23,28–32]

The potential magnitude of ecological conversion across the southwestern United States has led to
heightened interest in understanding and quantifying the direction of change in post-fire communities.
Remote-sensing analyses of post-fire dynamics are routinely based on multispectral vegetation indices
such as the normalized difference vegetation index (NDVI), which is the ratio of near-infrared (NIR)
and red band reflectance (NDVI = (NIR− red)/(NIR + red)) [33]. NDVI is sensitive to the photosynthetic
capacity of vegetation and is linked to parameters such as greenness and primary production [34].
Imagery-based studies of post-fire regeneration have largely focused on the recovery of post-fire
vegetation biomass to pre-fire reference levels (e.g., [35–38]) and tend to discard seasonal variations
that obscure trends in biomass accumulation (e.g., [38,39]).

Few studies have specifically targeted indices of the annually recurring dynamics of vegetation
growth and development (i.e., vegetation phenology) to extract information about the nature of
post-burn recovery dynamics. Exceptions are [40], which compared eight years of annual phenological
metrics (phenometrics) derived from Moderate Resolution Imaging Spectroradiometer (MODIS)
time-series over unburned and post-burn sites in a ponderosa pine forest in Arizona, USA. Analyzed
phenometrics included the start of season, end of season, lowest and highest seasonal NDVI values
(“base” and “peak”, respectively), timing of peak value, and integrated measures of vegetation
productivity. The study found earlier timing of peak greenness and lower base and peak values in
burned versus unburned sites. A subsequent study [41] used a similar suite of phenometrics derived
from a 16-day composite MODIS NDVI time-series to contrast unburned and post-burn vegetation
dynamics across dryland forest and woodland sites in Spain, Israel, and the United States over six
years. Phenometrics varied significantly among the overall sites, but few significant post-fire trends
were observed at individual burn areas. There was also no indication that phenometrics were detecting
an apparent pine-to-shrub conversion during the analysis time frame.

We hypothesize that a longer period of analysis can allow phenological distinctions among the
major vegetative components of successional tracks in ponderosa pine systems—grass, evergreen
shrub, deciduous, and coniferous—to be exploited for tracking landscape compositional changes and
overall community recovery. In mixed woody-herbaceous systems, herbaceous species tend to react
more quickly to moisture inputs and intermittent climatic extremes than woody species, which have
comparatively delayed or muted responses [42,43]. Woody plant cover has also been shown to have
explanatory power for NDVI phenometrics in high-elevation dryland systems [44]. The phenology of
different species can be exploited via remote sensing to gain an understanding of landscape vegetation
composition [45,46], particularly since ponderosa pine ecosystems can display later seasonal peak
NDVI values in satellite time-series [47].

The goal of this study is to investigate whether long-term phenology time-series can provide
information about the nature of community recovery in post-burn ponderosa pine forests. To that end,
we examine vegetation greenness metrics extracted from Landsat imagery in areas of known burn and
recovery conditions. We rely on the Landsat series of satellites because of the program’s unparalleled
length of acquisition [48], the suitability of the spatial resolution (30 m) for monitoring vegetation
dynamics in dryland environments [49], and the open data policy of the imagery distribution and
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use [50]. We focus on sites that we determined to have experienced high-severity, stand-replacing fires
and are subsequently following successional trajectories manifested as predominantly grass, evergreen
shrub, deciduous, or coniferous vegetation types. Our objectives are to explore the feasibility of linking
phenology metrics to community recovery in order to identify (1) if post-fire recovery trajectories that
lead to different ecological outcomes display consistent phenological patterns; and (2) whether the
phenological patterns of different recovery pathways are sufficiently distinct to allow the differentiation
of landscape-wide recovery trends.

