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Abstract: Providing reliable long-term global precipitation records at high spatial and temporal
resolutions is crucial for climatological studies. Satellite-based precipitation estimations are
a promising alternative to rain gauges for providing homogeneous precipitation information.
Most satellite-based precipitation products suffer from short-term data records, which make
them unsuitable for various climatological and hydrological applications. However, Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record
(PERSIANN-CDR) provides more than 35 years of precipitation records at 0.25◦ × 0.25◦ spatial
and daily temporal resolutions. The PERSIANN-CDR algorithm uses monthly Global Precipitation
Climatology Project (GPCP) data, which has been recently updated to version 2.3, for reducing the
biases in the output of the PERSIANN model. In this study, we constructed PERSIANN-CDR using
the newest version of GPCP (V2.3). We compared the PERSIANN-CDR dataset that is constructed
using GPCP V2.3 (from here on referred to as PERSIANN-CDR V2.3) with the PERSIANN-CDR
constructed using GPCP V2.2 (from here on PERSIANN-CDR V2.2), at monthly and daily scales for the
period from 2009 to 2013. First, we discuss the changes between PERSIANN-CDR V2.3 and V2.2 over
the land and ocean. Second, we evaluate the improvements in PERSIANN-CDR V2.3 with respect
to the Climate Prediction Center (CPC) unified gauge-based analysis, a gauged-based reference,
and Tropical Rainfall Measuring Mission (TRMM 3B42 V7), a commonly used satellite reference, at
monthly and daily scales. The results show noticeable differences between PERSIANN-CDR V2.3
and V2.2 over oceans between 40◦ and 60◦ latitude in both the northern and southern hemispheres.
Monthly and daily scale comparisons of the two bias-adjusted versions of PERSIANN-CDR with the
above-mentioned references emphasize that PERSIANN-CDR V2.3 has improved mostly over the
global land area, especially over the CONUS and Australia. The updated PERSIANN-CDR V2.3 data
has replaced V2.2 data for the 2009–2013 period on CHRS data portal and NOAA National Centers
for Environmental Information (NCEI) Program.
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1. Introduction

Precipitation is widely recognized as the driving component of the global water cycle, and has a
significant impact on climatic patterns [1]. Providing reliable long-term global precipitation records
at high spatial and temporal resolutions is crucial for climatological studies [2–5]. Gauge, radar,
and satellite instruments are the primary methods for precipitation measurements. Ground-based rain
gauge networks represent the most direct means for precipitation measurements, and also provide the
longest historical precipitation records [6,7]. Several global gauge-based precipitation datasets have
been developed for climatological studies by interpolating long-term in-situ observations. The Climate
Prediction Center (CPC) global unified gauge-based analysis of daily precipitation is one of the
most well-known gauged-based products, which reports global land precipitation information with
a resolution of 0.5◦ × 0.5◦ from 1979 to present [8,9]. However, global gauge-based observations are
limited due to inadequate and sparse networks of stations over land, especially in remote areas, and lack
of data over oceans [10–12]. Moreover, extending point observations to a gridded rainfall dataset
introduces another drawback for rain gauges and a decisive source of uncertainty [13]. Radar networks
are viable alternatives for rain gauge networks due to their continuous precipitation measurements
with high temporal and spatial resolutions [14]. However, radars do not cover remote regions and
ocean regions. Furthermore, establishing and maintaining a radar network with global coverage is
difficult due to accessibility and financial limitations [15,16].

Due to the limitations of both ground-based rain gauges and radar networks, satellite-based
quantitative precipitation estimates are promising alternatives for providing homogeneous precipitation
estimation with high spatial and temporal resolutions and global coverage [6,17–20]. Over recent
decades, several satellite-based precipitation datasets have been constructed with different spatial and
temporal resolutions. As specified by the World Meteorological Organization, more than 30 years of
data is needed for global and regional climate studies [21]. Current well-known satellite-based and
satellite + gauge precipitation datasets suffer from coarse spatial and/or coarse temporal resolution,
or from periods of record too short for climatological studies. For example, the Global Precipitation
Climatology Project (GPCP) is a global monthly precipitation dataset with a spatial resolution of
2.5◦, which provides information from 1979 to the present [22–24]. GPCP merges gauge observations
with low-orbit and geosynchronous-orbit satellite information and is one the most commonly used
products for climate studies [24]. However, its coarse spatial and temporal resolutions limit the
capability of capturing the spatial details and dynamics of extreme precipitation events [25]. Higher
spatiotemporal resolution precipitation products are needed for studying the diurnal cycle and
are essential for hydrological modeling studies [26–28]. The Tropical Rainfall Measuring Mission
(TRMM) project at the National Aeronautics and Space Administration (NASA) provides TRMM
3B42 V7, which is a satellite-based precipitation product with a 0.25◦ × 0.25◦ spatial resolution and a
three-hourly temporal resolution beginning from 1998 [29]. Similarly, the Climate Prediction Center
at the National Oceanic and Atmospheric Administration (NOAA) developed a product named
NOAA-CPC morphing technique (CMORPH Version 1.0), which provides precipitation estimates
with three spatial and temporal resolutions (8 km—30 min, 0.25◦—3 hourly, and 0.25◦—daily) starting
from 1998 [30]. These two products are among the most well-known satellite-based precipitation
estimation algorithms; however, their precipitation estimation records are too short to be utilized for
climatological studies.

