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Abstract: The Global Navigation Satellite System (GNSS) Radio Occultation (RO) is a key technique
for obtaining thermodynamic profiles of temperature, humidity, pressure, and density in the Earth’s
troposphere. However, due to refraction effects of both the dry air and water vapor at low altitudes,
retrieval of accurate profiles is challenging. Here we introduce a new moist air retrieval algorithm
aiming to improve the quality of RO-retrieved profiles in moist air and including uncertainty estimation
in a clear sequence of steps. The algorithm first uses RO dry temperature and pressure and background
temperature/humidity and their uncertainties to retrieve humidity/temperature and their uncertainties.
These temperature and humidity profiles are then combined with their corresponding background
profiles by optimal estimation employing inverse-variance weighting. Finally, based on the optimally
estimated temperature and humidity profiles, pressure and density profiles are computed using
hydrostatic and equation-of-state formulas. The input observation and background uncertainties are
dynamically estimated, accounting for spatial and temporal variations. We show results from applying
the algorithm on test datasets, deriving insights from both individual profiles and statistical ensembles,
and from comparison to independent 1D-Variational (1DVar) algorithm-derived moist air retrieval
results from Radio Occultation Meteorology Satellite Application Facility Copenhagen (ROM-SAF)
and University Corporation for Atmospheric Research (UCAR) Boulder RO processing centers. We
find that the new scheme is comparable in its retrieval performance and features advantages in the
integrated uncertainty estimation that includes both estimated random and systematic uncertainties
and background bias correction. The new algorithm can therefore be used to obtain high-quality
tropospheric climate data records including uncertainty estimation.

Keywords: GNSS atmospheric sounding; radio occultation; moist air retrieval; uncertainty propagation;
algorithm validation
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1. Introduction

The Global Navigation Satellite System (GNSS) Radio Occultation (RO) technique is an atmospheric
sounding technique providing global-coverage, high-accuracy, and high-precision vertical profiles of
Earth’s atmosphere [1–5]. The technique uses receivers on Low Earth Orbit (LEO) satellites to receive
GNSS signals after they propagated through the atmosphere in limb sounding geometry. Vertical
profiling is achieved due to the satellites’ orbital motions. As the signals propagate, they are bent due
to the atmospheric refractivity gradients.

The accumulated bending angle can be calculated from precise orbit data and the excess phase
measurements acquired by tracking the GNSS signals on a LEO satellite. The bending angle profile
can in turn be converted to a refractivity profile using an Abel integration. In dry air conditions,
atmospheric temperature, pressure, and density profiles can then be retrieved using a refractivity
equation, hydrostatic integral, and ideal gas law [2].

In moist air conditions, however, which apply in the troposphere below about 9 km to 16 km, the
refractivity is also significantly affected by moisture. In this case, there are four unknown variables, i.e.,
temperature, pressure, density, and humidity, but only three equations as stated above are available
as constraint. This results in a temperature-humidity ambiguity problem [2,6–8] that fundamentally
could only be solved by way of occultation technique extension by using higher frequency signals as
proposed for microwave occultation [9–11]. Most air retrieval algorithms, which are the focus of this
study, instead solve this problem for RO by way of data processing extension including background
information on tropospheric temperature and/or humidity.

In early moist air retrieval algorithm designs, scientists used a direct method to retrieve tropospheric
humidity or temperature profiles, by using background profiles of either temperature or humidity [2,6].
However, this method may induce sub-optimal uncertainty from background data assumed “exactly
true”. As a more general alternative, the one-dimensional variational (1DVar) method [12,13], also termed
optimal estimation method [14], was suggested for moist-air retrieval [15] and further investigated by
several studies [7,16–19].

The 1DVar method works by finding a maximum likelihood optimal estimate of a vertical
atmospheric state profile x, given a set of observations yb and a priori knowledge on a background
atmospheric state profile xb as well as the error covariance matrices of both the observation and
background information. The 1DVar can be written as a minimization of the following equation [20]:

J(x) =
1
2
(x− xb)

TB−1(x− xb) +
1
2

(
yo −H[x]

)T
O−1

(
yo −H[x]

)
, (1)

where H[x] denotes a forward operator mapping the state x to the observation space yo. The matrices B
and O are background and observation error covariance matrices, respectively, representing the standard
uncertainties and correlations of the background data and the observation (plus forward-modeled)
data. Minimizing the cost function J(x) by variation of the state x yields the retrieved state xr that
minimizes the total deviation against background and observational data. The usual selection of yo in
moist-air retrieval by 1DVar is the observed refractivity profile from which temperature, humidity and
surface pressure are retrieved as state xr [17–20].

Currently, the RO data processing centers Constellation Observing System for Meteorology,
Ionosphere, and Climate (COSMIC) Data Analysis and Archive Center (CDAAC), University Corporation
for Atmospheric Research (UCAR) Boulder, Radio Occultation Meteorology Satellite Application Facility
(ROM-SAF), Danish Meteorological Institute (DMI) Copenhagen, and National Oceanic and Atmospheric
Administration (NOAA) Center for Satellite Applications and Research (STAR) Maryland, use 1DVar
algorithm implementations for their (operational) moist air retrievals [20–25]. Both ROM-SAF and
CDAAC moist air profiles are used for our evaluation of the new algorithm in this study.

