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Róbert Pazúr 1,3, Maroš Sedliak 2 , Jozef Pajtík 2 and Jozef Vladovič 2
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Abstract: This study aims to analyze and assess studies published from 1992 to 2019 and listed in the
Web of Science (WOS) and Current Contents (CC) databases, and to identify agricultural abandonment
by application of remote sensing (RS) optical and microwave data. We selected 73 studies by applying
structured queries in a field tag form and Boolean operators in the WOS portal and by expert
analysis. An expert assessment yielded the topical picture concerning the definitions and criteria for
the identification of abandoned agricultural land (AAL). The analysis also showed the absence of
similar field research, which serves not only for validation, but also for understanding the process of
agricultural abandonment. The benefit of the fusion of optical and radar data, which supports the
application of Sentinel-1 and Sentinel-2 data, is also evident. Knowledge attained from the literary
sources indicated that there exists, in the world literature, a well-covered problem of abandonment
identification or biomass estimation, as well as missing works dealing with the assessment of the
natural accretion of biomass in AAL.

Keywords: abandoned agricultural land; satellite remote sensing; optical data; radar data

1. Introduction

Agricultural land abandonment is a widespread land use (LU) change in different parts of the
Earth’s land surface. Cessation of agricultural activities has significant environmental consequences,
such as loss of biodiversity in former grasslands or changes in the character of important bird nesting
areas. Abandonment is a dynamic process affected by a complex range of drivers that vary over time
and space [1]. Generally, it occurs in areas where farming is not viable due to geographic position,
demographic and socio-economic factors, unadapted agricultural systems, mismanagement (resulting
in soil degradation, frequent flooding, overexploitation, and productivity loss), historical factors (e.g.,
the restitution process), and agro-ecological factors (e.g., low quality infertile lands) [2,3].

Environmental drivers of agricultural abandonment process could be, for example, elevation,
slope, erosion, clime, and fertility [2]. Several hypotheses linked with these drivers were analyzed—soil
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type, elevation, slope, and agricultural suitability as powerful predictors and topographical marginality
as not a major determinant of abandonment [4].

Socio-economic factors could be represented as migration and rural depopulation, new economic
opportunities (tourism, industrialization, housing, etc.), land-tenure system, accessibility by road
(directly linked together with proximity to town), market incentives, agrarian policy, farmer’s age, or
input and output prices [2]. Accessibility variables are important predictors of agricultural abandonment
in Romania [5], but the statistical importance of this factor is low [4]. Transnational or national policies
are also important driving factors in agricultural land management [6]. Meyfroidt et al. [7] analyzed
crude birth rate, rural life expectancy, population density, ethnic population, and yields of grains as
determinants of abandoned agricultural land. This assessment of the socio-economic factors confirmed
that the process of agricultural land abandonment is widespread and persistent in socially marginal
areas with declining yields and a diminishing and less demographically active population [7,8].

The Common Agricultural Policy (CAP), in European countries, aims not only to support food
safety and farmers’ incomes, but also to sustain typical features of rural landscape to avoid the risk of
agricultural abandonment. Special measures are important, especially in less-favored areas with low
soil productivity or poor climate conditions, where farming activity is crucial for land management.
According to a model-based assessment of the potential impact of agricultural and trade policy reform
on LU, it is estimated that around eight percent less land will be farmed under the most recent
CAP reform. However, in some regions, policies from other sectors (such as nature conservation or
environmental restrictions) may influence the profitability of continuing agricultural practices [9].

In Eastern Europe, the transition from a command to free-market-oriented economies, after the
fall of the Iron Curtain in 1989, has drastically changed the region’s political, socio-economic and
demographic structures [10]. Widespread LU changes, including the process of agricultural land
abandonment in Eastern Europe, was triggered by the collapse of socialism and the resultant radical
institutional reforms and economic shocks [4]. State-support and markets for agriculture disappeared,
new land management policies were issued, and land reforms resulted in massive land ownership
transfers. Land abandonment may be a consequence of low crop yields, market protection policies,
and increased imports of farm crops from other parts of the world, but can also be a result of abrupt or
progressive LU change caused by environmental or socio-economic factors mentioned before [11,12].

Different definitions of agriculture abandonment depend on the nature of their approach—
administrative, economic, social, landscape-ecological, or agronomic—and are adaptable to the context
of different countries. For example, some countries use the qualitative definition of abandoned land
(such as a description of the land condition), whereas others have a quantitative definition (e.g.,
number of years without cultivation or grazing) [13]. In all cases, agricultural land is considered to be
abandoned when it has no farming functions anymore.