2. Materials and Methods

2.1. Study Area

The study area comprised an assemblage of stand-replacing fires that burned in predominantly
ponderosa pine forests in the southwestern states of Arizona (AZ) and New Mexico (NM), USA
(Figure 1). These states contain expansive tracts of ponderosa pine that have a history of commercial
logging that dates back to the late 1880s [27,51]. In this region, ponderosa pine forests occupy mid-range
elevations (1700–2600 m) [27]. Downslope, they are typically bordered by the lowest, warmest forested
zone in the United States, pinyon-juniper (Pinus edulis-Juniperus osteosperma) woodlands [52,53].
Upslope, ponderosa pine yields to more shade-tolerant Rocky Mountain Douglas fir (Pseudotsuga
menziesii var. glauca) [53,54]. Despite these commonalities, ponderosa pine ecosystems throughout the
Southwest exhibit highly heterogeneous stand characteristics [10].
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(808 ha), burned in areas suitable for ponderosa pine or other high-elevation forests according to the
LANDFIRE (http://www.landfire.gov/index.php) Environmental Site Potential layer [57], and had
areas of high-severity burn. MTBS assessments of burn severity are derived from differenced
Normalized Burn Ratio (dNBR) images, which are calculated from the pre- and post-fire contrast of
Landsat near-infrared and shortwave infrared band ratios [55]. dNBR images serve as the basis for
classification of a fire area into discrete burn severity categories that describe the degree of ecological
impact [58,59]. To obtain as lengthy a satellite-documented series as possible for each recovery period,
we preferentially chose fires from 1982 to 1996 to coincide with the early Landsat Thematic Mapper
(TM) sensor chronology. We added three fires outside that time period: La Mesa, which burned a
region of the Jemez mountains of New Mexico in 1977; Rodeo-Chediski, which burned 186,873 hectares
in east-central Arizona in 2002; and Las Conchas, which burned across the majority of the La Mesa
area in 2011. We additionally chose an area adjacent to La Mesa with no documented contemporary
wildfires to function as a reference for the phenology of mature, intact ponderosa pine forest, similar to
the approach in [40,41] (Table 1).

Table 1. Characteristics of selected sample sites of fires in Arizona (AZ) and New Mexico (NM), USA.
Reference points are located in an area with no contemporary burn history.

Fire/Area State Date
Burned

Area Burned
(ha)

Sample
Point

Latitude
(◦N)

Longitude
(◦W)

Assessed
Recovery
Trajectory

Bell NM May 1993 5235 1 33.394 108.167 Forest
2 33.393 108.165 Forest
3 33.398 108.154 Deciduous
4 33.435 108.228 Forest

Blackhawk NM May 1993 1795 1 33.311 107.833 Deciduous
Dude AZ June 1990 10,150 1 34.381 111.132 Forest

2 34.378 111.136 Shrub
3 34.400 111.093 Shrub
4 34.397 111.093 Grass
5 34.382 111.073 Forest
6 34.397 111.090 Forest

La Mesa NM June 1977 6249 1 35.825 106.314 Shrub
2 35.809 106.374 Forest
3 35.807 106.378 Forest
4 35.805 106.377 Forest
5 35.807 106.389 Forest
6 35.828 106.307 Shrub
7 35.794 106.329 Grass

Las Conchas NM June 2011 61,057 1 35.819 106.390 Grass
2 35.824 106.394 Grass

Pot AZ June 1996 2208 1 34.601 111.377 Grass
2 34.607 111.369 Grass

Pot NM June 1994 12,241 1 33.665 107.438 Deciduous
2 33.661 107.434 Deciduous
3 33.668 107.433 Grass

Rattlesnake AZ June 1994 10,213 1 31.818 109.247 Grass
2 31.821 109.254 Deciduous
3 31.839 109.274 Grass

Rincon AZ June 1994 6261 1 32.229 110.534 Forest
Rodeo-Chediski AZ June 2002 186,873 1 34.315 110.578 Forest

2 34.298 110.679 Forest
3 34.358 110.568 Forest

Slim AZ July 1987 1426 1 34.436 110.863 Shrub
South NM April 1995 4417 1 33.383 108.243 Shrub