ROM-SAF data used in this study are the latest reprocessed climate data records CDR v1.0, which
are available at http://www.romsaf.org. The CDR v1.0 processing is based on ROPP 8.1 [26], with few
adaptations. In its products, ROM-SAF Level 2B data provide moist-air profiles. These profiles are

http://www.romsaf.org
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retrieved by a 1DVar algorithm that uses retrieved refractivity and geometric altitude [27] together with
background data from ERA-Interim (ERA-I) [28] as input. For each occultation event, the background
temperature, specific humidity, and surface pressure are interpolated in time and space at 60 model
levels from the ERA-I forecast available at a 3 h and 1◦ × 1◦ grid. The 1DVar configuration is defined by
a few choices described in detail in the ROM-SAF 2018 report on Level 2B and 2C 1DVar products [20].

Refractivity uncertainty is parameterized as function of height. In the troposphere it is a straight
line fixed at 0.2% at the tropopause and 2% at surface. Above the tropopause it is 0.2% but never below
0.02 N-units. Refractivity vertical correlations are assumed exponential with a 3 km correlation length.
Background uncertainty is taken directly from the ERA-I error of first guess estimate provided by
ECMWF. The surface pressure uncertainty has been inflated in order to adapt to an evident pressure
difference in ERA-I forecast and analysis. The ERA-I vertical uncertainty profiles are averaged into 5◦

latitude bins while the vertical correlations are provided by ECMWF as a fixed correlation matrix.
CDAAC-provided moist air profiles used in this study are the reprocessed wetPrf data records of

the Challenging Minisatellite Payload CHAMP and COSMIC RO missions (CHAMP data: 2016.2430
version, available online via CDAAC website; COSMIC: update of 2013.3520 version, available online
via CDAAC in future). At CDAAC, background profiles are taken from ECMWF gridded low-resolution
analysis data collocated to RO locations [29]. The observation uncertainties include both systematic and
random components, which are latitude-dependent and are estimated from the statistics of innovation
vectors for a reasonably long period such as one month, and the information was updated regularly from
the statistics for a recent period to yield best-possible performance [30]. The estimation of the background
uncertainties at CDAAC is similar to the estimation of observation uncertainties. The correlation matrix
was estimated using a fifth-order correlation function, such as used by Steiner and Kirchengast [31],
which is similar to a Gaussian function in shape but compactly supported (in a mathematical sense).

The formulation of B and O is critical for the moist air retrieval, since it determines the weights of
background and observed data that lead to the formally optimal profiles according to Equation (1).
The 1DVar method is successful and retrieved moist profiles have been used in several climate and
weather studies and good results were obtained [32–34].

In this study, we introduce a “linearized 1DVar” moist air retrieval algorithm as a robust 1DVar
alternative that sequentially combines the direct method with optimal estimation. The new method
is designed to derive tropospheric temperature, humidity, and pressure profiles at the same quality
as 1DVar, and provides a robust linear non-iterative propagation chain, including “direct method”
humidity and temperature profile retrievals as interim results, and transparent and comprehensive
uncertainty estimates. It includes empirical models of background and observation uncertainties, to
optimally determine the weights of background and observed data. The new algorithm was initially
motivated, designed, and theoretically derived by Kirchengast et al. [35]. It is introduced here in
detail in its current updated form, together with the formulation of its input ingredients, including the
uncertainty formulations involved.

The new scheme is implemented since 2013 already—in line with its initial design with refractivity-
equation closure for pressure retrieval [35] and in a basic form with static input uncertainty profiles—in
the Wegener Center for Climate and Global Change (WEGC) current Occultation Processing System
version 5.6 (OPS v5.6). It has shown reliable results for entire climate records in several studies [24,25,36–38].

In this study we denote this initial implementation using static uncertainties the “OPSv5.6 approach”,
while we denote the updated form that uses dynamic input uncertainties, an equation-of-state closure
for pressure retrieval, and forecast-minus-analysis bias correction of background profiles the “dynamic
approach”. The advanced inclusions of propagating full covariance matrices as well as estimated
systematic uncertainty and observation-to-background weighting ratio profiles, as implemented in
the new rOPS system [39–44], are beyond the scope of this study and will be introduced in a separate
follow-on paper.

Both the OPSv5.6 and the dynamic approach are tested using exemplary ensembles of simulated
Meteorological Operational (MetOp) satellite data as well as real-observed CHAMP and COSMIC data
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and evaluated in a retrieval performance validation with corresponding profile ensembles from 1DVar
moist air retrievals provided by ROM-SAF and CDAAC.

The paper is structured as follows: Section 2 describes the new algorithm in terms of the algorithm
basis, detailed algorithm steps for profile retrieval and uncertainty estimation, and explains the retrieval
scheme and process. Section 3 presents the algorithm evaluation results in terms of its performance
for individual RO events as well as of its statistical performance in different latitude bands. Finally, a
summary and conclusions are given in Section 4. Appendices A–C provide complementary information
on aspects of numerical implementation, background bias correction, and vertical error correlations.