Among different remotely sensed satellite precipitation products, Precipitation Estimation from
Remotely Sensed Information and Artificial Neural Networks-Climate Data Record (PERSIANN-CDR)
is an attractive candidate for climatological studies [31]. PERSIANN-CDR is attractive for climatological
studies for two reasons. First, its higher spatial and temporal resolution. Compared to GPCP,
PERSIANN-CDR provides higher spatial (0.25◦ × 0.25◦) and temporal (daily) resolution precipitation
estimates, which addresses the need for capturing the spatial and temporal variability of precipitations
for climate studies [25]. Second, its longer record of data. PERSIANN-CDR provides a relatively
longer record of precipitation estimates with 36+ years of data (starting from 1983) in comparison
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to TRMM 3B42 V7 and CMORPH with 21-year records. PERSIANN-CDR has been widely used for
different applications requiring long-term data, such as developing intensity–duration–frequency
(IDF) curves [32–34], monitoring drought [5,35–37], identifying trends in precipitation and extreme
events [38–41], and simulating stream flow [42–50].

The PERSIANN-CDR product is constructed from the PERSIANN algorithm using GridSat-B1
infrared information as input [51,52]. Due to the sensitivity of satellite-based precipitation algorithms
to precipitation type (rain or snow), underestimation of orographic rainfall, and systematic biases
in mountainous regions, most satellite-based algorithms apply a ground-based observation to
bias-adjust their estimations [29,53]. The PERSIANN-CDR algorithm utilizes 2.5◦ × 2.5◦ monthly
GPCP precipitation information in order to reduce the biases in the output of the PERSIANN model.
By doing this, PERSIANN-CDR precipitation estimation becomes consistent with the monthly GPCP
Satellite-Gauge product at 2.5◦ × 2.5◦ spatial resolution while still preserving the daily spatial rainfall
estimation from the PERSIANN algorithm. Recently, GPCP has been updated to version 2.3 in order
to improve the quality and homogeneity of the product. These updates include adjustments in the
cross-calibration procedures of satellite inputs due to transitions from previous sensors to new ones.
The first sensor change was transitioning from the TIROS Operational Vertical Sounder (TOVS) to the
Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) in 2003, both of
which are used for precipitation estimation for high latitudes. Next, the Special Sensor Microwave
Imager (SSMI) sensor was superseded by the Special Sensor Microwave Imager/Sounder (SSMIS) in
2009. Both SSMI and SSMIS play important roles in providing information for low-latitude precipitation
estimation over both land and oceans. In addition to the above-mentioned updates in satellite sensors,
a new set of gauge analyses computed by the by the Global Precipitation Climatology Centre, GPCC
V7 Full analysis, was used for updating precipitation estimation over land for the period between
1979 and 2013. The impact of using the GPCC Monitoring product for the years after 2013 is under
investigation. [54]. Adler et al. [54] covers the improvements in the new version of GPCP (V2.3)
from the previous version (V2.2). Their results show that the total global precipitation estimated
for GPCP V2.3 increased by 1.8% over oceans for the post-2002 period and 1.8% over land for the
years after 2009. The changes applied in GPCP V2.3 also correct small errors in GPCP V2.2 estimates,
which are significant for investigating the changes in inter-annual rainfall variabilities (e.g., due to El
Niño—Southern Oscillation (ENSO)) and trends over large areas.

Since PERSIANN-CDR has been a widely used precipitation estimation product for climate
studies in the scientific community, it is vital to continuously improve and evaluate the quality of this
product [31]. In this study, we employed a similar method for constructing PERSIANN-CDR with the
new version of GPCP (V2.3), which is discussed in the methodology section. The newly constructed
version of PERSIANN-CDR with GPCP V2.3, called PERSIANN-CDR V2.3, was compared and
evaluated with the previous V2.2 version for the period of 2009 to 2013. For comparison, the differences
between PERSIANN-CDR V2.3 and the previous version (PERSIANN-CDR V2.2) and also the two
latest versions of GPCP (V2.2 and V2.3) at the monthly scale were investigated. The estimation accuracy
of the two versions of PERSIANN-CDR was evaluated over land and ocean surfaces using the CPC
gauge-based precipitation dataset and the TRMM 3B42 V7 product. The comparison was made at both
the monthly and daily scales over the CONUS and the globe. The rest of this paper is organized as
follows. Section 2 explains the detailed structure of the datasets. Section 3 provides a description of
the methodology. Section 4 discusses the results, along with statistical and visual analyses. Lastly,
Section 5 concludes the paper by highlighting the main findings and evaluations.