Reference NM N/A N/A 1 35.655 106.606 Forest
2 35.639 106.628 Forest

Within the perimeters of candidate fires, we relied on time-series of high-resolution data available
through Google Earth (GE) to identify locations that satisfied specific criteria: the presence of dense,

http://www.landfire.gov/index.php
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mature ponderosa pine canopy prior to the fire; near-total tree mortality; and distinct regeneration
ground cover types that could be used to indicate the general landscape evolution. The imagery available
through GE within the study area is an opportunistic collection of government and commercial aerial
and satellite images [59]. The spatial resolution of the imagery does not allow for species verification,
but can be adequate for distinguishing broad landcover vegetation categories [45,60]. We relied on the
GE reference imagery to classify and group sites by perceived regrowth type: grass, shrub, deciduous,
or coniferous/pine (hereafter “forest”, to indicate progression towards the pre-fire composition). Our
distinction between “shrub” and “deciduous” is based on the seasonal expression of the dominant
vegetation group. We define “shrub” as comprising scattered, low-stature, evergreen vegetation
within an herbaceous or barren matrix; “deciduous” may exhibit similar spatial arrangement and
structure but is clearly senescent in non-growing-season images. The primary goal was to choose sites
representing the range of apparent successional vegetation outcomes. Qualified sites were selected
from homogeneous patches (a minimum of 60 m diameter) to lessen the possibility of incorporating
spectral information from adjacent Landsat pixels. Due to challenges in meeting these criteria, the final
compilation of monitoring sites was not evenly distributed among fires. In total, we examined 29 sites
from 10 pre-2000 fires, and five sites from two post-2000 fires (Table 1).

2.3. Imagery Time-Series

We constructed a time-series of moderate-resolution imagery for each sample site by assembling
all available 30-m Landsat 4 and Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic
Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) surface reflectance datasets from
22 August 1982 to 31 December 2017 over the areas of interest. Pixels contaminated by clouds, cloud
shadow, or snow were identified using the pixel quality assurance band and removed. We calculated
the normalized difference vegetation index (NDVI) for each scene. We chose NDVI rather than other
vegetation indices because of the length of its application in ecological studies and the unlikelihood of
the signal saturating over the relatively sparse semiarid vegetation characteristic of this area [61]. We
conducted all Landsat imagery processing through the JavaScript application programming interface
in Google Earth Engine (GEE) [62].

The assembly of a multi-decade time-series of imagery obtained from different satellites raises
the issue of reflectance consistency among sensors and across time. Landsat 4 and 5 TM bandwidth
and wavelength configurations are identical, and Landsat 5 TM and Landsat 7 ETM+ data have been
shown to have high consistency [63]. The collection parameters of the ETM+ and OLI sensors differ
slightly in their specifications [64]. We tested the offsets suggested by [65] to adjust OLI NDVI values to
match those derived by the other sensors. Comparison of results with and without the applied offsets
indicated little variation, possibly because the metrics were sampled from a curve fit to the original
data that filter out minor deviations. We sampled the complete Landsat time-series of unadjusted
values at each site and exported the results to an ASCII file for subsequent processing.

2.4. Time-Series Processing

We manipulated NDVI data files in the open-source statistical package R (version 3.5.1) [66] to
conform to the data format requirements of the phenology analysis package TIMESAT (version 3.2) [67,
68], which includes regular time intervals for each year and few missing or spurious values. To comply
with the requirement of consistent time periods, we binned NDVI values into 8- and 16-day intervals
for each year starting from 1 January. We generated dual time periods of 8 and 16 days because the
simultaneous operation of two Landsat satellites during portions of the study period (i.e., Landsat 4
and 5, 1984–1993; Landsat 5 and 7, 1999–2012; Landsat 7 and 8, 2013–2017) yields the potential for
more frequent imagery acquisition than the 16-day revisit cycle of a single sensor, particularly if the
sites of interest fall within areas of scene overlap. The 8-day interval is consistent with the higher
temporal resolution possible under those circumstances, which could potentially capture the timing
of ephemeral or highly dynamic green-up events more precisely. The 16-day interval represents the
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idealized acquisition of imagery by a single Landsat sensor under cloud-free conditions and is more
typical of the data acquisition frequency throughout the entire period of Landsat operation. Barring
dropouts due to atmospheric contamination, imagery collected over a 16-day interval from 1984 to
2017 includes 782 possible observations from which to derive phenometrics. Analysis of data from
both period lengths provides the opportunity to compare their relative advantages for distinguishing
the rapid changes in phenology that can characterize herbaceous species in dryland areas. Additional
data preprocessing included averaging multiple values recorded within a single 8- or 16-day period
and the removal of outlier values via a smoothing technique. Missing values were linearly interpolated
to satisfy TIMESAT requirements of a consistent record of viable data.