2. Methodology—The New Moist Air Retrieval Algorithm

2.1. Algorithm Basis

In dry air condition, the refractivity N can be expressed as N = c1Rρd = c1(pd/Td), where R =

287.06 J kg−1 K−1 is the dry air gas constant [2,35], c1 = 77.60 K hPa−1 is the Smith-Weintraub refractivity
formula first constant (“dry term”), and ρd, pd, and Td are RO-retrieved dry density, dry pressure,
and dry temperature, respectively. The profiles pd(z) and Td(z) are derived in RO processing by the
so-called dry air retrieval step, using the hydrostatic integral and the equation of state (e.g., [2,41]), and
are available as input to the moist air retrieval.

The refractivity formula embodying the dry air equation of state pd/ρd = RTd, allows formulating
the ratio of pd and Td in terms of generic refractivity at any altitude level of z:

c1
pd(z)
Td(z)

= N(T(z), Vw(z), p(z)), (2)

wherein T and p represent physical (moist) temperature and pressure, respectively, and Vw is the water
vapor volume mixing ratio. The latter relates to pressure p, water vapor partial pressure e, and specific
humidity q as:

Vw(z) =
e(z)
p(z)

=
q(z)

aw + bwq(z)
, (3)

where aw = 0.622 is the moist air gas constant ratio, bw = 1 − aw = 0.378 is the moist air gas constant
ratio complement [35,45].

The generic refractivity on the right hand side (R.H.S.) of Equation (2) denotes any existing type
of refractivity relation from Smith-Weintraub type to Thayer type, with any given coefficients [46–50],
and can be expressed in the form:

N(T(z), Vw(z), p(z)) = N(z) = c1
p(z)
T(z)

( f0 + f1·Vw(z)), (4)

where f 0 is unity or close to unity and f 1 is close to (c2/T)/c1, where c2 = 3.73 × 105 K2 hPa−1 represents
the Smith-Weintraub refractivity formula second constant (“wet term”). The exact values of f 0 and f 1

depend on which refractivity formula is used and whether ideal gas behavior is adopted. As the current
OPSv5.6 and rOPS baseline, the standard Smith-Weintraub refractivity formula is used, corresponding
to f 0 = 1 and f 1 = (c2/T)/c1 = cT/T [K] and cT = c2/c1 = 4806.7 K. These values are used later on.

Healy [48] conveys that this standard relation continues to be a very good representation and its
use keeps parametric consistency with other processing chains using it as well. Kirchengast et al. [35]
explain that the perturbations to f 0 and f 1 will be very small (order 10−3 or smaller) for any more
advanced refractivity formulation so that they could be readily added as “epsilon terms” within the step
1a / step 1b iteration algorithm (cf. Section 2.2) if desired. Aparicio and Laroche [50] caution that any
use of an advanced refractivity formulation beyond the Smith-Weintraub form should also consistently
use a correspondingly advanced equation-of-state formulation accounting for non-ideal gas behavior;
an aspect that can as well be accounted for by adding “epsilon terms” in the current algorithm.
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Using the R.H.S. of Equation (4) equated with the left-hand-side (L.H.S.) of Equation (2) as basis to
explicitly express moist air profiles of T and Vw, we get the following two mutually equivalent forms:

T(z) = Td(z)
p(z)

pd(z)
( f0 + f1·Vw(z)), (5)

Vw(z) =

pd(z)
p(z) T(z) − f0·Td(z)

f1·Td(z)
. (6)

Based on hydrostatic integration, the dry pressure and the moist pressure at any given altitude
level z can be expressed as:

d ln pd(z)
dz

= −
g(z)

RTd(z)
, and (7)

d ln p(z)
dz

= −
g(z)

RT(z)(1 + cwq(z))
, (8)

where cw = 1/aw − 1 = 0.608 is the moist air humidity coefficient for virtual temperature [35]. By
expressing the moist pressure vertical increment dlnp in terms of the dry pressure increment dlnpd, and
also using Equation (3) to convert q to Vw, we get:

d ln p(z) = β(z)·d ln pd(z), (9)

where β(z) =
Td(z)(1 + bwVw(z))
T(z)(1 + 2bwVw(z))

. (10)

Since the differential increments dlnp and dlnpd will be log-linearly discretized over adjacent
levels, we can write dlnp = dlnp(zi) − dlnp(zi−1) = ln[p(zi)/p(zi−1)], where i represents the corresponding
level indices. Similarly, we can write dlnpd = ln[pd(zi)/pd(zi−1)] for the dry pressure increment. Based
on these expressions, we can then derive the expression of p at any altitude level zi as:

p(zi) = p(zi−1)

(
pd(zi)

pd(zi−1)

)β(zi−1/2)

, (11)

where β(zi−1/2) =
Td(zi)+Td(zi−1)

T(zi)+T(zi−1)
·

1+bw
√

Vw(zi)Vw(zi−1)

1+2bw
√

Vw(zi)Vw(zi−1)
represents the exponent of fractional dry pressure

change between levels zi and zi−1 that leads to matching this change to the fractional moist pressure
change. Since Td is always smaller than T if moisture is non-zero, β is (slightly) smaller than one,
expressing that p is changing less than pd, consistent with the fact that pd is always larger than p for
non-zero moisture [51]. The specific formulation of β, with temperature expressed as mid-layer linear
average (arithmetic mean) between the two levels, and water vapor mixing ratio as mid-layer log-linear
average (geometric mean), is found helpful for high numerical accuracy at any given level spacing.

