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Abstract: The traditional practice to assess accuracy in lidar data involves calculating RMSEz (root
mean square error of the vertical component). Accuracy assessment of lidar point clouds in full 3D
(three dimension) is not routinely performed. The main challenge in assessing accuracy in full 3D is
how to identify a conjugate point of a ground-surveyed checkpoint in the lidar point cloud with the
smallest possible uncertainty value. Relatively coarse point-spacing in airborne lidar data makes it
challenging to determine a conjugate point accurately. As a result, a substantial unwanted error is
added to the inherent positional uncertainty of the lidar data. Unless we keep this additional error
small enough, the 3D accuracy assessment result will not properly represent the inherent uncertainty.
We call this added error “external uncertainty,” which is associated with conjugate point identification.
This research developed a general external uncertainty model using three-plane intersections and
accounts for several factors (sensor precision, feature dimension, and point density). This method
can be used for lidar point cloud data from a wide range of sensor qualities, point densities, and
sizes of the features of interest. The external uncertainty model was derived as a semi-analytical
function that takes the number of points on a plane as an input. It is a normalized general function
that can be scaled by smooth surface precision (SSP) of a lidar system. This general uncertainty model
provides a quantitative guideline on the required conditions for the conjugate point based on the
geometric features. Applications of the external uncertainty model were demonstrated using various
lidar point cloud data from the U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) library
to determine the valid conditions for a conjugate point from three-plane modeling.

Keywords: lidar; 3D accuracy assessment; external uncertainty model

1. Introduction

As point densities of airborne lidar datasets increase, the need for full 3D absolute accuracy
assessments of the associated lidar point clouds is becoming more important. Casual users of lidar
data may mistakenly believe that higher point density data directly correlate with higher accuracy
data. Lidar accuracy is a direct function of the error balance inherent in the system and its operation [1].
Hodgson and Bresnahan [2] described and subset lidar error into four components. In decreasing order
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of importance, these included lidar system measurements, interpolation error, horizontal displacement
error, and survey error.

To properly assess the absolute accuracy of airborne lidar data, one must have ground truth
data that are of higher quality and accuracy than the data being tested. Usually this involves using
survey-grade global positioning system (GPS) checkpoints across the project. According to the
American Society for Photogrammetry and Remote Sensing (ASPRS) Accuracy Standards for Digital
Geospatial Data [3], the independent source of higher accuracy for checkpoints shall be at least three
times more accurate than the required accuracy of the geospatial dataset being tested.

The ASPRS Accuracy Standards for Digital Geospatial Data also define methods for assessing
vertical and horizontal accuracy for lidar [3]. According to ASPRS, vertical accuracy shall be tested by
comparing the elevations of the surface represented by the dataset with elevations determined from an
independent source of higher accuracy. This is done by comparing the elevations of the checkpoints
(usually collected using survey-grade GPS) with elevations interpolated from the dataset at the same
x/y coordinates. Vertical accuracy is then computed using root mean square error (RMSE) statistics in
non-vegetated terrain and 95th percentile statistics in vegetated terrain.

The non-vegetated vertical accuracy (NVA) at the 95% confidence level in non-vegetated terrain is
approximated by multiplying the accuracy value of the vertical accuracy class (or RMSEz) by 1.9600.
This calculation includes survey checkpoints located in traditional open terrain (bare soil, sand, rocks,
and short grass) and urban terrain (asphalt and concrete surfaces). The NVA, based on the RMSEz
multiplier, should be used only in non-vegetated terrain where elevation errors typically follow a
normal error distribution. RMSEz-based statistics should not be used to estimate vertical accuracy in
vegetated terrain or where elevation errors often do not follow a normal distribution [3].

The vegetated vertical accuracy (VVA) at the 95% confidence level in vegetated terrain is computed
as the 95th percentile of the absolute value of vertical errors in all vegetated land cover categories
combined, including tall weeds and crops, brush lands, and fully forested areas. For all vertical
accuracy classes, the VVA standard is 3.0 times the accuracy value of the vertical accuracy class.
Both the RMSEz and 95th percentile methodologies specified above are currently widely accepted
in standard practice and have been proven to work well for typical elevation datasets derived from
current technologies [3].