To reduce noise within each input time-series [40], we fit an adaptive Savitzky–Golay filter in
TIMESAT for each input time-series of NDVI values, with the following data parameters: two iterations,
adaptation strength 2–3, window size 3 4, beginning and end of season defined by attainment of 20% of
annual maximum value, no adjustments for spikes, and a valid data range of 0 to 1. Standard TIMESAT
phenometric outputs derived from the fitted curve included start of season and end of season, which
are commonly used metrics for tracking phenology in temperate, deciduous ecosystems; they are not
well suited to the more erratic, precipitation-driven dynamics of dryland vegetation [69]. We relied on
metrics that are more representative of semiarid vegetation patterns in a growing season: amplitude
(the range between maximum and minimum values), base value (the minimum value), peak value (the
maximum recorded value), and timing of the peak value. For each fire we coded years as either pre- or
post-burn and tagged each post-burn phase with the number of years elapsed since the fire (Figure 2).
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Figure 2. Sample normalized difference vegetation index (NDVI) profile for Bell fire site 1. Shown are
the time-series of processed data points that were input into TIMESAT and the Savitzky–Golay curve
fit to the data. Phenometrics are extracted from pre- and post-fire periods.

2.5. Analysis of Phenology Metrics

Our analysis focused on comparing pre- and post-fire phenology characteristics and quantifying
post-fire changes as vegetation communities recovered and matured over time. We analyzed data
points grouped by fire as well as by perceived trajectory of ecological outcome to derive general
summaries. We also examined the effect of the timing interval (8- or 16-day aggregations) on the results
for each metric. To compare results among recovery trajectories, we applied fixed-effect analysis of
variance (ANOVA) tests and conducted Tukey’s honestly significant difference (HSD) post hoc tests on
results with significant (p < 0.05) findings. We used Welch’s t-tests [70] for comparisons of amplitude,
base NDVI, and peak NDVI between the 8- and 16-day groupings, and the Watson–Wheeler test of
homogeneity [71] to evaluate peak day of year (DOY) metrics. The peak day of year ranged from early
spring to late fall, which complicates standard methods of aggregation [72]. An observed peak on 1
March (DOY 60), for instance, is temporally closer to 1 November (DOY 305) than it is to 1 August
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(DOY 213). To account for the circular nature of phenology dates, we converted days of year to their
angular equivalents:

θi = i ∗
360
365
∗

π

180
(1)

where i is the DOY and π
180 is the conversion factor from degrees to radians. We calculated the mean of

multiple peak timing dates by summing the sine and cosine values of the contributing angles:

C =
∑

cosθi (2)

and
S =
∑

sinθi (3)

and then calculated the arctangent based on those sums:

θ = atan2(S, C) (4)

We calculated the standard deviation of the mean:

δ =
√
−2ln R (5)

where
R =

1
n

√
Sn2 + Cn2. (6)

as detailed in [73]. A schematic of the overall methodology workflow is displayed in Figure 3. A
compilation of phenometrics for each site can be found in Supplementary Materials.

Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 21 

 

and 

𝑆 = sin 𝜃  (3) 

and then calculated the arctangent based on those sums: �̅� = atan2(𝑆, 𝐶)  (4) 

We calculated the standard deviation of the mean:     𝛿 =  −2 ln 𝑅 (5) 

where 

𝑅 =  𝑆 + 𝐶 .  (6) 

as detailed in [73]. A schematic of the overall methodology workflow is displayed in Figure 3. 