Based on these general expressions of Equations (5), (6), and (11), we can either solve for T and p
if q is prescribed, or for Vw (and hence q via Equation (3)) and p if T is prescribed. We can do this by a
simple iteration at any arbitrary altitude level z where a suitably adjacent level has been solved for
p before (starting at a “tropospheric top” level with negligible moisture where pd essentially equals
p). If q (and hence Vw) is prescribed, then, for any altitude level, we iterate the pairs of Equations (5)
and (11) until T has converged to within a small tolerance dTtol, and p will be consistent with the
converged T.

Similarly, if T is prescribed, we iterate the pair of Equations (6) and (11) until Vw has converged
to within a small tolerance (dVw/Vw)tol, and p will then be consistent with the converged Vw. This
formulation of the “direct method” of moist air retrieval is highly robust and versatile and applicable
to arbitrary non-equidistant vertical grids of any level number (from minimum two levels) and vertical
range from a chosen “tropospheric top” level to bottom of profile.
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Given the resulting temperature and humidity profiles as well as estimates of their uncertainties
and of the background profile uncertainties, we may then proceed to an optimally estimated profile for
each, temperature and humidity, by combining these profiles with their corresponding background
profiles in an inverse-variance-weighted manner. The following section provides more details.

2.2. Algorithm Description

The scheme and sequence of the new moist air retrieval algorithm is shown in Figure 1. The method
consists of three steps. The first step includes two (formally parallel) sub-steps, which are independent
from each other.
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Step 1a is to retrieve temperature and pressure as well as their associated uncertainties with
specific humidity and its uncertainty prescribed. Step 1b is to retrieve specific humidity and pressure
as well as their associated uncertainties with temperature and its uncertainty prescribed.

Step 2 is to combine the retrieved temperature profile from step 1a and humidity profile from
step 1b with their corresponding background profiles based on inverse variance weighting in order to
obtain optimally estimated temperature and humidity profiles. This core step serves to eliminate the
effects from sub-optimal estimation using fixed prescribed profiles by optimally weighting retrieved
and background profiles each for temperature and humidity so as to arrive at a best estimate consistent
with the available input uncertainty knowledge.
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Step 3 then calculates optimal pressure, density, water vapor volume mixing ratio, and water
vapor partial pressure profiles based on the optimally estimated temperature and specific humidity
profiles from step 2. It uses standard thermodynamic relations for the purpose, such as hydrostatic
integration according to Equation (8), and the most air equation of state.

The algorithm, as used in the OPSv5.6 implementation and in this study, focuses on the altitude
range from a “tropospheric top” level of 16 km downward and hence covers the entire range where
specific humidity may be non-negligibly small [51]. ECMWF operational 24h forecast fields are used to
provide prescribed background temperature and specific humidity profiles collocated to the analyzed
RO events. Below we introduce these three steps in detail, with some specific but relevant aspects of
numerical implementation of steps 1a and 1b described in Appendix A.

Step 1a: Retrieval of temperature and its uncertainty with specific humidity prescribed

The input profiles of this step include: the prescribed background specific humidity qb(z) and its
uncertainty uqb(z); the observed dry temperature Td(z) and its uncertainty uTd(z); and the observed
dry pressure pd(z) and its uncertainty upd(z). The output profiles include: temperature Tq(z) and its
uncertainty uTq(z); pressure pq(z) and its uncertainty upq(z), where the subscript q denotes variables
retrieved with specific humidity prescribed. Using the prescribed qb(z), the corresponding water vapor
volume mixing ratio Vwb(z) can be calculated using Equation (3). Then, based on Equations (5) and (11),
Tq(z) and pq(z) at altitude level zi can be expressed as:

Tq(zi) = Td(zi)
pq(zi)

pd(zi)

(
1 +

cT

Tq(zi)
·Vwb(zi)

)
, and (12)

pq(zi) = pq(zi−1)

(
pd(zi)

pd(zi−1)

)βq(zi−1/2)

, (13)

where βq(zi−1/2) =
Td(zi)+Td(zi−1)
Tq(zi)+Tq(zi−1)

·
1+bw

√
Vwb(zi)Vwb(zi−1)

1+2bw
√

Vwb(zi)Vwb(zi−1)
. For each altitude zi from the initial altitude of

our moist retrieval ziniMoist = 16 km to the bottom level of the profile, iteration over Equations (12)
and (13) yields the profiles of Tq and pq.