Landscape analysis and assessment, mainly in terms of farming activities, require the definition of
agricultural land, which is, and always has been, highly dynamic due to its recreation by humans over
centuries. For this study, we adopted the definition of the Food and Agriculture Organization [14],
according to which, agricultural land is represented by arable land, permanent crops, permanent
meadows, and permanent pastures. Arable land is associated with the cultivation of occasional crops
and occasional meadows for mowing and grazing. Vineyards and orchards, or plantations of fruit
shrubs belong to permanent cultures. Permanent meadows and pastures are represented by grass
areas used for mowing and grazing that do not belong to the crop rotation system.

Table 1 contains the generalized abandonment classes of agricultural land in Central Europe.
The area is susceptive to a gradual process, which manifests by physiognomic changes (such as a
heterogeneous arrangement, i.e., clustering of vegetation and variability of its tallness) and by the
accretion of new vegetation species, herbs, wind-borne weeds, and trees (which diversify or replace
monocultures of annual and perennial farm crops, vineyards, and orchards). Coppin et al. [15] refer to
such land cover (LC) changes as ‘modification’, that is, the progressive disappearance of the content of
the original LC/LU class. The opposite to this type of LC/LU change is ‘conversion’, which is a radical
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change from one type of LC/LU class to another type of LC/LU class (for example, the transformation
of a meadow into arable land [16]).

Table 1. Sample of modification of agricultural land use classes in the process of their abandonment
(e.g., Slovakia) [17].

Agricultural Land Use Overgrown by

Arable land
Herbaceous formations

Shrub and herbaceous formations
Tree, shrub, and herbaceous formations

Permanent crops
Herbaceous formations

Shrub and herbaceous formations
Tree, shrub, and herbaceous formations

Pastures and meadows
Shrub formations

Tree and shrub formations

Agricultural changes that took place in the countries of Central and Eastern Europe after 1989
should also be taken into account since they led to the transformation of the structure of agriculture
in these countries [18]. The abandonment of agricultural land and the subsequent overgrowth by
trees as documented by Taff et al. [19] in Latvia, Angelstam et al. [20] and Kozak et al. [21] in
Poland, Bičík et al. [22] in Czechia, and Gabrovec and Kladnik [23] in Slovenia prove this. In Slovakia,
Pazúr et al. [24] identified a more intensive abandonment of agricultural land with lower soil quality
located in less accessible places and neighborhood areas not used for farming; they also found that the
abandonment of agricultural land was affected by changes in the population structure in rural areas
and by migration. Levers et al. [25] studied abandonment in 1 km grid cells and an aggregation of
values in these cells using MODIS-based maps from Estel et al. [11] indicated 3–5 years of management
followed by at least five fallow years.

Because of the enormous scope of the present processes of land abandonment in Central and
Eastern Europe, which creates canopied forests and shrub stands outside the actively managed forests,
it is necessary to include these changes into the global carbon storage and cycle. First of all, conventional
approaches to the identification of abandoned agricultural land (AAL) apply data obtained in field
surveys [26]. The operative and efficient acquisition of information, for instance, concerning the
occurrence and dynamics of AAL, especially in larger areas, is often problematic. Satellite remote
sensing (RS) data help to eliminate these problems as such data are acquired at regular time intervals,
which makes it possible to track the development of AAL in different land sizes from tens to thousands
of hectares at the same time and by means of one physical quantity, that is, electromagnetic radiation.

In this context, this study aimed to summarize and assess all studies (published between 1992
and 2019 and recorded in the Web of Science (WOS) and Current Contents (CC) databases) focusing on
the identification and development of AAL via the application of satellite data obtained in the optical
and microwave spectra of electromagnetic radiation. Cognition of occurrence and size of the changing
agricultural land in favor of AAL is important, for instance, in association with the EU Regulation
No. 2018/841 of the European Parliament and of the Council of 30 May 2018 [27] on the inclusion of
greenhouse gas emissions and removals from LU, LC change, and forestry in the 2030 climate and
energy framework. One such change is abandonment. It is the reason why this study documents how
this issue is treated in studies published from 1992 to 2019. This study does not aim at a comprehensive
evaluation of abandonment drivers. The wide range of causes of AAL requires further selection of
literature through new keywords to identify relevant contributions to this problem.

2. Background of Literature Database Processing

This search was carried out by making use of structured queries in the form of field tags and
Boolean operators through the WOS (http://apps.webofknowledge.com) portal. Combinations of

http://apps.webofknowledge.com
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keywords and their synonyms interlinked by the operators to create the searching query were used.
The search was conducted from August 2018 to April 2019 (Figure 1). Two different search queries
were performed, focusing on agricultural abandonment using satellite RS and optical/radar RS satellite
data fusion according to agricultural abandonment (Table 2).

Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 20 

 

2. Background of Literature Database Processing 

This search was carried out by making use of structured queries in the form of field tags and 
Boolean operators through the WOS (http://apps.webofknowledge.com) portal. Combinations of 
keywords and their synonyms interlinked by the operators to create the searching query were used. 
The search was conducted from August 2018 to April 2019 (Figure 1). Two different search queries 
were performed, focusing on agricultural abandonment using satellite RS and optical/radar RS 
satellite data fusion according to agricultural abandonment (Table 2). 

The resulting set of relevant studies after iterative optimization contained 398 papers. Based on 
the abstracts of these papers and according to the search terms, studies that did not address any form 
of study intent were excluded. In general, studies investigating geological formations, water bodies, 
maritime, soil moisture, fire regime, or archaeology were rejected because the search algorithm also 
normally generates items that do not always correspond to the search parameters. Consequently, 243 
studies were used in further processing. 

The first stage of the expert study consisted of a thorough analysis of 243 abstracts and a more 
consistent filtration. After removing duplicity, 77 papers dealing directly with the relevant analyzed 
expert terms were considered in the following stage of the expert study. 

In the second stage, these 77 papers were subjected to a deep content analysis, keeping in mind 
the a priori specified research questions (Table 3). Several other papers were further removed, so the 
final number of analyzed papers was 73 (Table 2). An additional 25 studies, which were relevant for 
acquisition of knowledge about the AAL issue, were added to the original 73 papers analyzed 
according to the criteria mentioned in Table 3. These 25 studies are cited in the introduction and 
discussion sections of this review. These studies were not subjected to an expert assessment of the 
literature. 

 
Figure 1. Flowchart of literature database processing. 

  

Figure 1. Flowchart of literature database processing.

Table 2. Overview of the subject, search terms, and number of analyzed contributions.

Subject Search Query Number of Studies Study IDs

Agricultural
abandonment using

satellite remote sensing

TS = ((agricultur* OR crop* OR farm*)
AND abandon* AND land AND (remote

sensing OR satellite))
54 [6,10,11,25,26,28–76]

Optical and radar remote
sensing satellite data
fusion according to

agricultural
abandonment

TS = ((radar OR microwave* OR SAR)
AND optical AND remote sensing AND

satellite AND (combin* OR fus* OR
compar* OR integrat*) AND (agricult*

OR crop* OR farm*))

19 [77–95]

Used field tag TS = Topic, and Boolean operators (AND, OR) to form and combine search queries. Queries are
standardized according to the Web of Science Core Collection—Advanced search.

The resulting set of relevant studies after iterative optimization contained 398 papers. Based on
the abstracts of these papers and according to the search terms, studies that did not address any form
of study intent were excluded. In general, studies investigating geological formations, water bodies,
maritime, soil moisture, fire regime, or archaeology were rejected because the search algorithm also
normally generates items that do not always correspond to the search parameters. Consequently,
243 studies were used in further processing.

The first stage of the expert study consisted of a thorough analysis of 243 abstracts and a more
consistent filtration. After removing duplicity, 77 papers dealing directly with the relevant analyzed
expert terms were considered in the following stage of the expert study.

In the second stage, these 77 papers were subjected to a deep content analysis, keeping in mind
the a priori specified research questions (Table 3). Several other papers were further removed, so the
final number of analyzed papers was 73 (Table 2). An additional 25 studies, which were relevant for
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acquisition of knowledge about the AAL issue, were added to the original 73 papers analyzed according
to the criteria mentioned in Table 3. These 25 studies are cited in the introduction and discussion
sections of this review. These studies were not subjected to an expert assessment of the literature.

Table 3. Deep content analysis research questions.

General Task

Area
Data

Data resolution
Classes

Classification
Classification validation

Brief methodology
Key analysis

Specific Task

ST1.1: Which AAL classes were specified?
ST1.2: Based on which criteria were the AAL classes specified?

ST2.1: What data obtained in the optical part of the spectra were used?
ST2.2: What data obtained in the microwave part of the spectra were used?

ST2.3: Was the fusion of optical and radar data used?
ST3.1: What approaches to identification of AAL classes were used?

ST3.2: What was the precision of identification of AAL classes?
ST3.3: What were the benefits and drawbacks of applied approaches for the identification of AAL classes?

ST3.4: Do the analyzed papers prove that identification of AAL classes by applying optical and radar data is viable?