 

Figure 3. Overview of the study methodology. Qualifying fires are those that meet the pre-determined 
criteria described in the methodology section. 

3. Results 

3.1. Comparison of Pre- versus Post-Fire Phenometrics 

Figure 3. Overview of the study methodology. Qualifying fires are those that meet the pre-determined
criteria described in the methodology section.

3. Results

3.1. Comparison of Pre- versus Post-Fire Phenometrics

Comparisons of pre- and post-fire dynamics revealed general patterns that were maintained across
fires regardless of projected vegetation recovery outcomes. At all sample sites with both sets of values,
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pre-fire stands of mature ponderosa pine consistently displayed lower mean amplitudes, higher bases,
and higher peak NDVIs than post-burn communities (Figure 4a–c). Timing of peak greenness was less
consistent, with 8 of the 10 fires displaying later peaks during the pre-fire period (Figure 4d). Sample
sites located in the Pot (NM) and Rincon fires exhibited different post-fire behavior. Nevertheless, all
pre- and post-fire metrics were statistically different (p < 0.05) when aggregated across all sample sites
(Table 2).
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Figure 4. Plots of pre- and post-burn means, by fire, of the phenometrics: (a) amplitude, (b) base NDVI,
(c) peak NDVI, and (d) timing (day of year) of peak NDVI. The means shown are aggregated from
all sample points within each fire based on 16-day intervals. Error bars indicate +/−1 standard error.
Reference sites have only pre-fire values, while La Mesa and Slim sites have only post-fire values.

Table 2. Summary of pre- and post-fire phenometric differences for each interval type (8 or 16 days).
Each metric was aggregated across all burns. All tests for differences are significant at α = 0.05.

Metric Burn Phase Interval (Days) Mean (Standard Deviation)

Amplitude

Pre
8 0.15 (0.063)

16 0.13 (0.059)

Post
8 0.22 (0.08)

16 0.20 (0.08)

Base NDVI

Pre
8 0.46 (0.071)
16 0.47 (0.071)

Post
8 0.21 (0.08)

16 0.22 (0.09)

Peak NDVI

Pre
8 0.61 (0.071)

16 0.60 (0.069)

Post
8 0.43 (0.12)

16 0.42 (0.12)
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Table 2. Cont.

Timing of peak NDVI (day of year)

Pre
8 279 (53.6)

16 274 (52.4)

Post
8 239 (24.9)

16 234 (24.2)

3.2. Comparison of Phenometrics by Recovery Trajectory

Examining post-burn phenometrics grouped by recovery trajectory allows a comparison of the
relative progression of NDVI signals over time (Figure 5a–d). For the first few years of recovery, the
groups are indistinguishable in each phenometric. The earliest signs of sustained differentiation are
apparent in the base and peak value metrics, where clear and consistent separability of all classes
begins around year 8 (Figure 5b,c). In both cases, the forest, deciduous, shrub, and grass classes
maintain a highest-to-lowest order for the remainder of the analysis period, with few exceptions. The
classes likewise display early separability in amplitude in year 5 (Figure 5a), but the class order is not
consistent over the study period. The general pattern (highest to lowest amplitude) of deciduous,
forest, shrub, and grass is maintained until year 20, when the shrub and forest classes begin to decline.
By year 28, the forest class registers the lowest amplitude. For the timing of peak NDVI, the deciduous
class again displays early (year 4) separability and consistently peaks sooner than the other classes
(Figure 5d). Forest, shrub, and grass classes are indistinguishable with respect to peak timing until year
20, at which point forest begins a trend towards later peaks, shrub is relatively consistent, and grass
is characterized by highly dynamic variation. The record length of each class is determined by the
timing of the fire within which it was located, and accounts for the shorter time-series of the forest and
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Figure 5. Annual phenometrics over the post-fire recovery period for different successional trajectories:
(a) amplitude, (b) base NDVI, (c) peak NDVI, and (d) timing (day of year) of peak NDVI. Given the
consistency of results between the sampling intervals, only the 16-day interval datasets are presented.
Error bars indicate +/−1 standard error.