While extremely useful for bare earth terrain data derived from lidar, these standards do not
fully address the full three-dimensional (3D) accuracy of a lidar point cloud. As a result of the
non-transparent and sometimes empirical calibration procedures employed by system manufacturers
and data providers, collected lidar data might exhibit systematic discrepancies between conjugate
surface elements in overlapping strips that could affect overall data accuracy [4]. By comparing
overlapping strips from the same instrument, Habib et al. [4] diagnosed the systematic errors inherent
in the instrument. Habib et al. [4] assessed the relative accuracy of the adjusted lidar point cloud
but they did not assess the absolute accuracy compared to survey-grade ground truth data. Hebel
and Stilla [5] used a combination of a region-growing approach with a random-sample-consensus
segmentation method to extract planar shapes in overlapping areas to determine both the boresight
parameters and the data alignment. Keyetieu and Seube [6] used simple line patterns over regular
slopes in overlapping strips for boresighting.

Another method investigated to calibrate data involves fitting data to planes. The method
proposed in Skaloud et al. [7] estimates the calibration parameters by conditioning a group of points to
lie on a common plane. The planes were selected manually. The calibration procedure estimated the
system parameters as well as the parameters describing the involved planes. The proposed procedure
could only be applied whenever planar surfaces with varying slopes and aspects were available. Huang
et al. [8] extracted check points from two artificial line segments or three planes for accuracy assessment.

Other research has documented the use of more than simple GPS points to assess the accuracy
of airborne data. Tulldahl et al. [9] quantified local surface smoothness on planar surfaces, and
distance and relative height accuracy from an unmanned aircraft system (UAS) data using data from a
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terrestrial laser scanner as a reference. Cheng et al. [10] proposed an approach for registering airborne
and terrestrial laser scanning data at building corners. Canavosio-Zuzelski et al. [11] used a raised
hexagonal retro-reflective lidar ground target (HRRT) to address a point location uncertainty and other
researches utilized the geometric targets from airborne or mobile lidar [12,13].

For the geometric feature extraction from overlapping swaths, an interactive closest point
(ICP) method [14] and its variants [15,16] extract 3D plane based on frame-to-frame correspondence
registration. Plane finding techniques from the lidar point cloud are available based on Hough
transform [17], region growing [18–20], and the random sample consensus (RANSAC) algorithm [21].
From the accuracy assessment perspective, specific interest is on the roof plane extraction algorithms.
Rottensteiner et al. [22] described a plane segmentation method for roof line delineation based on the
local homogeneity of surface normal vector. Kim and Shan [23] used the level set principles, Awrangjeb
and Fraser [24] used coplanarity and locality of points, and Demir [25] used RANSAC in segmenting
roof planes. Dal Poz and Fernandes utilized high-resolution areal image along with lidar data in
automatic extraction of building roof boundaries [26].

With these other example methods in mind, this paper investigates geometric feature-based
methods to identify a conjugate point from “ground truth data” represented in the airborne lidar point
cloud for accuracy assessment. However, the uncertainty associated with the geometric feature-based
conjugate point identification can vary. As a result, we investigate what are the preferred geometric
features and the valid conditions for identifying the conjugate points. This paper documents extensive
airborne lidar simulation modeling with a large array of pyramid targets in order to estimate the
uncertainty associated with identifying a conjugate point. We call this attribute external uncertainty.
We have developed a generalized external uncertainty model for the three-plane intersection point
identification process. We also demonstrate the practical use of the general external uncertainty model
using several example lidar point cloud datasets, both real and simulated. The development of the
external uncertainty model is a crucial component in establishing a foundation of the 3D absolute
accuracy assessment of the lidar point cloud.

2. Conjugate Point Identification

The positional uncertainty assessment of lidar point clouds can be accomplished by comparing
the 3D (x, y, z) coordinates of many surveyed checkpoints to their conjugate points represented in
airborne lidar. The differences between ground-surveyed values and those conjugate point coordinates
identified in the airborne lidar point cloud can be summarized into horizontal and vertical statistical
uncertainties. Thus, to do this properly, it is important to determine the conjugate point in the airborne
lidar point cloud.