During the expert analysis, the specification and definition of AAL and criteria were emphasized.
In general, the process of identification of the LC/LU classes or of agricultural classes which might
directly or indirectly impact AAL was also closely related. The identification of the applied data of
optical and microwave parts of the spectra and their qualitative support by field surveys represented
an important part of the analysis. The classification algorithms or other approaches applied in the AAL
identifying process were also considered. The search also resulted in the identification of agriculturally
oriented papers devoted to the fusion of optical and radar data (without special stress on AAL).

3. Results

The analyzed set consisted of 73 studies (Table 2); each was given a unique ID number listed in
the references section. The papers were published in the years 1992–2018 (Figure 2) by 60 first authors.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 20 
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3.1. Location of Analyzed Studies

Several areas of interest were identified during the expert analysis (Figure 3). Most of the studies
were localized in Europe, North America, Russia, and China. Some studies investigated localities in
Southeast Asia, Central Asia, the Sub-Saharan area of Africa, and equatorial South America.
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3.2. Survey of Specified AAL Classes and Their Definition and Abandonment Process

Agricultural land abandonment, in the most general interpretation by the available literature,
is defined when the agriculture land is not managed (not sawn, not tilled, not even in the case of
crop cultivation, not mown, or not grazed in the case of meadows) [11], the formerly managed arable
land and meadows are gradually replaced by unmanaged grass–herb formations and successive
shrubs [10], or the agricultural land is not exploited for a minimum of five years [53]. Other definitions
are based on the premise that it is a common LU change, making the accurate mapping of both location
and time when agricultural abandonment occurred important for understanding its environmental
and social outcomes [64]. Alcántara et al. [69] specified this process, asserting that it is the result
of a land owner’s decision to reduce the intensity of use of land for agriculture (including grazing)
for an undetermined period, based on either natural, socio-economic, or personal constraints. In
our approach, we distinguished between agricultural land abandonment (process) and AAL (state,
final condition).

Papers which did not consider AAL classes (Table 4), although specified by keywords as potential
sources of information about these classes, remained in the list of references because during the analysis
of their content, other content important for the evaluation of the literature (for instance, fusion of
optical and microwave data) was established.
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Table 4. Summary of abandoned agricultural land characterized in the contributions.

Classes AAL/LCLU Number of Studies Study IDs

AALs were not considered 26 [31,33,36,40,42,50,57,62,78–95]

Class not directly tagged as AAL is
only a result of LC/LU class change 7 [6,28,35,51,52,66,67]

One directly defined AAL class 32 [11,25,26,30,37–39,41,43–48,53–55,
59–61,63,65,68–77]

Two or more defined AAL classes 8 [10,29,32,34,49,56,58,75]

Several papers contained classes, which, by their significant physiognomic properties and
the known change of the status based on LC/LU, may be considered AAL classes; for example,
changes within the grassland/forest classes or arable land/grassland [6,35], AAL because of lowered
productivity [66], production effectiveness in forests [28], initial re-growth of short biomass [96], and
overgrowth by secondary vegetation [97].

The specification of one AAL class, directly defined by the authors, may be interpreted in various
ways. For instance:

• Land covered by successional vegetation at the time when satellite data were recorded [70];
• Areas with proven phenology changes by the moderate resolution imaging spectroradiometer

(MODIS) imagery [69];
• Areas specified by the MODIS normalized difference vegetation index (NDVI) time series [11,37];
• Arable land or managed grassland converted to permanently unmanaged grasslands [55];
• Originally agricultural land, but not used for at least five years [53,72];
• Arable land barren for two or more years to be abandoned, while arable land barren for less than

one year (including) was defined as fallow [71];
• Short-term-fallow land [76];
• Arable land and pastures covered by early successional shrubs and trees [46];
• Croplands and managed grasslands in use during the late 1980s, but converted to fallow land

later (shrublands or young forests) [39];
• Degraded land [73];
• Unmanaged grasslands [77].

Examples of two or more AAL classes defined in the papers:

• Disappeared vineyards (densely overgrown by shrubs and trees, and linear structures of grapevines
are not recognizable any more) and abandoned vineyards (partially identifiable linear structures
of grapevines) [32];

• Fallow agricultural land (crops or managed grasslands replaced by unmanaged grasslands
or shrublands) and afforested areas (crops and managed grassland that had a closed forest
canopy) [10];

• Arable land potentially abandoned, meadows and pastures potentially abandoned, mixed LU
potentially abandoned, and permanent crops potentially abandoned [29];

• AAL abandoned managed grasslands, non-managed grasslands, and shrubs [75].