2. Materials

2.1. Global Precipitation Climatology Project (GPCP) Monthly Product

GPCP is part of the Global Energy and Water Cycle Exchanges (GEWEX) activity under the World
Climate Research Program (WCRP). The GPCP monthly 2.5◦ × 2.5◦ precipitation product provides
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consistent global data by merging different satellite-based estimations (passive microwave/infrared)
over the land and ocean along with precipitation gauge information from GPCC over the land.
More detail on the input data and the merging process can be found in [22,24,55]. Recently, version 2.3
of the GPCP product has been released, which includes updates to the cross-calibration procedures of
rainfall estimation and updates in the gauge analysis methods [54]. The GPCP dataset is available via
the Earth System Science Interdisciplinary Center (ESSIC) and Cooperative Institute for Climate and
Satellites (CICS), University of Maryland College Park (http://gpcp.umd.edu). Additional information
can be found in [54].

2.2. CPC Global Unified Gauge-Based Analysis of Daily Precipitation

The CPC Global Unified Gauge-Based Analysis of Daily Precipitation dataset is a National
Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) product. Across
the globe, the CPC unified gauge-based analysis product employs more than 30,000 stations from
multiple sources, including Global Telecommunication System (GTS), Cooperative Observer Network
(COOP), and other national and international agencies, providing a daily precipitation estimation
at a 0.5◦ × 0.5◦ spatial resolution from 1979 to the present [56]. Over the CONUS, the CPC unified
gauge-based analysis product contains information from more than 8000 stations in order to estimate
precipitation with a spatial resolution of 0.25◦ × 0.25◦ at the daily scale from 1948 to the present.
One of the challenges in producing a gauged-based daily precipitation data set is to handle the
reported data from different stations, which use various methods of reporting time [9]. The end of
day (EOD) definition for accumulating 24-hour precipitation may differ from one country to another.
For example, over the CONUS, the rain rate values are accumulated from 12Z of the day before to
12Z of that day. In this study, we used the finer resolution CPC unified gauge-based analysis dataset
for evaluations over the CONUS. In addition, as we discuss in the methodology section, we used a
custom variant of the PERSIANN-CDR with the same EOD definition as CPC unified gauge-based
analysis for our comparisons over the CONUS. The CPC global unified gauge analysis was used
for comparison at the monthly scale over the globe. Both CPC datasets are available for public
use (ftp://ftp.cdc.noaa.gov/Datasets). A comprehensive description of the CPC unified gauge-based
analysis interpolation algorithm can be found in [8,56,57]

2.3. The Tropical Rainfall Measuring Mission (TRMM 3B42 V7)

The National Aeronautics and Space Administration (NASA) in cooperation with the Japan
Aerospace Exploration Agency (JAXA) launched The Tropical Rainfall Measuring Mission (TRMM)
in 1997 in order to measure rainfall information around tropical and subtropical areas. TRMM
Multi-Satellite Precipitation Analysis (TMPA), one of the TRMM products, provides 3-hourly
precipitation estimates at 0.25◦ × 0.25◦ for the latitude band of 50◦N to 50◦S. In this study, we utilized
the daily temporal scale of TRMM 3B42 V7, which was obtained from (https://pmm.nasa.gov/data-
access/downloads/trmm). This product derives precipitation by combining information from two
different types of satellite sensors: PMW and geostationary-infrared (Geo-IR) sensors. More detailed
information can be found in [29]. In this study, the TRMM 3B42 V7 estimates were utilized for
evaluating the two versions of PERSIANN-CDR over the ocean and for daily global comparison over
the land. We did not use CPC unified gauge-based analysis for daily comparison over land due to its
EOD definition, which may vary from one country to another.

2.4. PERSIANN-CDR

The PERSIANN-CDR product was developed by the Center for Hydrometeorology and Remote
Sensing (CHRS) at the University of California, Irvine (UCI). This dataset is available as an
operational climate data record via the NOAA National Centers for Environmental Information (NCEI)
Program (https://www.ncdc.noaa.gov/cdr) and via the CHRS Data Portal (http://chrsdata.eng.uci.edu/).
This near-global (60◦N–60◦S), high-resolution (0.25◦ × 0.25◦), long-term record (from 1983 to present)

http://gpcp.umd.edu
ftp://ftp.cdc.noaa.gov/Datasets
https://pmm.nasa.gov/data-access/downloads/trmm
https://pmm.nasa.gov/data-access/downloads/trmm
https://www.ncdc.noaa.gov/cdr
http://chrsdata.eng.uci.edu/
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precipitation product has a daily resolution on UTC days. The PERSIANN-CDR algorithm utilizes
GridSat-B1 infrared information [58–60] as input and NCEP stage IV hourly precipitation data [61–63]
to update the model parameters. In order to reduce the bias, this product is bias adjusted with the
GPCP precipitation product at a 2.5◦ × 2.5◦ and a monthly time scale. Additional details about the
PERSIANN-CDR algorithm can be found in [25].