The variance of Tq(z) denoted as u2
Tq(z) can be obtained from propagating the variance profiles

u2
Td(z) and u2

qb(z) based on a linearized version of Equation (12), linearized with some reasonable
assumptions (cf. Appendix A):

u2
Tq(z) =

(
pq(z)

pd(z)

)2

u2
Td(z) +

(
pq(z)

pd(z)
Td(z)
Tq(z)

cq2T

)2

u2
qb(z), (14)

where cq2T = 7727.9 K is the moist air humidity coefficient in temperature error estimation and the
square-root of u2

Tq(z) is the desired uncertainty profile.
Similarly, based on a linearized version of Equation (13), uncertainty of pq(z) denoted as upq(z)

can be calculated as:

upq(z) = βq(z)
(

pq(z)

pd(z)

)
upd(z), (15)

where βq(z) =
Td(z)(1+bwVwb(z))
Tq(z)(1+2bwVwb(z))

.

Step 1b: Retrieval of specific humidity and its uncertainty with background temperature prescribed

The input profiles of this step include: prescribed temperature Tb(z) and its uncertainty uTb(z);
observed dry temperature Td(z) and its uncertainty uTd(z); and observed dry pressure pd(z) and its
uncertainty upd(z). The output profiles include the specific humidity qT(z) and its uncertainty uqT(z)
and pressure pT(z) and its uncertainty upT(z). According to Equations (6) and (11), the corresponding
water vapor volume mixing ratio profile VwT(z) and pT(z) can be expressed as:
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VwT(zi) =

pd(zi)

pT(zi)
Tb(zi) − Td(zi)

cT·
Td(zi)
Tb(zi)

, and (16)

pT(zi) = pT(zi−1)

(
pd(zi)

pd(zi−1)

)βT(zi−1/2)

, (17)

where βT(zi−1/2) =
Td(zi)+Td(zi−1)
Tb(zi)+Tb(zi−1)

·
1+bw

√
VwT(zi)VwT(zi−1)

1+2bw
√

VwT(zi)VwT(zi−1)
, where cT = c2/c1 = 4806.7 K has been described

above. VwT(z) and pT(z) can be solved by iterating level by level top-downward from zi = ziniMoist to
the bottom level. After obtaining VwT(z), the corresponding specific humidity qT(z) can be calculated
using an inverse version of Equation (3) and its variance u2

qT can be propagated from the variance

profiles of u2
Tb(z) and u2

Td(z) based on a linearized version of Equation (16) (cf. Appendix A):

u2
qT(z) =

2 pd(z)
pT(z)

Tb(z) − Td(z)

Td(z)
cT2q


2

u2
Tb(z) +


pd(z)
pT(z)

T2
b(z)

T2
d(z)

cT2q


2

u2
Td(z). (18)

The square root of u2
qT(z) is the desired uncertainty profile uqT(z).

Similarly, based on a linearized version of Equation (17), the uncertainty of pressure upT(z) can be
calculated as:

upT(z) = βT(z)
(

pT(z)
pd(z)

)
upd(z), (19)

where βT(z) =
Td(z)(1+bwVwT(z))
Tb(z)(1+2bwVwT(z))

.

Step 2: Optimal estimation of temperature and specific humidity and their uncertainties

Based on the retrieved temperature profile Tq(z) and its uncertainty uTq(z) obtained in step 1a and
also on the prescribed background temperature profile Tb(z) and its uncertainty uTb(z), the optimally
estimated temperature profile Te(z) can be calculated by combining Tq(z) and Tb(z) based on inverse
variance weighting at all altitude levels:

Te(z) =

 u2
Tb(z)

u2
Tq(z) + u2

Tb(z)

Tq(z) +

 u2
Tq(z)

u2
Tq(z) + u2

Tb(z)

Tb(z). (20)

Furthermore, its variance profile u2
Te(z) can be estimated using the uncertainty propagation law as:

u2
Te(z) =

 1
u2

Tq(z)
+

1
u2

Tb(z)

−1

=
u2

Tq(z)u
2
Tb(z)

u2
Tq(z) + u2

Tb(z)
, (21)

where the square-root of u2
Te(z) is the desired uncertainty profile uTe(z).

Similarly, using the retrieved specific humidity profile qT(z) and its uncertainty uqT(z) obtained
in step 1b, and also on the prescribed specific humidity profile qb(z) and its uncertainty uqb(z), the
optimally estimated specific humidity profile qe(z) and its variance u2

qe(z) can be estimated as:

qe(z) =

 u2
qb(z)

u2
qT(z) + u2

qb(z)

qT(z) +

 u2
qT(z)

u2
qT(z) + u2

qb(z)

qb(z), and (22)

u2
qe(z) =

 1
u2

qT(z)
+

1
u2

qb(z)


−1

=
u2

qT(z)u
2
qb(z)

u2
qT(z) + u2

qb(z)
, (23)
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where again the square-root of u2
qe is the desired uncertainty profile uqe(z).