Changes in LC/LU classes were probably the basic criterion (Table 5) used for the specification of
classes and further estimation of the development of AAL, for instance, arable land→ grassland, arable
land → shrubland, arable land → abandoned land, managed grassland → unmanaged grassland,
and unmanaged grasslands and shrubs→ unmanaged land. This criterion appeared in as many as
15 evaluated studies (Table 5, LC/LU changes). Another important criterion applied to the specification
of AAL classes (in seven studies; Table 5, NDVI changes) was NDVI changes in the context of their
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time series. The criterion of the change of arable land in a long-time horizon based on statistical
data, historical maps, or long-term orders of RS data was applied in four papers. Another applied
criterion was the definition of a particular time interval when the given arable land was not exploited
(for instance, at least five years). The criterion for the specification of the AAL class directly included in
the agricultural census was used in two papers (Table 5, Identification of AAL classes). Simulation of the
potential occurrence of AAL (for instance, based on consideration of varied natural and socio-economic
conditions) was also an important criterion (used in two studies; Table 5, Identification of potential
occurrence of AAL). Assessment of biomass was used for the indirect determination of the AAL
class in three papers, and the criteria were not exactly specified in three papers (Table 5, Indirectly
considered AAL).

Table 5. Criteria applied in the specification of abandoned agricultural land classes.

Criteria Used in Analyzed Papers Number of Studies Study IDs

LC/LU changes
According to LC/LU attribute table 15 [6,10,28,34,35,39,46–49,55,

65,74,75,77]

NDVI changes
According to phenology change and time series analysis 7 [11,37,43,44,69,70,73]

Specific time perspective horizon 2 [53,76]

Identification of potential occurrence of AAL
Secondary succession 2 [26,63]

Changes of arable land in a long-time horizon 4 [30,38,58,60]

Identification of AAL classes
Taken over from agricultural census 2 [52,66]

Fulfilled the following three basic conditions:

1. Used in the past (recorded as agricultural land in the
Land Parcel Identification System)

2. Values of selected biophysical parameters (Geoland 2)
3. Heterogeneous cover (higher variance in reflectance)

1 [29]

Indirectly considered AAL
By assessment of biomass 3 [67,96,97]

Not exactly specified criteria

1. A priori selected abandoned agricultural land; its
manifestation in radar record

2. Comparison of AAL classes on a photograph with etalon
5 [28,51,54,56,68]

3.3. Satellite Data and Various Parts of the Electromagnetic Spectrum Used for AAL Identification

All 73 studies were categorized and generalized based on the general question ‘Data’ (Table 6)
and further detailed into ST2.1 and ST2.2. (Figures 4 and 5, respectively). According to those data, the
Landsat, Terra Aqua, and SPOT programs were identified as the most frequently used data sources
for the satellites with optical sensors, and Envisat-ASAR and RADARSAT-2 were identified as data
sources for the satellites with microwave sensors. Sentinel-1 and Sentinel-2 data are increasingly used
in European projects.

Table 6. Applied remote sensing data.

Used Remote Sensing Data Number of Studies Study IDs

Optical remote sensing data 42 [6,10,11,26,28–35,37,39–41,43–48,
50–54,57,59,61,62,64–66,69–76]

Radar remote sensing data 4 [36,68,87,89]

Optical and radar remote sensing data,
although each was used independently 4 [42,63,67,95]

Combination of optical and radar remote
sensing data 18 [49,56,77–86,88,90–94]

Compilation of classic statistical data 5 [25,38,55,58,60]
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Landsat-5 and Landsat-7 data were used in the older studies analyzed concerning AAL
identification, supported by multitemporal representation and wide availability. These data were often
applied in combination with the MODIS data. The mentioned fusion of optical data (MODIS and
Landsat) was connected with the supra-regional significance of studies conducted in study areas larger
than 10 million km2 [11,28,30,37,70,75]. This fact also corresponded to the radiometric resolution of
sensors, that is, the use of 30 m of spatial resolution in the case of Landsat project data or 250–500 m in
the case of MODIS usage. Radiometric resolution of quoted satellites facilitated intensive tracking of
LC heterogeneity. However, the textural and spectrally significant physiognomic indices, needed for a
thorough distinction of AAL classes were lost with low spatial resolution data.

Studies which applied SPOT-5 or SPOT-6 data focused on testing procedures associated with the
identification of AAL and LC/LU classes; for this reason, these studies worked with smaller key study
sites (below 1000 km2) [29,44,52,54,56]. Studies using Sentinel-2 satellite data combined this with aerial
data in study areas smaller than 750 km2 [50,67].