2.1. Direct Conjugate Point Identification

Consider a ground checkpoint (x0, y0, z0) surveyed on the corner of a paint mark for a pedestrian
walkway Figure 1a. A simulated airborne lidar point cloud was created with color displayed by
intensity Figure 1b. Since these points are on a flat road surface, if display color is based on elevation,
it is not possible to see any visual difference between white paint return points and background
road return. Thus, color by intensity is used. In this example, the rainbow color scheme has red
representing the high intensity return point and purple for the low intensity return. Since it is a
simulated point cloud, the paint boundary and the true conjugate corner point is seen and marked as a
blue dot Figure 1b. However, due to the low simulated point density, which is 9 PPSM (points per
square meter), it is difficult to identify the true conjugate point location. The conventional practice
is to ignore horizontal errors in the direct georeferencing of the airborne lidar data, and simply use
horizontal coordinates of the ground checkpoint, represented in this example as a yellow dot (x0, y0).
The interpolated z-value for the (x0, y0) is compared to the ground truth (z0). The vertical differences
(z–z0) are collected from a statistically meaningful number of checkpoints to compute RMSEz.
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Figure 1. Ground checkpoint and a simulated airborne lidar point cloud: (a) Surveyed coordinates at 
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have 10 cm average point spacing, which adds 5 cm (half of the point spacing) point identification 
uncertainty in addition to the inherent uncertainty. To overcome this difficulty, a solution is to rely 
on the point determined from a geometrical feature. 

2.2. Geometric Feature-Based Conjugate Point Identification 

While identifying an isolated conjugate point is a process with high uncertainty, finding a 
conjugate point based on geometrical features is somewhat easier to achieve. Although geometrical 
feature-based approaches are useful in general, we need to further investigate the types of geometric 
features. For example, the points in Figure 2a are the types of conjugate points that are difficult to 
identify, while the points in Figure 2b are easier to identify. In the example from Figure 1, we 
illustrated that the external point of any polygon is hard to identify. Similarly, the end point of an 
isolated linear feature is hard to determine, unless the point density is extremely high. In case of a 
typical two-side roof in Figure 2a, an intersecting line by two planes is accurately determined, but the 
end point of the intersecting line is hard to determine. 

An intersection from two crossing lines or an intersecting point from three planes are more 
desirable types of geometry to determine a conjugate point in Figure 2b. In the case of line crossing, 
as long as the number of points on the line are reasonable, the mathematical line defined from the 
multiple points is stable with low uncertainty. Thus, the intersection point from two mathematical 
lines is a low uncertainty conjugate point. Likewise, if the number of points used for plane modeling 
is reasonable, the mathematical plane is a stable geometrical feature with low uncertainty. Thus, the 
three-plane intersection point is a good conjugate point for 3D lidar accuracy assessment. The main 
reason for the enhanced stability (low uncertainty) is that the geometrical features (line or plane) are 
constrained by a large number of points, thus it does not suffer from the large uncertainty by a direct 
pinpointing (corner point, end point, etc.) of the conjugate point. 

Figure 1. Ground checkpoint and a simulated airborne lidar point cloud: (a) Surveyed coordinates at
the corner of the paint mark. (b) Yellow dot is the point using checkpoint coordinate, blue dot is the
ground truth point in the simulated airborne data using a known simulated paint mark boundary.

These simulated data demonstrate that it is challenging to pinpoint the blue dot from the low
point density data. In fact, 9 PPSM is better than the U.S. Geological Survey (USGS) quality level 1
(QL1) requirement [27]. Based on these results, it seems difficult to make any attempt for data at QL2
or lower. A solution would be to increase the point density. However, even simulated 100 PPSM data
have 10 cm average point spacing, which adds 5 cm (half of the point spacing) point identification
uncertainty in addition to the inherent uncertainty. To overcome this difficulty, a solution is to rely on
the point determined from a geometrical feature.

2.2. Geometric Feature-Based Conjugate Point Identification

While identifying an isolated conjugate point is a process with high uncertainty, finding a conjugate
point based on geometrical features is somewhat easier to achieve. Although geometrical feature-based
approaches are useful in general, we need to further investigate the types of geometric features.
For example, the points in Figure 2a are the types of conjugate points that are difficult to identify, while
the points in Figure 2b are easier to identify. In the example from Figure 1, we illustrated that the
external point of any polygon is hard to identify. Similarly, the end point of an isolated linear feature
is hard to determine, unless the point density is extremely high. In case of a typical two-side roof
in Figure 2a, an intersecting line by two planes is accurately determined, but the end point of the
intersecting line is hard to determine.