Step 3: Optimally estimated pressure, density, water vapor volume mixing ratio, water vapor partial pressure,
and their associated uncertainties

Based on the optimally estimated temperature and specific humidity profiles, the optimally
estimated water vapor volume mixing ratio Vwe(z), pressure pe(z), density ρe(z), and water vapor
partial pressure ee(z) can be calculated quite straightforwardly since the relevant retrieval operators are
known. The corresponding uncertainty profiles uVwe(z), upe(z), uρe(z), and uee(z), can also be calculated
using variance-based uncertainty propagation, given the state retrieval operators.

Using the optimally estimated specific humidity profile qe(z), the derived water vapor volume
mixing ratio Vwe(z) can be calculated according to Equation (3):

Vwe(z) =
qe(z)

aw + bwqe(z)
, (24)

and its associated uncertainty can be calculated, based on linearization of Equation (24), according to
the uncertainty propagation law:

uVwe(z) =
aw

(aw + bwqe(z))
2 uqe(z). (25)

The optimally estimated pressure profile pe(z) can be calculated using the temperature profile
Te(z) and volume mixing ratio profile Vwe(z) based on Equation (11):

pe(zi) = pe(zi−1)

(
pd(zi)

pd(zi−1)

)βe(zi−1/2)

, (26)

with βe(zi−1/2) =
Td(zi)+Td(zi−1)
Te(zi)+Te(zi−1)

·
1+bw

√
Vwe(zi)Vwe(zi−1)

1+2bw
√

Vwe(zi)Vwe(zi−1)
. This calculation, started at the ziniMoist level

as the previous pressure retrievals, is effectively based on the hydrostatic equation (Equation (7)
or (8)) (in the convenient variant available in the context of this algorithm) and provides a pressure
profile hydrostatically consistent with the estimated temperature and humidity profiles. We call this a
hydrostatic-equation-based closure scheme for the retrieval of pressure to emphasize that it is improved
over the refractivity-equation-based closure scheme used in the OPSv5.6 approach.

In the OPSv5.6 approach being part of the OPSv5.6 processing system, the pressure profile is

derived as pe(z) = pd(z)
Te(z)

Td(z)(1+c2/(c1T(z))·Vwe(z))
, which is based on the Smith-Weintraub equation and

implies that pressure is consistent with refractivity, temperature, and humidity. Due to errors in the
refractivity profile, this pressure profile is somewhat “noisy” against the hydrostatic pressure profile
that is fully consistent with the retrieved temperature and humidity.

The uncertainty of the estimated pressure profile can be calculated using a linearized version of
Equation (26) in the form:

upe(z) = βe(z)
pe(z)
pd(z)

upd(z), (27)

where βe(z) =
Td(z)(1+bwVwe(z))
Te(z)(1+2bwVwe(z))

.
Using Equation (3), the water vapor partial pressure profile ee(z) can be computed as:

ee(z) = Vwe(z)pe(z), (28)

and its variance profile can be calculated as:

u2
ee(z) = p2

e(z)u
2
Vwe(z) + V2

weu
2
pe(z). (29)
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The square root of this variance profile is the uncertainty profile uee(z).
Finally, the density profile ρe(z) can be derived by using the equation of state in moist air:

ρe(z) =
pe(z)

RTe(z)(1 + cwqe(z))
, (30)

and, based on a linearized version of Equation (30), its variance profile can be calculated as:

u2
ρe(z) =

(
1

RTe(z)(1+cwqe(z))

)2
u2

pe(z) +
(

pe(z)
RT2

e(z)(1+cwqe(z))

)2
u2

Te(z)

+
(

cwpe

RTe(z)(1+cwqe(z))
2

)2
u2

qe(z)
(31)

Again the square root of the variance profile is the desired uncertainty profile uρe(z).

2.3. Modeling of Observation and Background Uncertainties

The uncertainties of observed and background / prescribed variables are key for determining
their weights in the optimally estimated profiles and are therefore critical for providing accurate moist
profiles and associated uncertainty estimates. In the new algorithm, we dynamically estimate the
background and observation uncertainties. As evident from above, these uncertainties include the
background temperature uncertainty profile uTb(z), the background specific humidity uncertainty
profile uqb(z), the observed dry temperature uncertainty profile uTd(z), and the observed dry pressure
uncertainty profile upd(z). We sequentially describe below how we estimated these uncertainties for
this study.

2.3.1. Observation Uncertainty Modeling

The observation uncertainty of both observed dry temperature uTd and observed dry pressure upd

are modeled following the empirically derived error model developed by Scherllin-Pirscher et al. [51].
Currently, both the OPSv5.6 and the dynamic approach use this model to estimate the observation
uncertainty. In the future rOPS system, the propagated individual-profile based observation
uncertainties (and error correlation matrices) will be used [43].

