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Abstract: Himawari-8, operated by the Japan Meteorological Agency (JMA), is a new generation
geostationary satellite that provides remote sensing data to retrieve atmospheric aerosol optical
depth (AOD) at high spatial (1 km) and high temporal (10 min) resolutions. The Geostationary-
National Aeronautics and Space Administration (NASA) Earth exchange (GeoNEX) project recently
adapted the multiangle implementation of atmospheric correction (MAIAC) algorithm, originally
developed for joint retrieval of AOD and surface anisotropic reflectance with the moderate resolution
imaging spectroradiometer (MODIS) data, to generate Earth monitoring products from the latest
geostationary satellites including Himawari-8. This study evaluated the GeoNEX Himawari-8 ~1 km
MAIAC AOD retrieved over all the aerosol robotic network (AERONET) sites between 6◦N–30◦N and
91◦E–127◦E. The corresponding JMA Himawari-8 AOD products were also evaluated for comparison.
We only used cloud-free and the best quality satellite AOD retrievals and compiled a total of 16,532
MAIAC-AERONET and 21,737 JMA-AERONET contemporaneous pairs of AOD values for 2017.
Statistical analyses showed that both MAIAC and JMA data are highly correlated with AERONET
AOD, with the correlation coefficient (R) of ~0.77, and the root mean squared error (RMSE) of ~0.16.
The absolute bias of MAIAC AOD (0.02 overestimation) appears smaller than that of the JMA AOD
(0.05 underestimation). In comparison with the JMA data, the time series of MAIAC AOD were
more consistent with AERONET AOD values and better capture the diurnal variations of the latter.
The dependence of MAIAC AOD bias on scattering angles is also discussed.
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1. Introduction

Aerosols are liquid and solid particles suspended in the atmosphere, which play an important
role in influencing the Earth’s radiation balance, hydrological cycle, and biogeochemical cycles. It is
considered that aerosols are one of the largest sources of uncertainty in global radiative, forcing
estimation [1]. Furthermore, aerosols have severe effects on air quality and human health [2]. Spectral
aerosol optical depth (AOD), a variable to quantify solar radiation extinction due to atmospheric
aerosols, is one of the most important aerosol parameters in the study of atmospheric pollution and
aerosol’s radiative effects. With the advance of satellite imaging technologies, numerous AOD retrieval
algorithms have been developed for over 40 years [3]. The polar-orbit satellites provide one AOD

Remote Sens. 2019, 11, 2771; doi:10.3390/rs11232771 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-4470-3616
http://www.mdpi.com/2072-4292/11/23/2771?type=check_update&version=1
http://dx.doi.org/10.3390/rs11232771
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 2771 2 of 14

snapshot every a few days, such as, multi-angle imaging spectroradiometer (MISR) every 9 days [4],
medium resolution imaging spectrometer (MERIS) every 3 days [5], visible infrared imaging radiometer
suite (VIIRS) every day [6], and moderate resolution imaging spectroradiometer (MODIS) twice every
day [7]. However, such snapshots cannot capture the rapid diurnal variation of atmospheric condition
changes [8,9].

Japan Meteorological Agency (JMA) launched the new generation geostationary satellite
Himawari-8 in 2014. The Advanced Himawari Imager (AHI) onboard can provide ~1 km multi-spectral
images every 10 min. This enables the AHI’s significant temporal resolution advantages over polar
orbit satellite sensors for aerosol retrieval. The AHI AOD retrieval algorithms inherit from the polar
satellite AOD algorithms that usually assume prior knowledge of the surface reflectance and the
aerosol type and use radiative transfer modeled relationships between the top-of-atmosphere (TOA)
reflectance and AOD. For example, the dark target method proposed by Kaufman et al. [10] for MODIS
has been applied to AHI data [11,12]. The dark target method assumes a fixed ratio between the
red/blue and 2.1 µm channel reflectance and uses the TOA reflectance at 2.1 µm channel to estimate the
surface reflectance of the red/blue channels. Hsu et al. [13] proposed a deep blue algorithm for MODIS
data using a pre-calculated static surface reflectance database. The JMA released AHI AOD product
uses a similar approach by pre-calculating the AHI visible band surface reflectance for every hour of
the day using the AHI observation in a month [14].