An intersection from two crossing lines or an intersecting point from three planes are more
desirable types of geometry to determine a conjugate point in Figure 2b. In the case of line crossing,
as long as the number of points on the line are reasonable, the mathematical line defined from the
multiple points is stable with low uncertainty. Thus, the intersection point from two mathematical
lines is a low uncertainty conjugate point. Likewise, if the number of points used for plane modeling
is reasonable, the mathematical plane is a stable geometrical feature with low uncertainty. Thus, the
three-plane intersection point is a good conjugate point for 3D lidar accuracy assessment. The main
reason for the enhanced stability (low uncertainty) is that the geometrical features (line or plane) are
constrained by a large number of points, thus it does not suffer from the large uncertainty by a direct
pinpointing (corner point, end point, etc.) of the conjugate point.
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Figure 2. Geometrical features: (a) Conjugate points with higher uncertainty and (b) conjugate points
with lower uncertainty.

3. Methods

The added uncertainty associated with the conjugate point identification is a critical component
in 3D absolute accuracy assessment of the lidar point cloud. We define this additional uncertainty as
external uncertainty, which co-exists with inherent positional uncertainty. In this section, we derive a
general external uncertainty model for the three-plane intersection point.

3.1. External Uncertainty

In the case of typical vertical absolute accuracy (RMSEz) assessments, the measured difference
variable ∆z and its propagated uncertainty σz in the vertical component are defined as:

∆z = z− z0 (1)

σz =
√
σI2 + σG2 (2)

where σI is inherent uncertainty of the lidar data associated with the airborne lidar elevation z, and σG
is ground truth survey uncertainty associated with the true elevation z0. The propagated uncertainty
σz is derived from the following error propagation equation, whose partial derivatives are unity:

σz
2 =

(
∂∆z
∂z
·σI

)2

+

(
∂∆z
∂z0
·σG

)2

(3)

Meanwhile, for the geometrical feature-based 3D absolute accuracy assessment, both ground truth
and airborne lidar points are 3D vectors (x, y, z). Thus, the propagated uncertainty will be expressed in
full 3D (σx, σy, σz ). More importantly, airborne lidar conjugate points are characterized by external
uncertainty in addition to inherent uncertainty. For each of the three axes, the propagated uncertainty
σ is expressed as:

σ =
√
σE2 + σI2 + σG2, (4)

where σE is an external uncertainty term that is introduced in the full 3D assessment. The reason
the external uncertainty term is not included in Equation (2) is that the (x, y) coordinates of the
conjugate airborne lidar point were assumed to be the same as those of the ground truth (x0, y0),
which considers zero external uncertainty in z, which assumes no uncertainty associated in conjugate
point identification. When we perform full 3D accuracy, we must identify conjugate airborne lidar
points. The conjugate point identification uncertainty, σE, could be so high that it overpowers the
inherent uncertainty of the airborne data. Thus, although we implement the correct strategy of finding
conjugate points of the type represented in Figure 2b which gives relatively smaller σE , it is more
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important to quantify how σE is affected by various conditions. Thus, the investigation of the influence
from various conditions is the essence of this paper. The combination of several dominant variables
creates unrealistically large parameters to implement when using real airborne lidar data. Thus, this
research can be best performed using the airborne lidar simulator [28].

Once the quantitative external uncertainty model is developed, we will face another important
question: What should be the maximum allowed external uncertainty? In Equation (2), the uncertainty
of the ground truth data σG must be at least three times better than the uncertainty σI of the data
being tested, which means that σz in Equation (2) can be approximated as σI because inside the square
root, σI

2 is substantially larger than (σI/N)2 , where N is 3.0 or greater. Assuming the ground truth
uncertainty is three times better than that of the inherent uncertainty of airborne lidar, the effect of
external uncertainty to the propagated uncertainty in 3D absolute accuracy assessment is illustrated
in Figure 3. Using Figure 3 and the external uncertainty model explained in the next section, the
maximum allowed external uncertainty will be determined.
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3.2. Airborne Lidar Simulator

An airborne lidar point cloud simulator [28] was used for the external uncertainty study. The two
main components of the simulator are (1) the radiative transfer solution of the lidar waveform and (2)
the direct georeferencing of the waveform peak.

A lidar waveform is computed using the laser properties (pulse width, beam divergence angle,
and the pulse distribution function), pulse distance determined by sensor altitude and scanner,
environmental parameters (absorption and scattering coefficient of the atmosphere), and the 3D
geometrical definition of a target [28]. A full waveform solution uses the radiative transfer theory of a
laser pulse [29,30]. The radiative transfer theory is numerically solved for the laser beam irradiance
distribution function at a given propagation distance. Two irradiance distribution functions are
computed: irradiance due to the laser beam propagation and irradiance due to the receiver sensitivity
propagation. The irradiance distribution function interacts with a target whose geometry is defined
in the 3D coordinate system, and the waveform intensity at a given time is obtained by numerically
solving a laser interaction governing equation [29,30].