3.4. Methods for Identification of AAL Classes

The majority of the studies identified AAL (Figure 6) using object-based image analysis
(OBIA) [32,35,49,54,56,76] and multitemporal analysis (MA) [47,52,58,61,74] methods. Most of the
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studies related to these methods combined different approaches. Most of them were connected with the
vegetation index—NDVI: OBIA + NDVI [26,29,44] and MA + NDVI [37,43,69,73]. A significant amount
of vegetation indices was used with the OBIA methods in a study by Liu et al. [51]. Six vegetation
indices were used, but their usage in the process of AAL identification was limited. Other studies
worked with the support-vector machine (SVM) classifier: OBIA + SVM [53] and MA + SVM [10,59,70].
Löw et al. [34] used the OBIA methods with a fusion of SVM and the random forest (RF) algorithm,
resulting in significantly more accurate results than RF or SVM alone (overall accuracy increased by up
to 7%). Hellesen and Matikainen [36] used OBIA with classification and regression trees to map shrub
and tree cover in grassland habitats.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 20 
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MA for mapping the secondary vegetation stands and clearings, using JERS-1 SAR data, was
analyzed by Salas et al. [97]. Kuemmerle et al. [6] compared the combination of MA with supervised
and unsupervised pixel-based approaches. Estel et al. [11] achieved a significant improvement by
combining phenological profiles with multiple year NDVI time series data and the RF classification
algorithms; overall accuracy reached 90.1%. A similar approach was selected by Griffiths et al. [65],
who used RF on image composites and variance metrics, with the addition of the NDVI data series.

The application of machine learning algorithms, such as SVM or RF, supported by regression
models or phenological aspects, is also a widely used method. An extensive analysis of machine
learning algorithms in relationship with the classification of managed grasslands was performed by
Dusseux et al. [77]. The separate usage of SVM algorithms, performed by Kuemmerle et al. [39],
showed sufficient results for AAL identification, but the study was focused on carbon sequestration.
Prishchepov et al. [75] compared the SVM algorithm with the maximum likelihood algorithm, exhibiting
sufficient results for AAL identification using SVM. Prishchepov et al. [45] used an SVM classifier to
monitor agricultural land abandonment using ImageSVM tool in IDL (interactive developing language)
to select the optimal SVM parameterization automatically. They produced accurate LU/LC maps using
multiseasonal imagery and the SVM change-detection approach. Prishchepov et al. [46] performed
an effective combination of the SVM algorithm with logistic regression models. Another type of
machine learning algorithm, named naïve Bayes classifier, was applied in a study by Lesiv et al. [72] in
combination with several data inputs, including multitemporal Landsat and MODIS data. This study
could be useful for the assessment of biogeochemical cycles (e.g., carbon dynamic) on abandoned
and cultivated fields or for the analysis of the patterns and proximate causes of greening (vegetation
recovery) and browning (vegetation degradation).

Other authors performed several methodological approaches for the classification of AAL. For this
purpose, we refer to these studies as other combined methods for AAL identification using RS datasets:
agricultural inventory with LU models [60], long-term inventory data with a cropland density map [30],
multiple classification models [28], expert opinion with biophysical models [66], light detection and
ranging (LiDAR) data and digital elevation model with ancillary data [63], hybrid classification:
unsupervised iterative self-organizing data analysis technique (ISODATA) classification algorithm
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combined with supervised maximum likelihood algorithm [42], and ISODATA combined with the
supervised classification approach and multitemporal images [96].

Finally, there were several studies dealing with SAR data. Correlation and machine learning
regression were used in a study by Castillo et al. [67]. A computer-assisted photo interpretation (CAPI)
with significant interference of the expert—interpreter opinion and field observation with SAR data
usage—was performed in a study by Ray et al. [68]. This study revealed unusual polarization responses
in AAL areas.

Spring observation is highly relevant to differentiate arable land and AAL, and this could be
secured by the usage of SAR data. Moreover, SAR-based maps can be used to fill in temporal
gaps in the classification process, where clouds and haze result in missing values [49]. The
work of Stefanski et al. [49] created an object-based classification workflow using an RF classifier,
resulting in five different LC/LU maps. SAR-based OBIA with simple classification was performed by
Yusoff et al. [44]. The process of assigning classes to objects was done for each class separately with
a trial and error approach. Dusseux et al. [77] showed that the combined use of optical and radar
RS data was not efficient for grassland management identification. This study also identified the
most discriminating variables (from several vegetation indices, biophysical variables, backscattering
coefficients, and polarimetric discriminators) useful for grassland classification. AAL is challenging
to identify because it is driven by both natural and social factors. It is usually fragmented and
scattered to small abandoned land parcels [71]. This issue leads to various problems, which should be
acknowledged (Table 7).

Table 7. Key findings and advantages of abandoned agricultural land identification using remote
sensing data.