3. Methodology

This study applied the same methodology used in the original PERSIANN-CDR algorithm
introduced by [25]. In the first step of the PERSIANN-CDR algorithm, the PERSIANN algorithm [52,64]
is applied to GridSat-B1 merged infrared data from GEO satellites. The outcome is called PERSIANN-B1
and it is a 3-hourly precipitation estimate dataset from 1983 to present at a quarter degree resolution
for the latitude band 60◦N to 60◦S. Then, in order to adjust the biases of this dataset, PERSIANN-B1 is
temporally aggregated to obtain a monthly scale PERSIANN-B1 dataset to match the GPCP data in
temporal resolution. In the same manner, PERSIANN-B1 data with a spatial resolution of 0.25◦ × 0.25◦

will be aggregated to match the 2.5◦ × 2.5◦ GPCP data. The temporal and spatial aggregations were
computed using the following equation:

RPERSIANN−B1(i′, j′) =
∑nd ∑nh

(
∑10 ∑10

[rPERSIANN−B1(i, j) ≥ thd]). (1)

In Equation (1), RPERSIANN−B1 and rPERSIANN−B1 are the aggregated monthly 2.5◦ PERSIANN-B1
data and original 3-hourly 0.25◦ PERSIANN-B1 data, respectively. The i and j are the latitude and
longitude of the PERSIANN-B1 at the 0.25◦ resolution. Similarly, i′ and j′ are the latitude and
longitude of the aggregated PERSIANN-B1 at the 2.5◦ resolution. “thd” is a pre-defined threshold to
eliminate noisy low-value pixels. As an artifact of the PERSIANN estimation process, small fractions
of non-raining pixels are falsely assigned with light rainfall rates. To minimize this effect, we applied
a threshold of 0.1 mm/day, which eliminates the falsely assigned light rainfall rates with no rainfall.
The nd and nh are the number of days and number of 3-hourly samples in a day, respectively. In the
next step, the bias-adjustment weights were calculated for each 2.5◦ grid cell of monthly data:

w(i′, j′) = RGPCP(i′, j′)/ RPERSIANN−B1(i′, j′), 0 ≤ w ≤ 20, (2)

where RGPCP is the monthly rain rate of GPCP for a given cell. Due to the linearity of the bias-adjusting
technique, the bias-adjustment weights (w) at the 2.5◦ spatial resolution and monthly temporal
resolution can be linearly interpolated into its corresponding 10 × 10, 0.25◦, 3-hourly PERSIANN-B1
grid cell estimates. The interpolation of w will ensure a smooth and continuous transition of
bias-adjustment factors at the 0.25◦ resolution:

Adj_rPERSIANN−B1(i, j) = w(i, j)∗ rPERSIANN−B1(i, j), (3)

where Adj_rPERSIANN−B1 is the GPCP-adjusted 3-hourly 0.25◦ PERSIANN-B1 precipitation data. In the
final step of PERSIANN-CDR preparation, 3-hourly PERSIANN-B1 data were aggregated to the daily
scale to reduce uncertainties:

PERSIANN-CDR (i, j) =
∑N

n=1
Adj− rPERSIANN−B1(i, j, n), (4)

where N is the number of 3-hourly Adj− rPERSIANN−B1 data for each day. Data for each 3-hourly file
were accumulated on a pixel-by-pixel basis and then converted to 24 h if N was more than 4 out of 8
per day.

It should be noted that we accumulated 3-hourly PERSIANN-B1 with two different EOD definitions
in order for each to be consistent with TRMM 3b42 V7 or the CPC CONUS dataset.
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In the first part of this study, we determined the amount of change between the two bias-adjusted
versions of PERSIANN-CDR and two versions of GPCP (V2.2 and V2.3) at monthly scales from 2009
to 2013. Both versions of PERSIANN-CDR at the daily scale were aggregated to the monthly time
scale. To determine the amount of change, we used the mean absolute difference (MAD) (Equation (5)).
The relative mean absolute difference (RMAD) was also computed to determine areas in which the
percentage of change was more significant (Equation (6)):

MAD =
1
n

∑n

i=1
|V2.3−V2.2|, (5)

RMAD =
1
n

∑n
i=1|V2.3−V2.2|
1
n

∑n
i=1 V2.3

. (6)