Lyapustin et al. [15–17] introduced a new aerosol algorithm, the multiangle implementation of
atmospheric correction (MAIAC), by jointly retrieving AOD and surface anisotropic reflectance for
MODIS data. The MAIAC has shown improvement in AOD retrieval accuracy over those algorithms
with pre-assumed surface reflectance, such as dark target and deep blue [17,18]. Recently, scientists from
the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric
Administration (NOAA), and many other institutes initialized the Geostationary-NASA Earth Exchange
(GeoNEX) project to generate Earth monitoring products from the new generation of geostationary
satellite sensors including the Advanced Himawari Imager (AHI) on Himawari-8/9 and the Advanced
Baseline Imager (ABI) on GOES-16/17 [19]. A key component of the GeoNEX product processing is to
adapt the MAIAC algorithm to produce surface reflectance and AOD from the AHI top-of-atmosphere
(TOA) data.

This study is to evaluate the prototype GeoNEX AHI AOD products generated with the MAIAC
algorithm over all the Aerosol Robotic Network (AERONET) sites between 6◦N–30◦N and 91◦E–127◦E,
a region covered by a range of land cover types and surface reflectance characteristics. The AERONET
AOD is used as the ground truth for AOD evaluation. The MAIAC AOD is compared with the
AERONET AOD, and its estimation bias is analyzed against the AERONET AOD and scattering angle.
The JMA AOD is also compared with AERONET AOD over the same region, and the JMA and GeoNEX
MAIAC AOD accuracies are compared.

2. Data and Methods

2.1. AERONET Data

The AERONET, a network of globally distributed ground-based sun and sky scanning radiometers,
has provided for over 25 years near-continuous daytime measurements of spectral solar irradiance,
spectral aerosol optical thickness, water vapor, and inversion aerosol products [20,21]. The AERONET
data included spectral AOD and Ångström parameters in the visible to near-infrared bands, and column
water vapor (g/cm2). The data were categorized into different quality levels. In this study, the quality
Level 2.0 (cloud-screened and quality assured) data from the most recent Version 3.0 [22] were used,
including the AOD at 500 nm and the Ångström parameter at 440–675 nm. The AERONET AOD had
high accuracy with a + 0.02 bias and one sigma uncertainty of 0.02 [22].

All the Version 3.0 AERONET data between 6◦N–30◦N and 91◦E–127◦E, available in the year
2017, were considered (Figure 1). Most sites in the study area have measurements every 3 min, using
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instruments CE318-N and CE318-T, except for a few sites with the old instrument CE318-1 providing
measurements every 15 min [22]. However, even using the same instrument, there were still site
differences in the annual amount of AERONET data reflecting cloud conditions and AERONET site
operational differences.
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Figure 1. Locations of aerosol robotic network (AERONET) sites between 6◦N–30◦N and 91◦E–127◦E
covering Southeast Asia and southern China. Only sites with data in 2017 are shown. The dashed
white lines are GeoNEX 6◦ × 6◦ tile boundaries (Section 2.3).

2.2. JMA AHI AOD Products

Himawari-8 is a geostationary weather satellite launched by JMA in 2014 and positioned at 140.7◦E.
The AHI onboard Himawari-8 has a spatial coverage of 150◦ by 150◦ centered at 0◦N 140.7◦E. The AHI
images have 6 solar reflective spectral bands, including 3 visible and 3 near-infrared bands with spatial
resolutions of 0.5 km to 2 km at the sub-satellite point for different bands. These 6 bands enabled AOD
retrieval capability that has been shown in many sensors with similar band configurations such as
Landsat TM/ETM+/OLI [23] and MODIS [24]. The AHI provided a full-disk observation every 10 min.
The Himawari data were processed into different levels, and the Himawari Standard Data (HSD) that
were used in the GeoNEX pipeline (Section 2.3) included the calibrated TOA radiance (Himawari
user guide https://www.eorc.jaxa.jp/ptree/userguide.html). The AHI measurements have radiometric
uncertainty <4% for all the 6 reflective bands [25,26].