Analytical Findings/Advantages Sample References

Combining multiseasonal RS data improve AAL classification [69]
Combining phenological profiles improve AAL classification [11]

Minimum NDVI values are more effective against mean NDVI values [43]
Shrub formations are an indicator for AAL identification (because shrub formations

are not natural vegetation formations in the agriculture area) [42]

High-resolution statistical databases improve the estimation of AAL [38]
Integration of RS data with in situ data and the use of biophysical parameters improve

AAL classification [29]

Carbon stocks correlate with canopy coverage and spectrally based vegetation indices [51]
Object-oriented classification rules contribute to AAL feature extraction [56]

4. Discussion

In this paper, 73 studies listed in the references in the following three spheres were analyzed
and assessed for: (i) definitions and criteria for the specification of AAL classes in the cited literature,
(ii) satellite (both optical and microwave) data used in the context of identification and assessment of
AAL classes documented in the quoted literature, and (iii) methods used for the identification of AAL
classes in the cited literature.

Based on this review, the main analytical finding was the absence of a generally accepted AAL
definition [71]. Moreover, different topics could be proposed for discussion: (i) analysis of large areas
using medium-resolution RS data [45], (ii) usage of LC change maps for AAL identification, (iii) missing
field surveys specially oriented to obtain significant features about AAL classes, (iv) long-term inventory
data with average accuracy used for validation, and (v) the use of only spectral or spatial object
properties [53].

The suggested vagueness in defining AAL classes was evident in the previous paragraph, and
only a few sources specified a comprehensive AAL definition. This was essential for identifying and
understanding the inner structure of progressive overgrowth change over time. It was necessary to
characterize three basic classes of AAL [17] for the process of abandonment identification validated in
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Eastern Europe and similar regions (Table 8), based on overgrowth by the vegetation of various types,
their tallness, density, and clustering. These physiognomic properties were perceived as carriers of
spectral and textural information necessary for the discernibility of the so specified AAL classes in
RS data.

Table 8. Definition of abandoned agricultural land classes [17].

General definition
Abandoned agricultural land (AAL) is land void of any activities associated with

agricultural production until this land becomes overgrown by other than
agricultural vegetation.

AAL1

AAL overgrown by low vegetation (herbaceous formations): Originally agricultural
land (arable land, vineyards, and orchards) overgrown by low to tall grasses and
broad-leaved herbs. It develops without human intervention for more than three

years, while it is not part of a fallow. Overgrowth of land by herbaceous
formations >90% and their tallness oscillates between 0.5–1.5 m.

AAL2

AAL overgrown by medium-sized vegetation (shrub formations): Originally
agricultural land (arable land, meadows and pastures, vineyards and orchards)
fully overgrown by grasses and broad-leaved herbs and shrubs with a canopy
closure >20%, tallness of which is maximum 1.6–3.0 m. Sporadic trees are not

identifiable on the Sentinel images (picture element 10 × 10 m).

AAL3

AAL overgrown by tall vegetation (tree formations): Originally agricultural land
(arable land, meadows and pastures, vineyards and orchards) fully overgrown by

grasses and broad-leaved herbs and shrubs with a varied canopy closure and
>20% trees; canopy taller than 3 m.

Based on field research [17] of these basic classes and by the type of overgrown agricultural land
(represented by arable land, meadows and pastures, and orchards and vineyards), it was possible to
specify eight AAL sub-classes (Table 9).

Table 9. Nomenclature of detailed classes AAL1, AAL2, and AAL3.

AAL1
AAL11 Arable land with herbaceous formations

AAL12 Orchards = S and vineyards = V with herbaceous formations

AAL2

AAL21 Arable land with herbaceous/shrub formations

AAL22 Meadows and pastures with shrub formations

AAL23 Orchards = S and vineyards = V with shrub formations

AAL3

AAL31 Arable land with tree formations

AAL32 Meadows and pastures with tree formations

AAL33 Orchards = S and vineyards = V with tree formations

The four physiognomic criteria used for the definition and specification of AAL classes could
be relevant. Essential parts of their validation were field surveys defining the characteristic part of
the abandonment of agricultural land in real conditions. Pointereau et al. [13] argued that in some
cases, the estimation of AAL and fallow land (especially class AAL11) is difficult and a question
of the declaration by the farmer. In such a case, useful data can be obtained from the Integrated
Administration and Control System.