In the second part of the analysis, we evaluated the performance of both PERSIANN-CDR V2.2
and V2.3 over global land areas with respect to CPC unified gauge-based analysis and over the
ocean with respect to TRMM 3B42 V7 at monthly and daily scales. For the evaluation over land,
we re-projected PERSIANN-CDR V2.2 and V2.3 to a 0.5◦ × 0.5◦ resolution to be consistent with the
CPC unified gauge-based analysis dataset. Two commonly used statistical matrices, the correlation
coefficient (CORR) and root mean square error (RMSE) (Equations (7) and (8)), were used for the
evaluations. CORR was employed to measure the agreement between PERSIANN-CDR V2.3 and V2.2
with CPC unified gauge-based analysis and TRMM 3B42 V7. RMSE is widely used to measure the
error in the estimation of satellite-based datasets compared with observed datasets:

RMSE =
1
n

√∑n

i=1
(Esti −Refi)

2, (7)

CORR =

1
n

∑n
i=1(Esti − Esti)

(
Refi −Refi

)
σEst σRef

, (8)

where: Est: Estimation (PERSIANN-CDR V2.2 and V2.3); and Ref: Reference (CPC unified gauge-based
analysis and TRMM 3B42 V7).

4. Results and Discussion

4.1. Changes in the PERSIANN-CDR and GPCP Monthly Analysis from V2.2 to V2.3

4.1.1. Comparison in Spatial Domain

Figure 1a,b display the mean daily precipitation estimates of PERSIANN-CDR V2.3 and GPCP
V2.3 from 2009 to 2013. Both datasets show the same precipitation patterns in annual mean precipitation.
This similarity is reasonable since PERSIANN-CDR is bias-adjusted with the GPCP dataset at a monthly
scale. Figure 1c,d present the spatial pattern between MAD of the two versions of PERSIANN-CDR
and the two versions of GPCP for that period. On average, MAD is approximately 0.07 mm/day for
both versions of GPCP and PERSIANN-CDR at a monthly scale in the latitude bands of 60◦N to 60◦S.
The changes in the mean daily precipitation rate exceed 0.3 mm/day between the two versions of
PERSIANN-CDR and the two versions of GPCP over the North Atlantic Ocean, the North Pacific
Ocean, Northern South America, Central Africa, and Indonesia. Although the absolute difference
in the mean daily precipitation pattern reveals the average changes between the two versions of the
datasets, it cannot demonstrate the relative importance of these changes in various regions. The spatial
pattern of relative differences between the two versions of GPCP and PERSIANN-CDR was calculated
to show the percentage of change in the mean daily precipitation rain rate estimation for each pixel.
Calculating the relative difference is important because even small differences are critical in arid regions.
Figure 1e,f present the RMAD between V2.2 and V2.3 of the PERSIANN-CDR and GPCP products.
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MAD is more significant over tropical regions and oceans between the latitudes 40◦ and 60◦ in both the
northern and southern hemispheres, whereas RMAD between the two versions of PERSIANN-CDR
is more noticeable over North Africa, Australia, north China, Mongolia, and southeastern Russia.
These regions receive substantially less rainfall than other parts of globe; therefore, small changes in
the new versions of GPCP and consequently PERSIANN-CDR V2.3 could create significant variations
in RMAD.
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between GPCP V2.3 and V2.2 at a monthly scale, (e) RMAD between PERSIANN-CDR V2.3 and V2.2
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4.1.2. Comparison in Temporal Domain

Figure 2 shows the time series of differences between the mean monthly precipitation estimates
for the two versions of PERSIANN-CDR (V2.2 and V2.3) and two versions of GPCP (V2.2 and V2.3)
across three latitude bands. The analysis was done for tropical (20◦S–20◦N) and subtropical (60◦S–20◦S
and 20◦N–60◦N) bands. As shown in Figure 2, changes between the two versions of PERSIANN-CDR
(V2.2 and 2.3) and the two GPCP (V2.2 and 2.3) for tropical and subtropical zones over the land and
ocean are the same, demonstrating that PERSIANN-CDR follows the GPCP in this regard. Over the
ocean, the changes are more noticeable over subtropical regions, where the differences (V2.3–V2.2)
vary between 0.02 to 0.19 mm/day in the northern hemisphere, and −0.02 to 0.13 mm/day in the
southern hemisphere. These findings are consistent with those in Adler et al. [43], where they showed
that corrections in the new version of GPCP result in higher rainfall accumulations over the oceans,
especially in the higher latitudes and after 2003. Over oceans, most of the changes are primarily
due to the sensor shifting from TOVS to AIRS for GPCP estimates, which consequently affects the
PERSIANN-CDR product. Whereas GPCP V2.2 employed TOVS data for precipitation estimates,
GPCP V2.3 uses TOVS estimates before 2003 and different versions of AIRS data (based on availability
of sensors) thereafter. TOVS and AIRS data are utilized for precipitation estimation at high latitudes
over both land and ocean; however, changes over land are discounted after merging with the gauge
information [54]. Over land, the difference between the two versions of PERSIANN-CDR and the
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corresponding versions of GPCP are more detectable over tropical regions than over other land regions.
The changes ranged between −0.01 to 0.11 mm/day but are generally positive, showing an increase in
precipitation estimates over land for both PERSIANN-CDR V2.3 and their corresponding versions of
GPCP. These variations are mainly related to the change from the GPCC monitoring product in GPCP
V2.2 to the GPCC V7 full analysis in GPCP V2.3 for the time period used (2009–2013).Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 18 
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4.2. Monthly Evaluation of the Two Versions of PERSIANN-CDR