The Level 2 AHI products freely distributed by JMA included 500 nm AOD (JMA AOD) at 5 km
spatial resolution and 10 min temporal resolution [14]. It was based on a radiative transfer code called
system for the transfer of atmospheric radiation (STAR) that was developed by the University of
Tokyo [27]. The surface reflectance assumption was similar to the established deep blue algorithm [13],
i.e., using a pre-calculated surface reflectance library. The pre-calculated surface reflectance was
corrected for Rayleigh scattering, water vapor, and gas absorption and was derived for every hour
to account for the solar angle induced reflectance anisotropy [28,29]. The dynamic aerosol model
was used to account for the spatial and temporal aerosol type variation by jointly retrieving the AOD
and the mixing ratios of a fine aerosol model, a dust coarse aerosol model, and a marine coarse
aerosol model [14]. Note that all the size distributions of the 3 aerosol models were defined using a
monomodal lognormal distribution. The fine model size distribution parameters were averaged from
the fine mode parameters of 6 bimodal lognormal distributions in Omar et al. [30], i.e., categories 1–6
in Omar et al. [30]’ Table 2. The dust coarse aerosol size distribution parameters were set as the coarse
mode parameters of Category 1 (dust) bimodal lognormal distribution in Omar et al. [30]’s Table 2.

https://www.eorc.jaxa.jp/ptree/userguide.html


Remote Sens. 2019, 11, 2771 4 of 14

The marine coarse aerosol size distribution parameters were set as the coarse mode parameters of the
bimodal lognormal distribution in Sayer et al. [31]’s Table 2. The size parameters, along with other
aerosol physical and optical parameters, were provided in Yoshida et al. [14]. The AOD and the aerosol
model mixing ratios were derived from the TOA reflectance using an optimal estimation method that
was shown effective in AOD retrieval [32,33].

In this study, the latest Version 2.1 JMA Level 2 AOD was used to compare with the AERONET
AOD thus that the MAIAC accuracy could be compared with the JMA AOD accuracy. A QA_flag band
was also included in the JMA AOD dataset indicating the per-pixel AOD retrieval confidence (Table 1)
based on cloud contamination. The cloud detection algorithm, originally proposed by Ishida and
Nakajima [34], used the threshold test on multiple spectral bands, and resulted in continuous cloud
confidence without identifying an ambiguous pixel as cloudy or clear. Only those AOD retrievals
flagged as ‘00′ retrieval confidence were used. The JMA AOD has been evaluated recently [35–39],
which consistently revealed an AOD underestimation (about 0.06). The JMA AOD products were
downloaded from the Japan Aerospace Exploration Agency (JAXA) Earth Observation Research Center
(http://www.eorc.jaxa.jp/ptree/terms.html).

Table 1. The quality bits and definitions of the Quality Assurance (QA) bands in the Japan meteorological
agency (JMA) and multiangle implementation of atmospheric (MAIAC) aerosol optical depth (AOD)
products. The QA flags in bold (the best quality) were used in this study.