The second major component of an airborne lidar simulator is the solution of a direct georeferencing
equation. A scanner module (scanner type, scan frequency, and the field of view), a global navigation
satellite system and strap-down inertial navigation system (GNSS/SINS) module for sensor position
and orientation, the flight parameters (sensor altitude, flight speed), and the calibration parameters
(boresighting and lever-arm) are the essential inputs required to solve a lidar direct georeferencing
equation to estimate the 3D position of a laser-target interaction spot.

To model external uncertainty, we designed specific targets for the 3D uncertainty simulation. A
tetrahedron or a pyramid target was created, and a large array of these pyramid targets were simulated
as a surface DEM (digital elevation model). As the simulator produces lidar point clouds with various
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realistic input parameters, the distribution of the point clouds shows spatially inhomogeneous patterns
strongly influenced by the roll, pitch, and heading, as well as the scanner type. All these were necessary
to simulate realistic situations for the general external uncertainty model development, as the real
targets will be placed at a random position, affecting external uncertainty.

3.3. Uncertainty Factors for the Three-Plane Intersection Point

When a conjugate point is determined based on three-plane geometric features, the associated
conjugate point uncertainty is derived from three major sources: (1) lidar system precision, (2) point
density, and (3) dimension of the geometric feature. These three factors will be used to build an
experimental design of the lidar simulation to investigate their influence on the external uncertainty
and to create a general external uncertainty model for the three-plane intersection point.

The precision of the lidar system is represented by total propagated uncertainty (TPU). TPU
is the propagated statistical uncertainty resulting from all potential uncertainty sources, which are
GNSS position, inertial measurement unit (IMU) orientation, boresighting angles, lever arm, scanner
parameters, and the lidar ranging uncertainty [28]. Although the TPU is estimated for each axis
(σx, σy, σz), it is also practically useful to express TPU by the vertical TPU (σz) and horizontal TPU

(σh =
√
σ2

x + σ2
y). Also, it is possible to combine the vertical and horizontal TPU to a single value

(σ =
√
σ2

x + σ2
y + σ2

z). In this study, we adapt the concept of smooth surface precision (SSP) to represent
the TPU.

To define the SSP, we select a lidar point cloud subset from a locally smooth surface, model a
mean plane, and compute the normal distances of all points, SSP is then the standard deviation of
the normal distances from the mean plane, as illustrated in Figure 4. This is a vector version of the
intra-swath relative vertical accuracy defined in the USGS lidar base specification [27].
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Figure 4. Concept of smooth surface precision (SSP): (a) lidar point cloud, (b) plane math model from
points, (c) side view of the plane that reveals the surface normal distance of lidar points to the plane
that is indicated as a red line, (d) distribution of surface normal distances and the standard deviation,
which is defined as SSP.

When a surface is horizontally flat, the SSP is identical to the TPUz (TPU in z-axis, which is the
same as σz), and it reflects an increasing horizontal component as the surface is more slanted. In
typical airborne lidar data, the off-nadir scanning angle is usually less than 20

◦

. When a flat surface
with arbitrary slant angle is selected, the computed SSP from the flat surface point cloud is a good
representative of the TPUz. Thus, in this paper, SSP is used to characterize overall lidar system
precision and is one of the three factors used in the experimental design. SSP represents overall lidar
system quality in terms of measurement precision.
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To model the effect of the three major factors (SSP, point density, and plane area) to the external
uncertainty associated with the conjugate point identification, a systematic dataset was generated
using an airborne lidar waveform simulator instead of using a real airborne lidar point cloud. The 3D
experimental design that corresponds to the three major factors is too large to implement in a practical
sense. Instead, we created an experimental plot, building a large array of precisely defined objects
of various sizes, deploying many different airborne lidar systems to mimic varying SSP, and tuning
system parameters and flight parameters to achieve the varying point density. Since a lidar system
usually comes with its optimal setting giving few opportunities to tweak variables, at most allowing a
change of scan angle range or laser pulse repetition frequency, the cost and effort would be too high if
we did this modeling with real data.