In this section, the performance of the two versions of PERSIANN-CDR is evaluated against
the CPC gauge-based observation dataset, over the CONUS, and against TRMM 3B42 V7 over water
bodies and global land areas at monthly time scales.

4.2.1. Evaluation over the CONUS

Figure 3 presents the spatial correlation and root mean squared error (mm/day) of PERSIANN-CDR
V2.3 and V2.2 with respect to CPC unified gauge-based analysis over CONUS from 2009 to 2013.
As mentioned in the data section, we utilized CPC unified gauge-based analysis at the 0.25◦ × 0.25◦

spatial resolution for evaluation over the CONUS. Locations with higher CORR values in Figure 3c show
where PERSIANN-CDR V2.3 has improved in terms of its correlation with CPC unified gauge-based
analysis. Locations with lower RMSE values in Figure 3f show where PERSIANN-CDR V2.3 has a
lower RMSE compared with PERSIANN-CDR V2.2. The performance of PERSIANN-CDR V2.3 is
noticeably improved over the eastern and northeastern regions of the United States. The highest
improvement can be detected over the states of Virginia, New York, Pennsylvania, Wyoming, Idaho,
and Oregon, where correlation improved by approximately 14% and RMSE decreased by 0.15 mm/day.
Figure 4 shows the time series of the average RMSE and CORR for PERSIANN-CDR V2.3 (red) and
V2.2 (blue) against CPC unified gauge-based analysis over CONUS. As shown, PERSIANN-CDR V2.3
outperforms the previous version in terms of the correlation coefficient and RMSE throughout the
studied period. Furthermore, the highest correlation and the lowest RMSE values are observed in June
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and July, when lower amounts of rainfall are observed compared to the other months of the year for
both versions of PERSIANN-CDR (not shown).Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 18 
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In order to investigate the statistical behavior of various performance evaluation metrics computed
for both versions of PERSIANN-CDR, frequency distribution histograms for bias, RMSE, R99p, and R95p
are presented in Figure 5. As can be seen in each histogram, the distribution of PERSIANN-CDR V2.3
has mean values closer to optimal (zero). The mean values closer to zero suggest that the precipitation
estimation accuracy of PERSIANN-CDR V2.3 has improved compared to PERSIANN-CDR V2.2.
For extreme events, both versions of PERSIANN-CDR tend to underestimate the rain rate, as the 95th
(R95p) and 99th (R99p) percentiles indicate. However, the error of PERSIANN-CDR V2.3 for extreme
events is less than V2.2.
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R95p, of the two bias-adjusted versions of PERSIANN-CDR at a monthly scale over the CONUS for
2009 to 2013.

4.2.2. Evaluation over the Globe

Figures 6 and 7 display the spatial distribution maps of CORR and RMSE for the two bias-adjusted
versions of PERSIANN-CDR versus CPC and TRMM 3B42 V7 at a monthly scale over the globe,
respectively. The CPC dataset at the 0.5◦ × 0.5◦ spatial resolution was utilized as a gauged-based
reference for comparison over global land areas. The original 0.25◦PERSIANN-CDR datasets were
resampled to the 0.5◦ spatial resolution using the bilinear interpolation method to match the spatial
resolution of the CPC unified gauge-based analysis dataset. Moreover, due to the unavailability of
gauge data over water bodies and oceans, TRMM 3B42 V7 at the 0.25◦ spatial resolution was employed
primarily for the evaluation of the two versions of PERSIANN-CDR over the ocean. As shown in
Figure 6, the estimation accuracy of PERSIANN-CDR V2.3 is improved mostly over CONUS and
Australia, marked by increases in the correlation and decreases in the RMSE with respect to CPC
unified gauge-based analysis. This figure also shows that PERSIANN-CDR V2.2 estimates have
a higher correlation with CPC over Africa than V2.3. However, due to an inadequate number of
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samples being used for CPC precipitation estimates over tropical Africa [8], the higher correlation
in this area does not necessarily mean that the previous version of PERSIANN-CDR works better
in this region. Comparison with TRMM 3B42 V7 over the ocean indicates similar performances by
both versions of PERSIANN-CDR at a monthly scale. Specifically, the overall spatial CORR and
RMSE of both bias-adjusted versions of PERSIANN-CDR (V 2.2 and V2.3) with TRMM 3B42 V7
is 0.78 and 1.34 mm/day, respectively. Table 1 summarizes the average value of the spatial maps
of CORR (in black) and RMSE (in red) between the two versions of PERSIANN-CDR against the
reference datasets. The table also shows that the improvement in PERSIANN-CDR V2.3 at monthly
scales is more noticeable over land areas, especially over the CONUS. The CORR and RMSE between
PERSIANN-CDR V2.3 and CPC unified gauge-based analysis over the CONUS are improved by 5.2%
and 2.3%, respectively. Over land, globally, the CORR between PERSIANN-CDR V2.3 and CPC unified
gauge-based analysis increased by 1.2%; while RMSE increased by 0.8%. Evaluation over the oceans
using TRMM 3B42 V7 as the reference shows that both CORR and RMSE increased by 1.25% and
0.74%, respectively.
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Table 1. Summary of CORR (in black) and RMSE (in red) for the two versions of PERSIANN-CDR
against references (CPC unified gauge-based analysis over the CONUS and globe land and TRMM
3B42 V7 over the ocean) at a monthly scale for the period of 2009 to 2013.