Analysis of variance tests to compare the effect of recovery trajectory on each phenometric yielded
significant results in all cases (p < 0.05). Subsequent post hoc Tukey tests identified significant pair-wise
differences, which varied among the phenometrics and by sampling interval (Figure 6).



Remote Sens. 2019, 11, 2782 10 of 18
Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 21 

 

 
Figure 6. Boxplots of phenometric distributions by recovery trajectory types and sampling intervals.
Shown are the range of annual values of (a) amplitude; (b) base NDVI; (c) peak NDVI; and (d) day of
year of peak NDVI, each by 8- or 16-day sampling period. In each boxplot, the solid horizontal line
denotes the median value, while the upper and lower edges of the boxes represent the first and third
quartile values, respectively. Whiskers extend to 1.5 times the highest or lowest quartile value and
points beyond the whiskers are outliers. Recovery trajectories with different letters are significantly
different (p < 0.05) according to Tukey test results.
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3.3. Differences between 8- and 16-day Aggregations.

When each phenometric was grouped by sampling interval (8- or 16-day) and aggregated across
all fires, statistical tests returned significant differences at α = 0.05 for all metrics except peak NDVI
value. Amplitude was higher in the 8-day interval (mean +/− SD: 0.20 +/− 0.08) than the 16-day
interval (0.18 +/− 0.08) (t(2219) = 6.65, p < 1e10). Base NDVI returned the opposite results, with a lower
value in the 8-day interval (0.28 +/− 0.14) than the 16-day (0.30 +/− 0.14) (t(2219) = −2.05, p = 0.04).
Timing (day of year) of peak NDVI was later in the 8-day interval: 247.7 +/− 38.5 vs. 16-day 243.0 +/−

37.6 (W(2) = 45.7, p < 1e9). In each case, effect sizes (Cohen’s d) were small: 0.28 (amplitude), 0.87
(base NDVI), and 0.063 (timing of peak NDVI).

4. Discussion

This analysis investigated the potential for using phenology metrics derived from 34 years of
30-m Landsat imagery to interpret and track regional post-fire regeneration trends in ponderosa pine
forests of the southwestern US. The major successional vegetation groups in these ecosystems display
representative timing and magnitude responses of seasonal greenness and primary productivity. Our
results show that these distinctions can be exploited via time-series of Landsat images to gain insights
into community-level recovery trends. Depending on the date of fire and the availability of satellite
data, these methods may be used to track post-burn recovery over decades. The findings presented
here hold promise for their ability to identify different vegetation composition trajectories at relatively
early stages of recovery. The ability of forest managers to predict the recovery trajectory of a post-fire
landscape can inform and optimize planting and regeneration strategies.

4.1. Pre versus Post-Burn Phenometrics

We identified the characteristic baseline phenometrics of mature ponderosa pine forests as annually
low signal amplitude, high base NDVI, high peak NDVI, and late timing of peak NDVI. These results
are consistent with those of [40] in a similar biogeographical setting. Post-burn characteristics of the
same phenometrics are significantly different across all recovery types when aggregated across the
recovery period. The deviations from that pattern are in the Pot (NM) and Rincon fires, which have
later timing of peak NDVI in the post-fire period than in the pre-fire period. Inspection of the relevant
datasets reveals one year with anomalously early pre-fire timing of peak NDVI in each case. Given the
limited number of years of satellite acquisition before each 1994 fire, the low value decisively weighted
the pre-fire mean. We cannot definitively state whether the anomalous point was due to an artifact of
curve fitting or if it represents true ground conditions. Overall, the high contrast in values confirms
that the pre-and post-burn landscapes are phenologically distinct and represent a potentially useful
measure for assessing the degree of recovery in post-fire areas. Presumably, convergence of the suite of
post-fire values to match pre-fire originals will indicate that the recovery has resulted in coniferous
forest conditions.