We illustrate only the simulated target object array here because the technical details of the lidar
system and the flight parameters that affect the point density are explained in [28]. A large array of
600 pyramid targets were placed between simulated two-swath overlapping areas, representing 3
three-plane intersection points (Figure 5). Pyramids were used instead of tetrahedrons because the
most commonly found man-made three-plane objects are immediate derivatives of the pyramid, such
as a roof. Also, the single pyramid gives four repetitions of three-plane combinations, which allows
the evaluation of 2400 intersection points.
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4. Results

4.1. Simulations of Major External Uncertainty Sources

The first factor, SSP, represents the quality of the airborne lidar system in general. For a given
point density and plane area, the higher precision system (low SSP value) will produce point cloud
data close to the actual plane, thus plane modeling will be more accurate. Accordingly, the intersection
from three planes will be more accurate to the ground truth, while a low precision system produces a
noisy point cloud and larger error in estimating the intersection point (Figure 6). Figures 6–8 illustrate
horizontal differences (∆x, ∆y) between an estimated three-plane intersection point and the true point.
The blue dots are the distribution of errors (∆x, ∆y), and σh is the horizontal standard deviation (also
visualized as a red circle) computed from the error distribution.
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and point density (2 PPSM), where both x-axis and y-axis are in meter unit.

The second factor, point density, is important because for any given size of the plane, the number
of points will be proportional to the point density. The larger number of points in modeling the
mathematical plane increases the stability, thus reducing the uncertainty of the plane modeling and
eventually reducing the uncertainty of the three-plane intersection point, as shown in Figure 7. Thus, the
point density should be one dimension of the experimental design for the external uncertainty modeling.
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In a similar manner, the third factor, the area of the plane, is also an important independent
variable. For a given point density, the larger the plane, the more points that are available, thus
reducing the uncertainty of the three-plane intersection point (Figure 8).

4.2. General External Uncertainty Model for the Three-Plane Intersection Point

Only a few small sample results from the large-scale simulation were demonstrated in Figures 6–8.
The σh values in Figures 6–8 can be used to evaluate the external uncertainty and can be provided
as a 3D look up table (LUT). However, the LUT is cumbersome to use. To promote the usage of the
general external uncertainty model, we suggest the following approach. First, with a fixed SSP value, a
two-dimensional (2D) simulation is performed by varying point density and plane area. Each plot
in Figure 9 shows the result of the 2D simulation for varying plane areas for each point density, for
a fixed SSP. The horizontal axis is expressed as the number of lidar points within a plane, which is
computed as a multiplication of point density and plane area. Each dot in the plot represents a 2D
simulation combination (point density and plane area). The illustrated cases in Figure 9 are for 2, 4, 9,
16, and 25 PPSM. Each plot occupies a different range of x-axes, because low point density (2 PPSM)
needs to simulate for large plane (up to 30 m2), while high point density (25 PPSM) needs to simulate
for relatively small planes (4–8 m2). When all plots are combined (the last plot in Figure 9), the results
are lined up along a characteristic line with small variability.
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The external uncertainty function in Figure 9 is a specific case with SSP of 0.036 m. When many
systematic simulations are performed for varying SSPs, we can combine the uncertainty function
results in a single plot as shown in Figure 10a. Since the horizontal axis represents the combination
of 2D (point density and plane area) and each function (curve) represents each SSP, Figure 10a is the
entire 3D LUT of the external uncertainty for a three-plane intersection.

Although the data represented in Figure 10a are a virtually complete 3D LUT and uncertainty
for any arbitrary three-factors can be interpolated, it is possible to proceed with one more stage of
abstraction of the model. When each curve in Figure 10a is divided by the corresponding SSP value,
all four curves are collapsed into a single general curve, as demonstrated in Figure 10b. The vertical
axis in Figure 10b represents the “normalized” external uncertainty as a multiple of the SSP. The
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actual uncertainty in physical length unit can be achieved by multiplying the specific SSP value. For
instance, consider the case of normalized uncertainty 1.0 that is the blue dot in Figure 10b, the actual
uncertainty in geometrical length is 7.4 cm for SSP = 0.074 m and 1.8 cm for SSP = 0.018 m, and so on.
The dotted curve in Figure 10b is the general external uncertainty model for a three-plane intersection
point, which is modeled as a polynomial (c0 + c1x + . . .+ c8x8), where x is the number of the points
for a plane modeling and the coefficients (c0, c1, . . . , c8) are (8.78878, –2.00378, 0.234578, –1.55955×10–2,
6.27597×10–4, –1.55616×10–5, 2.32200×107, –1.91055×10–9, 6.65621×10–12).Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 18 
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5. Discussion

The general external uncertainty function (dotted curve in Figure 10b) can be used to give a
specific guideline in geometric feature-based 3D absolute accuracy assessment. The essence of the
general external uncertainty model is that it determines whether a specific geometric feature-based
conjugate point identification is valid or not. Only the valid conjugate points can be used to compute
RMSE in the absolute 3D accuracy assessment.