Data Set CPC(CONUS) CPC(Globe land) TRMM(Ocean)

PERSIANN-CDR V2.3 0.87 (0.87) 0.81 (1.25) 0.79 (1.34)
PERSIANN-CDR V2.2 0.84 (0.89) 0.80 (1.24) 0.78 (1.33)

Relative Difference 5.2% (−2.3%) 1.2 % (+0.8%) 1.2% (+0.74%)
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Figure 7. Monthly spatial CORR and RMSE (mm/day) maps for PERSIANN-CDR V2.3 (a,d) and
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2013 over the globe.

4.3. Daily Evaluation of the Two Versions of PERSIANN-CDR

4.3.1. Evaluation over the CONUS

Figure 8 displays the maps of daily CORR and RMSE between PERSIANN-CDR V2.3 and
PERSIANN-CDR V2.2 against CPC unified gauge-based analysis at a daily scale over the CONUS
for the period of 2009 to 2013. Figure 8 indicates that the CORR between the two versions of
PERSIANN-CDR and CPC unified gauge-based analysis varies geographically, with relatively higher
values over the eastern states and lower values over the western states. However, RMSE shows
better performance (lower values of RMSE) of PERSIANN-CDR over the western CONUS and poorer
performance (higher values of RMSE) over the eastern states. This geographical pattern in CORR and
RMSE is mainly due to differences in the average precipitation intensity. On average, the western
states receive less precipitation compared to the eastern part of the CONUS. Consequently, RMSE is
affected by the amount of rain, and often shows higher values over regions with higher rainfall. Note
the results might have been affected by the lower number of rainfall gauges over the western CONUS
that were used in the CPC unified gauge-based analysis gridded product. Based on Figure 8c,f, a small
improvement in the new bias-adjusted version of PERSIANN-CDR (V2.3) can be detected over the
central United States, where CORR increased and RMSE was constant.
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Figure 8. Daily spatial CORR and RMSE (mm/day) maps for PERSIANN-CDR V2.3 (a,d) and
PERSIANN-CDR V2.2 (b,e) against CPC and their differences (c,f) for the period of 2009 to 2013 over
the CONUS.

4.3.2. Evaluation over the Globe

We used TRMM 3B42 V7 for daily comparison of the two versions of PERSIANN-CDR over both
land and oceans. PERSIANN-CDR and TRMM 3b42 v7 give the daily accumulated rainfall starting at
22:30Z of the previous day to 22:30Z of the day named. The reason that we did not use global CPC
unified gauge-based analysis is that the EOD definition varies from one country to another country.
This can create inconsistency in daily evaluation since PERSIANN-CDR has a unique EOD definition,
but CPC unified gauge-based analysis does not. Figure 9 illustrates the CORR and RMSE between
TRMM 3B42 V7 and the two versions of PERSIANN-CDR over land and oceans. The correlation
between PERSIANN-CDR and TRMM 3B42 V7 shows a strong correspondence between these two
datasets in estimating the daily precipitation rate. This is reasonable since the information of IR
imagery has been used in both the TRMM 3B42 V7 and PERSIANN-CDR algorithms for estimation
of the three-hourly rain rates. That said, PERSIANN-CDR relies mainly on IR data, whereas TRMM
combines IR and PMW data. Furthermore, PERSIANN-CDR is bias-adjusted with the GPCP dataset;
and both GPCP and TRMM apply to be relatively similar procedures with different initial inputs for
their precipitation estimates [65]. Both the GPCP and TRMM algorithms utilize the more accurate
rain rate estimates from passive microwave data captured by low-orbit satellites to adjust the more
frequent geosynchronous-orbit satellite infrared information. TRMM 3B42 V7 inserts the microwave
estimates into the individual precipitation maps while GPCP only uses microwave estimates in monthly
calibrations. Then, in both products, the combined satellite-based products are bias-adjusted with rain
gauge analysis. Particularly over low latitudes, one can see a higher correlation between both versions
of PERSIANN-CDR against TRMM. This is mainly due to the use of SSMI microwave observations in
both the TRMM 3B42 V7 and GPCP V2.2 algorithms for latitudes between 40◦ and 40◦N. The statistical
indices including CORR and RMSE between the two versions of PERSIANN-CDR and references at
the daily scale over the CONUS and the globe are summarized in Table 2. The changes in both CORR
and RMSE between PERSIANN-CDR V2.2 and V2.3 are modest. A slight improvement can be seen in
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CORR between PERSIANN-CDR V2.3 as opposed to PERSIANN-CDR V2.2 against TRMM 3B42 V7
over the ocean. However, the RMSE has increased for PERSIANN-CDR V2.3 against TRMM 3B42 V7.
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CPC(CONUS) TRMM(land) TRMM(Ocean)