4.2. Differentiation of Recovery Trajectories

In this study, different recovery tracks begin to exhibit phenological separability within the first
decade after stand-replacing fire. By year 8, peak NDVI and base NDVI signals can be used to partition
the recovery tracks into general categories; by year 20, the consideration of all phenometrics allows for
a high-confidence discrimination of general functional groups. The abbreviated post-burn period of
analysis (maximum of seven years) in [41] likely accounts for the lack of perceptible phenometric-based
differentiation. The collective evaluation of all phenometrics is necessary because no single metric is
a conclusive determinant of landscape assembly; a narrow amplitude, for instance, is characteristic
of both low amounts of herbaceous ground cover as well as mature ponderosa pine forest. The
combination of a low amplitude with a high base value and high/late peak, however, can rule out
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alternative composition types. The general characteristics for each of the major vegetation classes can
be summarized as:

• Grass: low amplitude; low base NDVI; low peak NDVI; variable timing of peak NDVI.
• Shrub: mid amplitude; mid base NDVI; mid peak NDVI; mid timing of peak NDVI.
• Deciduous: high amplitude; low base NDVI; high peak NDVI; early timing of peak NDVI.
• Forest: low amplitude; high base NDVI; high peak NDVI; late timing of peak NDVI.

Interpreting the phenology signals in light of knowledge about the responsiveness of herbaceous
and woody materials to seasonal-specific conditions such as temperature and the timing and amount
of precipitation allows insights into the behavior of the different phenometrics. The high dynamic
range of the grass class for the timing of peak NDVI, for instance, is most likely a function of the
responsiveness of herbaceous plants to moisture inputs in water-limited environments [42,74].

Although we intended to use Landsat imagery to investigate fine-scale homogeneous vegetation
types that might be undetectable at coarser pixel resolutions, pure land-cover classes are difficult to
identify in these ecosystems even at a 30-m resolution. Landcover heterogeneity is likely responsible
for confusion between some of the trajectory types, such as shrub and grassland. We selected points to
represent endmembers of recovery possibilities, but dryland ponderosa pine ecosystems are inherently
complex and heterogeneous [10]. The growing array of satellite platforms at finer-scale spatial
resolutions (<30 m) (e.g., the Sentinel-2 mission) will be critical for supplying dense time-series of
data that can effectively capture nuanced vegetation responses of dryland areas with heterogeneous
land cover.

4.3. Effect of Sampling Interval on Derived Phenometrics

The investigation of whether 8 or 16 days is the more appropriate analysis time step returned
mixed results. The phenology trajectories of shrub-forest (amplitude) and grass-forest (timing of peak
NDVI) are significantly different depending on the grouping interval (Figure 6). Mean differences of
each phenometric also identify the 8-day grouping as having significantly higher amplitudes, lower
base values, and later peak NDVI, which indicates that the more precise grouping potentially captures
extreme values. However, the effect size in each case is small, and visual inspection of the 8- and 16-day
phenometric profiles over time reveals only minor contrasting variations. The relative unimportance of
the sampling interval here may be due more to the irregular nature of the underlying data acquisition
than to the sensitivity of the derived indices to temporal precision. Specifically, no 8- or 16-day period
in the time-series necessarily encompasses a clear-sky image, and gaps due to missing NDVI data were
linearly interpolated to create an artificially consistent sequence. We are thus limited to the conclusion
that partitioning the time-series into 8-day intervals did not practically improve the identification
of recovery trajectories. Nevertheless, the collection of clear images at hyper-temporal intervals
can exploit the subtle phenology characteristics of different vegetative components for classification
purposes (e.g., [75,76]).