The Figure 11a is the general external uncertainty function. In the first step, the general external
uncertainty model in the SSP unit in Figure 11a needs to be re-scaled to units using specific SSP
(e.g., 3 cm), as shown in Figure 11b. Then, the required minimum number of lidar points of a plane to
meet the maximum allowed external uncertainty (e.g., 2 cm) gives the minimum number of required
lidar points to be used for plane modeling (e.g., 40), as illustrated in Figure 11b. The minimum required
number of lidar points needs to be converted to the minimum required area (MRA) of a plane using
PPSM of the lidar data. For instance, 20 m2 minimum plane area is needed for 2 PPSM, as shown in
Figure 11c. Thus, from our analysis, any conjugate point computed from planes smaller than 20 m2

is invalid.



Remote Sens. 2019, 11, 2737 12 of 18
Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 18 

 

 
       (a)                                   (b)                               (c) 

Figure 11. (a) General external uncertainty model, (b) re-scaled uncertainty and the maximum 
allowed uncertainty, (c) MRA of a plane. 
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Figure 11. (a) General external uncertainty model, (b) re-scaled uncertainty and the maximum allowed
uncertainty, (c) MRA of a plane.

The maximum allowed external uncertainty can be set based on the general propagated uncertainty
curve (Figure 3). This number is usually set by a government agency or lidar authority. For instance, the
USGS 3D Elevation Program (3DEP) specifies 10 cm or less of non-vegetated absolute vertical accuracy
for the quality level 1 (QL1) data. Based on 10 cm maximum RMSEz, considering the additional
challenge for 3D absolute accuracy, if the USGS decides to loosen the requirement by 10%, which
is the case of 1.1 in Figure 3, then the propagated uncertainty 1.1 requires the maximum external
uncertainty as 0.3 times the maximum inherent uncertainty (10 cm), which is 3 cm. A maximum
external uncertainty of 2 cm was used in the example in Figure 11b. Figure 3 gives a basis for any lidar
authority to use in making maximum uncertainty requirement decision.

As an example of using a three-plane object for the general external uncertainty model, Figure 12
shows a house with a four-sided roof and a 3 m x 3 m central area used for plane modeling. Figure 12a
is the ground truth terrestrial lidar scanner (TLS) data and the image of the house is given in Figure 12b.
Three planes were modeled using the TLS points in the gray areas and the two intersecting lines, and a
three-plane intersection point is shown in Figure 12c. Three planes using airborne point cloud (large
dots in Figure 12d) are also modeled. For easier comparison, the TLS point cloud is still shown as
small dots.

As shown in Figure 12b, TLS data have large PPSM and small SSP. The airborne data also have
quite high (~20) PPSM, but the relatively high (~3.5 cm) SSP indicates a relatively noisy lidar system.
The main question is whether the three-plane intersection point from noisy airborne data is a valid
conjugate point or not. The general external uncertainty model is used to answer to this question. We
assume maximum allowed external uncertainty tolerance as 3.0 cm. Using 3.5 cm SSP and 3.0 cm
tolerance, the general external uncertainty model requires a minimum of 20 points for the valid plane
modeling. Since the airborne data are about 20 PPSM, the MRA in plane modeling is about 1 m2. All
three plane areas are a minimum of 2 m2, thus the conjugate point from the three-plane modeling is
valid and this point can be used for absolute 3D accuracy assessment. It means the lidar point (x1, y1,
z1) in Figure 12e derived from three-plane modeling is a valid conjugate point to the ground truth
point (x0, y0, z0) in Figure 12c. Thus, the difference between the two positions can be used as one of
the many points to compute the 3D absolute accuracy (RMSEx, RMSEy, RMSEz).
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Figure 12. (a) Ground truth terrestrial lidar scanner (TLS) data for a 4-sided roof object, (b) image of
the roof, (c) TLS data and three-plane modeling, (d) airborne point cloud three-plane modeling.