PERSIANN-CDR V2.3 0.57 (4.58) 0.56 (5.65) 0.63 (5.63)
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5. Conclusions

Historical precipitation estimates from PERSIANN-CDR have been widely used for climatological
studies across the globe. Accurate precipitation information from PERSIANN-CDR could contribute to
meteorological, hydrological, and water resources management applications. Recently, GPCP was
updated to version 2.3 by applying adjustments in the cross-calibration of satellite data inputs and
updating the gauge analysis. In this study, we compared the PERSIANN-CDR product constructed with
the GPCP V2.3 with the previous version, PERSIANN-CDR V2.2, for the period between 2009 and 2013.
First, the differences between the two versions of PERSIANN-CDR (V2.3 and V2.2) and GPCP (V2.3
and V2.2) were described. We utilized the mean absolute difference (MAD) and relative mean absolute
difference (RMAD) to track the changes between the latest two versions of both PERSIANN-CDR and
GPCP. Comparison of PERSIANN-CDR V2.2 and V2.3 over ocean areas at a monthly scale indicated
that the changes in MAD are more than 0.25 mm/day at latitude bands between 40◦ to 60◦ in the
northern and southern hemispheres after 2009. The increase in PERSIANN-CDR’s estimates over the
oceans is mainly due to the adjustments implemented in the GPCP V2.3 dataset. These adjustments
include improvement in the cross-calibration of precipitation from TOVS to AIRS since January 2003
and from SSMI to SSMIS after 2009. Over land areas, changes in MAD were more significant over the
tropical region while the highest percentage of changes (RMAD) were detectable in other regions of the
globe, including north Africa, Australia, north China, Mongolia, and southeastern Russia. The main
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reasons for changes in MAD and RMAD over the global land areas were: i) Increasing the gauge
samples over the entire period of the record, and ii) updating from the GPCC monitoring product to
the GPCC full product.

The two versions of PERSIANN-CDR were evaluated over CONUS and global land areas and
oceans using the CPC unified gauge-based analysis and TRMM 3B42 V7. Over CONUS, results showed
that on average the performance of PERSIANN-CDR V2.3 has improved in terms of RMSE and CORR
in both daily and monthly scales. Between 2009 and 2013, RMSE at the monthly (and daily) scale
decreased by 2.3% (and 0%) and the CORR increased by 5.1 % (and 1%) compared to PERSIANN-CDR
V2.2. Improvements in terms of RMSE and CORR were evident over various states (e.g., Virginia, New
York, Pennsylvania, and Oregon). Over global land areas, results indicated that the performance of
PERSIANN-CDR V2.3 at the monthly and daily scale is better than the previous version, especially over
CONUS and Australia. The performance evaluation of the two versions of PERSIANN-CDR against
TRMM 3B42 V7 over the oceans revealed a slight increase in both CORR and RMSE. CORR improved
by 1.6% (and 1.2%) and RMSE has increased by 0.74% (and 0.5%) in a monthly (and daily) scale.

In summary, the analyses show that the corrections and adjustments in GPCP V2.3 were successfully
translated onto PERSIANN-CDR V2.3. The results indicate that most of the changes in the amount
of rainfall are detectable over tropical regions and oceans between the latitudes 40◦ and 60◦ in
both the northern and southern hemispheres. The changes in the amount of rainfall improve the
accuracy of PERSIANN-CDR V2.3 over most regions of the globe, especially over the CONUS and
Australia. Although these corrections and adjustments are small, they are crucial when applied to
large areas, particularly over oceans and arid regions. In addition, these improvements are important
for investigating the changes in inter-annual rainfall variabilities (e.g., due to El Niño—Southern
Oscillation (ENSO)) [54].
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