The model structure is the same for both temperature and humidity, only with different parameter
settings. We set the parameters based on our tests for moist air retrieval, close to original ones of
Scherllin-Pirscher et al. [51]. The vertical structure of the model, needed here only up to the bottom of
the stratosphere, is:

smodel(z) =

 s0 + q0

[
1
zp −

1
zp

Ttop

]
for z ≤ zTtop

s0 for zTtop ≤ z < zSbot

, (32)

where zTtop is the top altitude of the troposphere domain, zSbot is the bottom altitude of the stratosphere
domain, s0 is the standard error (uncertainty) in the upper troposphere/lower stratosphere domain,
q0 is the best-fit magnitude parameter for the tropospheric model, and p is the associated exponent
parameter. The complete parameter settings are summarized in Table 1.

Table 1. Parameter settings for the observational uncertainty model for dry temperature and dry pressure.

zTtop zSbot s0 q0 p

uTd 10.0 km 20.0 km 0.7 K 3 K kmp 0.5
upd 10.0 km 17.0 km 0.15% 0.7 %kmp 0.5
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2.3.2. Background Uncertainty Modeling

The calculation follows the approach of Li et al. [52,53] and starts from the preparation of a daily
updated global three-dimensional (latitude, longitude, and altitude) background uncertainty fields.
The horizontal grid resolution of the uncertainty fields is 10◦ latitude × 20◦ longitude (center of base
cell is 5◦N, 10◦E). The vertical resolution was updated to 100 m level spacing from 0.1 km to 20 km
altitude. This construction yields the daily uncertainty fields at a global 18 × 18 × 200 grid. All the
mean basic profiles that are required for the calculation of uncertainties are saved for each 10◦ × 20◦

grid cell center location and on the defined 200 vertical grid levels.
In each 10◦ × 20◦ grid cell and on the 200-level standard vertical grid, several types of basic

variables are pre-calculated and saved for both background temperature and specific humidity. These
basic variables include (the same notations of some basic variables are used for both temperature and
humidity due to the same calculation method): (1) the mean analysis profile of temperature Ta and
specific humidity qa; (2) the standard deviations of the ensemble of analysis values against its mean sa;
(3) bias of the mean analysis profile ba; (4) the mean forecast profile of temperature Tf and specific
humidity qf; (5) the standard deviations of the forecast-minus-analysis difference profiles sf-a; (6) the
number of values in the analysis and the forecast ensemble Na,f. These basic variables except the bias
of the mean analysis profile are calculated based on statistical calculation using a large ensemble of
forecast and analysis profiles in each grid cell. The details of how to extract the ensemble of profiles on
the grid and how to calculate these profiles were described by Li et al. [52,53].

The bias profile ba for temperature is estimated by systematic error modeling according to
Li et al. [52,53]. It is applied with no vertical variations but with latitudinal variations. The temperature
biases are smallest within the ±40◦ latitude band, where the values are equal to the basic mean
magnitude of s0 (0.5 K). Such values increase with the increase of latitude. Poleward of 60◦, s0 are 20%
higher than their basic mean magnitude in the summer hemisphere but twice their mean magnitude
in the winter hemisphere [51,52]. The bias profile ba for specific humidity is currently adopted as a
relative uncertainty value of 5% of the mean analysis humidity, an educated-guess value.

Using these variables, the background uncertainties ub (representing both for uTb and uqb) are
estimated as:

ub(z) =
[
(ua(z))

2 + (sf−a(z))
2
]1/2

, (33)

where ua and sf-a here represent the collocated values obtained from a bi-linear interpolation of
their values from the four grid points surrounding the tangent-point location of the given RO event.
Preparing for this, ua at each grid point (denoted for clarity as ua_grid) is estimated as a combination of
the systematic biases and the statistical errors [52,53]:

ua_grid =
[
b2

a +
(
s2

a/Na,f

)]1/2
. (34)

Since background temperature uncertainty uTb between 10 km and 16 km needs to be penalized
to gradually increase in uncertainty at these high tropospheric altitudes, in order to ensure that the
observations always safely take increasing weight towards the stratosphere, we modified uTb from 10
km to 16 km and used an intentional uncertainty increase of the form:

uTb(z) = uTb

(
zTtop

)
·e

z−zTtop
HTb , (35)

where zTtop is 10 km and HTb is the “uncertainty scale height” set to 5 km.
Background specific humidity uncertainty uqb is input in form of relative humidity values into