Product QA Band Bit Definition

JMA 4-5

AOD confidence
00–very good

01–good
10–Marginal

11–no confidence (or no retrieval)

MAIAC 8-11

QA for AOD
0000 — Best quality

0001 — Water Sediments are detected (water)
0011 — There is 1 neighbor cloud

0100 — There are >1 neighbor clouds
0101 — No retrieval (cloudy, or whatever)

0110 — No retrievals near detected or previously detected snow
0111 — Climatology AOD: altitude above 3.5 km (water) and 4.2 km (land)

1000 — No retrieval due to sun glint (water)
1001 — Retrieved AOD is very low (<0.05) due to glint (water)

1010 — AOD within ±2 km from the coastline (may be unreliable)
1011 — Land, research quality: AOD retrieved but CM is possibly cloudy

2.3. GeoNEX AHI AOD Products

GeoNEX (Geostationary-NASA Earth Exchange) is a collaborative effort led by scientists from
NASA, NOAA, JAXA, and other research institutes to generate Earth monitoring products from
the new generation of geostationary satellite sensors including GOES-16/17 ABI and Himawari-8/9
AHI [40]. For AHI, the GeoNEX processing started with the 10 min full-disk Himawari standard data
(HSD), which were Level 1b TOA radiance data in the geostationary projection [25,26]. The processing
pipeline performed radiometric calibration, corrected residue geolocation errors, computed the satellite
view angles and the solar illumination angles, and converted the radiances to TOA reflectance for
the reflective bands (Bands 1 to 6) and brightness temperature for the emissive bands (Bands 7 to 16).
It then re-projected the data onto a regular grid in the geographic projection at spatial resolutions
of 0.005◦ (Band 3), 0.01◦ (Bands 1, 2, 4), and 0.02◦ (the rest bands). The AHI grid was part of a
GeoNEX developed global grid system (60◦N–60◦S, 180◦W–180◦E) that was divided in 6◦ × 6◦ tiles
and numbered from 0 (60◦N, upper bound) to 19 (54◦S, upper bound) in the vertical direction and
from 0 (180◦W, left bound) to 59 (174◦E, left bound) in the horizontal direction. The spatial domain of
AHI spans vertically from 60◦N to 60◦S and horizontally from 84◦E to 204◦E (or 24◦W) [40], and the
study area covered 24 tiles (Figure 1).

http://www.eorc.jaxa.jp/ptree/terms.html
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In the next step, the GeoNEX pipeline ran a customized version of the NASA MAIAC algorithm [17]
to screen clouds and cloud shadows, retrieved atmospheric AOD at 550 nm and produced surface
reflectance for the reflective bands (Bands 1–6). In contrast to the JMA AOD algorithm that used
pre-calculated surface reflectance, the MAIAC algorithm explicitly considered the influences of surface
bidirectional reflectance on the measured TOA reflectance and jointly retrieved AOD and surface
reflectance from the high temporal and multi-solar-angular observations featured by the AHI sensor.
The anisotropic surface reflectance was represented using a semi-physical bidirectional reflectance
distribution function (BRDF) model, i.e., the Ross–Thick Li–Sparse model [41]. The radiative transfer
took into consideration the surface anisotropy and its couple effect with the atmosphere by means of
Green’s function [42]. MAIAC generated a set of lookup tables (LUT) for 8 aerosol models each defined
using bimodal lognormal distribution with parameters derived by analyzing history AERONET aerosol
properties. Each pixel was assigned a pre-set aerosol model according to the pixel location, and the
global land surface was divided into 8 regions each representing a unique LUT aerosol model. The size
parameters, along with other aerosol optical parameters, are provided in Lyapustin et al. [17]’s Table 1,
and the global region distribution is shown in Lyapustin et al. [17]’s Figure 4.