Studies involved with the criteria of LU/LC changes primarily concentrated on changes within
the framework of identified classes. The accomplishment of such methodical steps did not require any
thorough field survey. An important contribution to the given issue may be a thorough field survey,
facilitating the exact specification of physiognomic criteria. The given procedure is the basic bottom-up
classification approach offering an above-standard quality of processing the field data.
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The physiognomic criteria, which would be obtained by a thorough field survey, however, did
not enter the process in the analyzed and assessed publications. Presumably, the application of
the proposed criteria, along with the phenological metrics (especially with NDVI time series), can
contribute to the identification of AAL classes. The statistical analysis of quoted time series, based on
correlation coefficients or standard deviation, may also be significant.

In conclusion, this review shows, that all of the analyzed papers identified AAL using an indirect
approach. Most of the studies compared LC/LU data from different time horizons, NDVI time series,
and different statistical databases (Table 5). Direct identification of AAL classes using RS data from
the exact time horizon (single image) and based on prior defined interpretation features of AAL
was missing.

The resulting process of AAL identification using satellite data and training data obtained from
field surveys may be accomplished by object-based methods in combination with machine learning
algorithms, preferably, SVM or RF.

Current research in abandonment identification focused on the global or sub-continental scale in
terms of agriculture production assessment and carbon cycle contribution. The research focused on the
local scale applied data with a high resolution of approximately 10 m in experimental sites smaller
than 1 × 1 km. Another challenge in AAL determination is radar and optical data fusion, utilizing the
advantages of both technologies. Currently, with the Sentinel-1 data and Sentinel-2 data (Landsat), we
expect significant results and improvement for AAL class identification. The combination of other
relevant sources performed by fusion with ALOS-2 or by adding the aerial imagery has led to the
synergic use of multitemporal optical, microwave (backscatter, interferometry), and LiDAR data as the
best combination in RS and the model-based semi-empirical approach [98].

The main challenges in AAL identification compared to the knowledge attained by analysis and
evaluation of the cited literature are still open:

• Enrichment of information potential of optical and radar data fusion by the data obtained from a
detailed field survey;

• The exact identification of AAL areas containing relevant characteristics about the nature of the
overgrowing vegetation may contribute to the simulation of biomass volume in such areas;

• Determination of suitable phenological season for AAL identification;
• Biomass estimation;
• Identification of driving forces causing the process of abandonment;
• Determination of AAL classification rules;
• Analysis of specific spectral, textural, and biophysical characteristics of AAL;
• Verification of the exploitation of new Sentinel-1 (C-band) and ALOS-2 (L-band) radar sensors

in various combinations of polarizations and combination with optical Sentinel-2 data in the
AAL classification;

• Verification of the chances to improve the resolution or pixel size working with the single look
complex (SLC) data.

5. Conclusions

In this paper, 73 studies of world literature dealing with AAL identification using RS data were
analyzed, which were supplemented by 25 sources used for a deeper understanding of the process
of abandonment of agricultural land. We can conclude that the analyzed and evaluated studies,
documenting mostly the abandonment of agricultural land and approaches to identify classes of
overgrowing species, mostly did not consider detailed field surveys. Additionally, the identification
and assessment of the natural vegetation overgrowth in AAL were also missing. The set of assessed
studies provided the information base to obtain the missing information that facilitates the identification
of AAL. In Eastern European countries, AAL has been more distinct since 1989 (Figure 3), manifesting
the changes in the political, economic, and social situations in those countries.
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A study providing a survey of knowledge about AAL is especially important for compliance with
EU Regulation No. 2018/841 of the European Parliament and of the Council of 30 May 2018 [27] on
the inclusion of greenhouse gas emissions and removal from LU, LU change, and forestry in the 2030
climate and energy framework. In order to obtain accurate accounts of emissions and removals in
accordance with the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC Guidelines),
the annually reported values under Regulation (EU) No. 525/2013 of the European Parliament and of
the Council for LU categories and the conversion between LU categories should be utilized. Compliance
with the directive will also require the recording of LU changes. One of them is the abandonment of
agricultural land. A survey of studies involved with this theme may be a valuable basic material for
the preparation of a strategy for the fulfilment of the quoted directive.

The precise measurement of thickness and tallness of trees or shrubs on AAL is essential not
only to AAL class definition, but to selection and calculation of which the models of woody biomass
are most suitable for AAL biomass estimation on carbon storage. The drawback of many studies
using the Sentinel-1 data is that they were limited to the ground range detected product, which has
a lower resolution and does not work at all with the phase component. This can be overcome by
using single look complex (SLC) data, which require certain programmer skills in the preparation and
conversion of SLC data into specialized software (e.g., SNAP) and for the creation of stack files. The
advantage of this approach is that it enables better, more complex, and controllable determination
of backscatter parameters. Available time orders of Sentinel data make it possible to apply dual
polarimetry and to check the time course of parameters related to biomass quantification in the frame
of tracked AAL classes.
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