4.4. Applicability and Future Efforts

The methods presented here are potentially transferable to any ecosystem in which disturbance
events can trigger alternate regeneration pathways with distinct phenological characteristics. Candidate
ecosystems include high-latitude boreal forests, where unusual fire activity can promote biome shifts
from coniferous to deciduous dominance [77,78], and Mediterranean ecosystems, where fires can
convert deciduous forests to evergreen shrublands [79,80] or from pine forests to oak woodlands or
grasslands [81,82]. Successful application of this approach requires the collection of sufficient cloud-free
imagery to allow the detection of phenometric contrasts. Incorporating imagery from other remote
sensing platforms (e.g., Sentinel-2) may be necessary to increase the number of clear acquisitions [50] if
phenology differences among vegetation groups can only be observed on the basis of dense time-series.
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We foresee multiple avenues for future research. The most immediate is to expand the range of
sample locations to determine the extent to which the results seen here are representative of ponderosa
pine forest recovery across the western US. This consideration encompasses a temporal as well as
a spatial element. The selection of fires from the earlier part of the Landsat TM era allowed for the
assembly of a multi-year time-series, but also ensured that most recovery tracks proceeded under
similar climatic conditions. Analyzing the sensitivity of successional track response to climatic events
such as drought at different points along the recovery timeline will help parameterize the range of
variability and lend greater interpretive power to phenology time-series. A geographical expansion
beyond ponderosa pine ecosystems will similarly allow for the determination of the suitability of this
approach across a range of western US dryland forests. Observations of regeneration failure for other
high-elevation pine species (e.g., Pinus engelmannii and Pinus contorta) [83], justify an investigation
of the general applicability of this method. Finally, grounding the study in field-based examinations
of successional track composition would link remote sensing signals to quantitative measures of
vegetation type and proportion. The validation of plant community types and proportions along the
recovery timeline would establish an explicit connection between remote-sensing-derived phenology
metrics and vegetation composition. This information could potentially provide resource managers
with maps of current and predicted vegetation land cover over time.

Vegetation type conversions are not a uniquely modern phenomena in ponderosa pine ecosystems;
the shift from forested to grass- or brush-dominated systems was recorded in northern Arizona in the
early 20th century, when clear-cut or severely burned areas failed to regenerate to forest [27,84]. The
contemporary difference is the potential magnitude of landscape transformation given the convergence
of disturbance and climatic regime changes. The conversion of vast tracts of forest to different
functional characteristics would have profound implications for the provision of ecosystem services
such as economic factors (timber) [85], wildlife habitats, carbon sequestration [29,86], watershed
support [87,88], and recreation, all of which are impacted by a restructured vegetation assembly. As an
ever-larger proportion of southwestern US ponderosa pine forests is recovering from high-severity
burns at a time of increasing climatic warmth and drought [23], the range of potential post-fire
vegetation trajectories complicates the prediction of future landscape composition and ecological
functions. Early determinations of recovery outcomes would allow for more proactive management
intervention and the targeted application of resources. The varied phenological signatures of the
likeliest assembly types can be helpful for interpreting observed remote sensing signals in the context
of eventual recovery outcomes.

5. Conclusions

Changes in the amount and timing of precipitation play a critical role in redirecting post-fire
recovery in ponderosa pine ecosystems towards grassland, shrubland, or deciduous vegetation [23].
Climate-mediated deflections to alternate vegetation communities highlight the need to develop
methods for quantifying and predicting the composition of future landscapes. In line with our
objectives, we have successfully applied 8- and 16-day phenology metrics derived from Landsat
time-series to describe a range of post-fire recovery trajectories and identify unique characteristics that
distinguish these recovery pathways from one another. Our results show that phenometrics derived
from Landsat time-series can be used to identify key vegetation components of successional tracks
in post-burn ponderosa pine forests of the southwestern US. In this study, recovering forests began
to exhibit phenological differences among predominantly grass, shrub, deciduous, and coniferous
functional groups within 8 to 10 years. A high-confidence resolution of the primary trajectory was
possible after 20 years of recovery. The approach outlined here holds promise as a tool for assessing
ecosystem trends across the southwestern United States, particularly since computational advances
now enable synoptic examinations over extended time spans. Future research will focus on assessments
of landscape recovery after fires. The methods presented here may be applicable as well to wider
ranges of post-disturbance landscapes. As our understanding of the patterns and rates of recovery
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continues to expand, we can begin to assess how recovery trajectories are shaped over space and time
by different driving forces, including topography, climate, soils, and proximity to land-use types.

Supplementary Materials: A tabular file of the sites and accompanying phenometrics used for this research can
be found on ScienceBase (https://doi.org/10.5066/P9Y1Z03F).
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