The GeoNEX project ran the MAIAC code to process AHI observations from 1 January 2016
onwards to present over the spatial domain from (60◦N, 84◦E) to (60◦S, 204◦E). The MAIAC algorithm
first used a dynamic land-water-snow classification system based on the pixel and its contextual
information [17,43] to mask clouds and shadows, detect smokes and dust, and identify surface snow
coverage. A series of threshold tests were run on the selected solar reflective and thermal band
values. To adapt to the spatial and temporal cloud variation, the thresholds were dynamic based on
the pixel context defined by 150 km mesoscale boxes. To solve the ill-posed joint retrieval problem,
time stacks of AHI images were compiled with a moving time window to provide sufficient satellite
observations, and the several closest history clear sky retrievals were stored in a queue to provide
reference surface BRDF for the current retrieval [17]. The algorithm retrieved intermediate surface
reflectance for the short wave infrared (SWIR) band (~2.1 µm; Band 6) [17] using the Lambertian surface
model. The blue surface reflectance was subsequently derived with a spectral regression coefficient
(SRC) that represented the surface reflectance ratio between the blue and the SWIR bands. In turn,
the AOD at the blue band was retrieved. Then MAIAC switched to the BRDF model to estimate surface
reflectance. A quality assurance band was used in the product file to report the conditions and the
retrieval qualities (Table 1) based on the cloud, water, and snow detection results and sun and viewing
geometry conditions. This study chose AOD pixels of the best quality for evaluation and used the
Version 1.0 GeoNEX AOD data. More details of the MAIAC algorithm in processing the geostationary
datasets were discussed in Wang et al. [44].

2.4. Comparison of Contemporaneous AERONET and Satellite Retrieved AOD

The following temporal and spatial data selection criteria were applied to select a contemporaneous
satellite and AERONET AOD data. At each AERONET site, the mean AERONET AOD value within
10 min of the satellite scan time was used to compare the mean satellite AOD over a 25 km × 25 km
image window centered on the AERONET site location [45]. If more than four-fifths of the satellite
AOD retrievals in the 25 × 25 km window were cloudy or missing, the data were discarded. In addition,
any satellite retrievals that used observations with >70◦ solar zenith angles were discarded at this solar
geometry, strong multi-scattering made the atmospheric radiative transferred modeling more difficult
and less accurate [46]. The following statistical parameters were used to measure how well the satellite
AOD retrievals matched the AERONET AOD: correlation coefficient (R), root mean squared error
(RMSE), mean bias (MB), slope of the linear regression line and percentage of data within the expected
error (EE) envelope of ± (0.05 + 15% * AERONET AOD) defined by Levy et al. [47]. A retrieval is
within EE if it satisfies

−

(
0.05 + τAERONET

∗ 15%
)
< τAHI

− τAERONET < 0.05 + τAERONET
∗ 15%, (1)
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where τAERONET and τAHI stand for the AERONET and satellite-derived AOD, respectively. In addition,
the dependences of satellite retrieved AOD bias on AERONET AOD and the scattering angle were also
examined. The MAIAC AOD was at 550 nm, and thus the AERONET 500 nm AOD measurements
were converted to 550 nm equivalent values using the AERONET 440–675 nm Ångström parameter.

3. Results

3.1. MAIAC and AERONET AOD Comparison

Figure 2 shows the scatterplots of the contemporaneous MAIAC and AERONET AOD (left) and
the contemporaneous JMA and AERONET AOD data (right) over the study area for all the months in
the year 2017. The AERONET AOD spaned a range of values, and the majority of them were smaller
than 1.5. The MAIAC performed slightly better than the JMA algorithm in terms of all the statistical
parameters, including R, RMSE, MB, the within EE percentages, and the slopes of the linear regression
lines. More than half (54.95%) of the MAIAC retrievals were within the ± (0.05 + 15%) EE, and there
was a good correlation (R=0.77) between the MAIAC and AERONET AOD. The MAIAC slightly
overestimated (~0.02 on average), while the JMA tended to underestimate (~0.05 on average) the
AOD values. The overestimation and underestimation were also evident by examining the imbalance
between the percentages of AOD retrievals above (30.79% for MAIAC and 17.62% for JMA) and below
(14.25% for MAIAC and 32.49% for JMA) the EE envelope. Note there were more contemporaneous
JMA and AERONET pairs than contemporaneous MAIAC and AERONET pairs, maybe because the
MAIAC used a stricter criterion to define the best quality retrieval and because the MAIAC used a
cloud detection algorithm that was different from the JMA AOD.
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Figure 2. Scatterplots of the MAIAC (left) and JMA (right) AOD against the contemporaneous
AERONET AOD data over the study area for 2017. The solid blue lines show ordinary least squares
regression lines. The solid black lines are 1:1 lines superimposed for reference. The dashed lines denote
the envelope of the expected error (EE).