Ground truth is not obtained by a direct measurement in the ground survey, such as measuring
the intersection point (e.g., the point in Figure 12c) using total station or another instrument, but one
floating in 3D space. The intersection point does not physically exist (Figure 12a,c) or is invisible to
the optical instrument (hidden under the ridge, see Figure 13a,b). Thus, the ground truth should
be obtained via high point density and a high precision instrument, such as TLS. This is an added
complexity compared to the conventional point measurement, such as using GNSS rover or total
station. However, it is necessary in pursuing advanced 3D accuracy assessment.

Figure 13 shows an example similar to Figure 12, using another three-plane building object. The
quality of the airborne data in terms of SSP is quite low (about 4.4 cm) despite relatively high point
density (about 23 PPSM). The general external uncertainty model using 4 cm SSP and the 3.0 cm
tolerance gives about 40 as the minimum number of points for the plane modeling. Dividing 40 by the
23 PPSM gives roughly 2 m2 as an MRA for the mathematical plane modeling. Since the area used
for the plane modeling is about 4 m2 or larger, the conjugate point determined by this specific plane
modeling is valid.
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In Figure 14, example data from 3DEP source lidar point cloud available from the USGS, The 
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and plane size. A specific combination shows whether the plane is valid for intersection point 
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USGS_LPC_IL_4County_Lake_2016_LAS_12501200_LAS_2019 

  

ID Area PPSM MRA  
1 222.3 8.6 2.3 Y 
2 59.4 8.9 2.2 Y 
3 157.0 10.7 1.9 Y 

SSP = 0.03 
Minimum number of points = 20 

USGS_LPC_IL_4County_Lake_2016_LAS_12751200_LAS_2019 

  

ID Area PPSM MRA  
1 45.2 14.9 0.3 Y 
2 4.7 15.9 0.3 Y 
3 4.6 16.6 0.3 Y 

SSP = 0.01 
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Figure 13. (a) Three-plane building, (b) zoom-in of the three-plane area, (c) TLS data and three-plane
modeling, (d) real building image with the yellow box area used for modeling, (e) airborne point cloud
three-plane modeling with TLS data.

This specific airborne data are low precision data (about 4.4 cm SSP), and the definition of the plane
boundary is poor. Figure 13e shows that many airborne lidar points extended beyond the physical
boundary of the roof plane. The poor boundary definition is another separate component needed in
the specification of lidar quality. The many examples in Figure 14 demonstrate whether the three-plane
intersection point is valid for 3D absolute accuracy analysis by investigating the qualification of each
plane using the general external uncertainty model.
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Figure 14. Example usages of general external model. The external uncertainty tolerance of 3 cm was
assumed in these examples. The three-dimensional Elevation Program (3DEP) source point cloud
product identifier for each example can be used to obtain the data from the U.S. Geological Survey
(USGS), The National Map (TNM).

In Figure 14, example data from 3DEP source lidar point cloud available from the USGS, The
National Map (TNM), are illustrated. The examples include various system precision, point density, and
plane size. A specific combination shows whether the plane is valid for intersection point computation.

6. Conclusions

As the point density of the airborne lidar increases, the need for the full 3D absolute accuracy
assessment of the lidar point cloud is gaining more attention. We described the difficulty of identifying
a conjugate point of the ground checkpoint represented in the airborne lidar point cloud. A suggested
solution is to use geometric feature-based conjugate point identification. However, the uncertainty
associated with this type of identification can vary. Thus, the real questions in practice include what
are the preferred geometric features and what are the valid conditions for the conjugate point?

This paper documents extensive airborne lidar simulation modeling with a large array of pyramid
targets in order to estimate the uncertainty associated with identifying a conjugate point, which we
called external uncertainty. We explained a general external uncertainty model for the three-plane
intersection point. We also demonstrated the practical use of the general external uncertainty model
using several example lidar point cloud data. The development of the external uncertainty model is a
crucial component in establishing a foundation for the 3D absolute accuracy assessment of the lidar
point cloud.

A full-scale 3D absolute accuracy assessment will find a statistically meaningful number of
three-plane intersection targets and matching high-precision survey data of the same targets. Each
target object from the airborne lidar point cloud will be tested for qualification using the external
model. The differences of intersection points between airborne and survey data will be used for
accuracy statistics. In practice, finding only the three-plane intersection points will be somewhat
limiting. In the future, other external uncertainty models for other geometric feature-based targets,
such as elevated line-crossing or intensity-based line-crossing, will be presented. Thus, the 3D absolute
accuracy assessment in practice will utilize several different types of targets.
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