3.2. Error Dependence on AERONET AOD

Figure 3 shows the difference between satellite and AERONET AOD as a function of AERONET
AOD. All the contemporaneous pairs were sorted and binned with 0.1 AERONET AOD interval.
A positive difference indicated that the satellite retrieval algorithm overestimated AOD. The MAIAC
AOD difference with the AERONET AOD was generally smaller than the JMA AOD difference with
the AERONET AOD. For smaller AERONET AOD values (<0.2), both MAIAC and JMA AOD were
greater than the AEROENT AOD because at such small values, underestimation was less likely to
occur, considering that the AOD estimation always had positive values. JMA underestimation was
obvious for AERONET AOD values >0.2. However, for MAIAC AOD, there was a much less noticeable
under- or over-estimation for AERONET AOD values ranging from 0.2 to 0.8. The underestimation of
AOD for high AOD values highlighted the aerosol model assumptions used in the MAIAC and JMA
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algorithms. For high AOD values, the aerosol model assumptions became more important for AOD
retrieval as at such high AOD values, the surface contribution may be less important [48].
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Figure 3. AOD differences between the MAIAC and AERONET (left) and between the JMA and
AERONET (right) as a function of AERONET AOD. All the contemporaneous pairs were sorted and
binned according to the AERONET AOD. The number of pairs (grey dots and lines), mean (blue dots),
and standard deviation (blue line) of each bin was calculated. The horizontal black line denotes zero
difference, and the dashed lines indicate the EE envelopes. Positive values indicate that satellite AOD
is higher than AERONET.

3.3. Error Dependence on Scattering Angle

Figure 4 shows the AHI and AERONET AOD differences as a function of scattering angles.
The scattering angles were sorted and binned at 10◦ interval. The figures indicate both MAIAC and
JMA AOD errors were dependent on scattering angles with reversed U pattern: Overestimation
occurred in certain scattering angles around 120◦ and smoothly changed to underestimation when
the scattering angle moved away from around 120◦. However, consistent with the previous results in
Sections 3.1 and 3.2, the reversed U pattern in MAIAC AOD (Figure 4 left) was not as obvious as that
in JMA AOD (Figure 4 right). Interpretation of these scattering angle dependences was much more
complicated because many systematic inaccuracies in retrieval assumptions can contribute to these
scattering angle dependencies (see discussion).
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3.4. Time Series Examples

Figure 5 illustrates the AERONET AOD (black dots) and the contemporaneous MAIAC (top figure
red dots) and JMA (bottom figure red dots) AOD for the Mandalay_MTU site for an example 10-day
period. Figure 6 does the same for another 10 day period in 2017. The Mandalay_MTU AERONET
site was used as it had the greatest number (2768 for JMA and 3105 for MAIAC) of contemporaneous
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satellite and AERONET data pairs. There was always a data gap in each day as there was no AERONET
and satellite AOD at night-time. The MAIAC AOD was more consistent with the AERONET AOD
values and better captured the diurnal variation of AERONET AOD. Furthermore, the MAIAC AOD
was much more temporally stable than the JMA AOD. This was because the joint retrieval of the
AOD and surface reflectance in MAIAC had temporal constraint (BRDF invariability) on the surface
reflectance properties, and thus the retrieved AOD random noise was suppressed. The diurnal
variation patterns of AERONET AOD (black dots) were not consistent throughout the 20 days because
they were affected by temporal variation in road transportation, wind, temperature, and humidity [9].
The temporal distribution difference in satellite and AERONET data pairs between MAIAC (up panel)
and JMA (bottom) algorithms reflected the MAIAC and JMA cloud detection differences. Note that
the AERONET AOD values paired with the MAIAC AOD (black dots in the top figures in Figures 5
and 6) were slightly smaller than the AERONET AOD paired with JMA AOD (black dots in the bottom
figures in Figures 5 and 6) because they were at different wavelengths (i.e., 550 nm and 500 nm for
MAIAC and JMA AOD, respectively).

1 
 

 

 

 

 

 

 

Figure 5. An example of 10 day (days 120 to 130 of year 2017) results for the Mandalay_MTU site
showing (top) the AERONET 550 nm AOD (black dots) and the MAIAC 550 nm AOD (red dots) values,
(bottom) the AERONET 500 nm AOD (black dots) and the JMA 500 nm AOD (red dots) values. There
are 294 contemporaneous MAIAC and AERONET AOD pairs and 310 contemporaneous MAIAC and
AERONET AOD pairs.
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Figure 6. Same as Figure 5 but for 10 days of 350 to 360 of the year 2017. There are 362 contemporaneous
MAIAC and AERONET AOD pairs and 313 contemporaneous MAIAC and AERONET AOD pairs.
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4. Discussion

4.1. MAIAC Algorithm Accuracy

Aerosols properties, including AOD, have been identified as essential climate variables for
climate change by the Global Climate Observing System (GCOS). However, it is still one of the largest
sources of uncertainty in global radiative forcing estimation [1]. AOD has also become one of the
important parameters to help predict air quality information [49], and its accuracy is critical for
reliable air pollution prediction. The ground-based AOD measurements using sun and sky scanning
radiometers [20,21] have achieved satisfying accuracy within a 0.02 bias but samples the global surface
sparsely. The AOD product from the satellite TOA reflectance usually have lower accuracies than the
ground-based measurement as the satellite AOD retrieval process is affected by the uncertainty of the
land surface reflectance [50,51] and other aerosol properties [3] that are usually unknown. Validation
of the satellite AOD products are very important [45,47]. The R (0.77) and RMSE (0.16) values of the
Himawari-8 MAIAC validation reported in this study are slightly worse than the R (0.84) and RMSE
(0.12) values of the MODIS MAIAC validation [17]. The reason may lie in the angle sampling difference
between the polar orbit (MODIS) and geostationary (Himawari-8) satellites. To better understand the
angle sampling difference impact, a deep analysis and validation study with improved AOD version
and with better spatial and temporal coverage is encouraged.

4.2. MAIAC Algorithm Error Dependence on Scattering Angle

The MAIAC estimation error is a function of scattering angle, which was also found in many
other AOD products such as MODIS dark target AOD [7] and JMA AHI AOD [35]. There were
several sources of uncertainties in retrieval assumptions that could contribute to this scattering angle
dependency, such as the aerosol phase function in the aerosol model [7], surface BRDF model [15],
their coupling effects [42], insufficient angle sampling [52], and the geometrical dependence of radiance
calibration process [53]. For example, if the surface BRDF model residual was a function of scattering
angle, then the retrieved surface reflectance and thus AOD were a function of scattering angle.

The diurnal and seasonal dependences of the MAIAC AOD estimation error were expected (not
shown in this study) due to the scattering angle dependence and the diurnal and seasonal changes of
the scattering angle. Figure 7 shows the diurnal and seasonal variation of the scattering angles for all
the MAIAC AOD retrievals shown in Figure 2 left. This occurred because the angular sampling of the
satellite observations was limited by how satellite orbits the earth [52,54]. For the geostationary satellite
observations, the viewing zenith and azimuth angles were fixed for an earth location. Consequently,
the scattering angle was only determined by the sun position progression and thus by the time of the
day (diurnal, left panel of Figure 7) and the day of the year (seasonal, right panel of Figure 7).
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4.3. MAIAC and JMA Comparison

There was no obvious under- or over-estimation in MAIAC AOD, which was better than the JMA
AOD with an on average 0.05 underestimation shown in this study. This JMA underestimation was
consistent with previous JMA AOD evaluation studies [35,55], for example, Wang et al. [35] showed
that JMA AOD on average underestimated AOD values by about 0.06 over land. The reason for this
JMA underestimation was attributed to imprecise aerosol phase function induced by the assumption of
aerosol models in the seminal JMA AOD algorithm description paper [14]. Despite the improvement
in AOD estimation bias, the MAIAC AOD performed similar (or slightly better) to the JMA AOD in
terms of RMSE and correlation coefficient. This is in contrast to the MODIS sensor AOD validations,
where the MAIAC was better than the dark target and deep blue algorithms [17,18]. The reason may
lie in angle sampling difference between the polar orbit and geostationary satellites as stated above.

The above MAIAC and JMA comparisons may be affected by the sampling difference due to
different cloud and quality indicator masks between MAIAC and JMA products. To mitigate its impact,
we further compared MAIAC and JMA products for the AERONET AODs that have the corresponding
best quality satellite AOD retrievals in both JMA and MAIAC algorithm. This left 9632 AERONET and
satellite AOD value pairs for both MAIAC and JMA comparisons. Their accuracy metrics and scatter
plots are shown in Figure 8. The comparison results are consistent with Figure 2. The JMA AOD bias
(0.06 underestimation) is larger than the MAIAC AOD bias (0.03 overestimation). The other metrics
are similar to MAIAC and JMA products. The results confirmed that the above comparison analysis in
Section 3 was not affected by the different number of matched satellite and AERONET AOD pairs.
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satellite AOD retrievals in both JMA and MAIAC algorithm.

It should be noted that both the MAIAC and JMA AOD were satellite products that were meant
to be consistently maintained and updated if necessary. The current study used the up to date versions
of MAIAC (v1.0), and JMA (v2.1) and future validation for improved versions were encouraged.
The geostationary MAIAC algorithm was run and maintained by the NASA GeoNEX group, including
the paper authors. The GeoNEX AOD products will be publicly available to the community through
the website (www.nasa.gov/geonex).

5. Conclusions

This study evaluated the Multiangle Implementation of Atmospheric Correction (MAIAC)
algorithm for the Himawari-8 aerosol optical depth (AOD) retrieval over a study area between
6◦N–30◦N and 91◦E–127◦E for year 2017 using the Aerosol Robotic Network (AERONET) AOD.
The MAIAC AOD was generated using the NASA Earth Exchange (NEX) computer under the
Geostationary-NASA Earth Exchange (GeoNEX) project. The Japan Meteorological Agency (JMA)
version 2.1 Level 2 AOD over the study area was also compared with the AERONET AOD. Results

www.nasa.gov/geonex
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showed that both the JMA AOD and the MAIAC AOD have good correlations with the AERONET AOD.
For the 16,532 contemporaneous MAIAC and AERONET AOD pairs, the correlation coefficient was
0.77, the root mean squared error (RMSE) was 0.16, and the mean bias was 0.02. 55% of MAIAC AODs
retrieved from Himawari-8 AHI data fall within expected error bounds of ± (0.05 + 0.15×AERONET
AOD). For the 21,737 contemporaneous JMA and AERONET AOD pairs, the correlation coefficient
was 0.76, the RMSE was 0.19, and the mean bias was -0.05. And 50% of JMA AODs fall within the
expected error bounds of ± (0.05 + 0.15×AERONET AOD). The MAIAC AOD accuracy has little
accuracy dependence on AERONET AOD except large AOD values (>0.8), while the JMA algorithm
continuously underestimated AOD values for AOD >0.2. The potential MAIAC AOD accuracy
improvement is expected in the future version release [44]. The 10 min temporal resolution provided
by Himawari-8 AHI sensor can capture the AOD diurnal variation and is promising in climate change
and human health studies.
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