the scheme. That is, we first use the collocated background specific humidity uncertainty divided by
the collocated mean forecast humidity profile, uqb/qb, and then use this relative value to multiply it
with the collocated actual background profile in order to obtain the specific humidity uncertainty in
absolute values for the algorithm.
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Figure 2 shows the comparison between OPSv5.6 and the new (dynamic) observation and
background uncertainties. It can be seen that uTd increases with decreasing altitude from 0.7 K at
16 km to more than 4 K at the surface. Dry pressure uncertainty stays around 0.2% from 16 km to
10 km and then gradually increases with decreasing altitude to about 1.5% at the surface. As noted
above, the observation uncertainties are still used as global static profiles, i.e., used globally in the same
way, while in the future rOPS they will be as well used dynamically such as the dynamic background
uncertainties discussed next.
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Figure 2. Mean profiles and uncertainties of the four input variables, i.e., observed dry temperature
(first row), observed dry pressure (second row), background temperature (third row), and background
specific humidity (fourth row) on 15 July 2008. For the input observed profiles (first row and second
row), which the OPSv5.6 and the dynamic approach share the same uncertainties, the left, middle, and
right panels show for the observed mean profile, uncertainty profile as a function of altitude, and the
uncertainty profile as a function of altitude and latitude, respectively. For the background profiles
(third and fourth row), the left, middle, and right panels show for the background mean profile as a
function of altitude, global mean static uncertainty profile of OPSv5.6 approach as a function of altitude,
and dynamic background uncertainty as a function of altitude and latitude, respectively.
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The third row of Figure 2 shows that the OPSv5.6 uTb is a static global profile, being 2 K at 16 km,
0.6 K at 10 km, and about 1.2 K at the surface. In comparison, the dynamic uTb exhibits latitudinal and
altitudinal variations. uTb in polar regions is larger than that in non-polar regions. It is largest in the
southern hemisphere polar regions, with values varying from 1.2 K close to the surface to more than
4 K above 12 km. In non-polar regions, the values gradually decrease from high latitudinal regions to
low latitudinal regions. Furthermore, our sensitivity test results (not shown) indicate that the dynamic
uTb exhibits clear seasonal variations, with largest uncertainty in the polar winter hemisphere.

The fourth row of Figure 2 shows that relative values of OPSv5.6 uncertainty of background specific
humidity uqb. It is 10% at the surface, increases to about 40% at 7 km, and then gradually decreases to
about 15% at 16 km. The dynamic uqb exhibits clear latitudinal variations, with largest values (>40%
from 3 km up to 10 km) in tropical regions, decreasing towards the poles.

We also correct the potential biases that exist in background profiles. This is done by subtracting a
background bias profile estimated by using gridded mean forecast profiles minus analysis profiles. It is
found that bias-corrected background profiles are useful for getting optimal profiles. For conciseness
of the main text of this paper, Appendix B provides more details. Furthermore, we also inspected the
vertical correlation structure of background and observation inputs, obtained by constructing error
covariance matrices of forecast/observed minus analysis profiles. It is found that the correlations of both
background and observation profiles are reasonably small. We hence disregarded to account for these
error correlations in the algorithm as introduced in this study; here Appendix C provides more details.

2.4. Inspection of Intermediate Variables

In order to provide insight on the characteristics of sub-step results, we illustrate here the
input, intermediate, and output variables of the new dynamic approach, using one simulated MetOp
(simMetOp) event and one real COSMIC event as representative examples. The MetOp event is simulated
under moderate ionospheric conditions. The observational errors represent MetOp/GRAS-type receiving
system errors (precise orbit determination (POD) errors, receiver thermal noise, local multipath, clock
instabilities), following the proven setting by Steiner and Kirchengast [31], also recently used by
Schweitzer et al. [10] and Li et al. [52,53]. The results are shown in Figures 3 and 4.

First focusing on the top row (temperature), it can be seen that uTb of the simMetOp event, which is
located at higher latitudinal regions, is larger than that of the COSMIC event, with values that decrease
from 3 K at 16 km to 1 K at 10 km and further to 0.8 K below. For both events, uTq is smaller than uTb

above 10 km, while below 10 km, uTq increases quickly and becomes larger than 6 K at bottom altitude
levels. The optimally estimated Te is bounded between Tb and Tq and properly takes more weight
from the profile that has ascribed less uncertainty. The differences between Te and the corresponding
reference profile are generally smaller than the differences of Tb and Tq, indicating the effectiveness of
the optimal estimation. Comparing dynamic uTb and OPSv5.6 uncertainty uTdOPSv56, we can see that
uTb is of similar magnitude as uTdOPSv56, with values larger at high latitudes and smaller at low latitudes.

Next focusing on the middle row (specific humidity), and first comparing uqb and uqT, we see that
uqb is larger than uqT below 8 km for the simMetOp event and below 7 km for COSMIC event. Above
7 km to 8 km, uqT increases quickly to large values. In the optimal estimation, qe takes more weight
from the profile with smaller uncertainties in the optimal estimation, and its difference against the
reference profile is smaller than the one between qb and qT, again indicating the effectiveness of the
optimization. The OPSv5.6 specific humidity uncertainty uqbOPSv56 is a static profile globally, starting
from near 20% at bottom altitude levels, increasing to about 40% at 7 km and then gradually decreasing
to below 20% at 16 km.

Finally focusing on the bottom row of Figures 3 and 4 (pressure), the resulting profiles and also
the uncertainties are seen basically very close to (or even identical to) each other, due to the dominating
factor being the input dry pressure profile and its uncertainty (cf. Equations (A2), (A6), (A8), (A13) in
Appendix A and Equations (26) and (27) above). This makes transparent that the pressure chain of
computations is quite simple in terms of uncertainty setup in this version, and quite robust in terms of
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co-estimating the pressure together with temperature and humidity in a manner consistent with the
hydrostatic equation and the equation of state.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 35 
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Figure 3. Illustration of input, intermediate, and result variables relevant towards the estimation of
optimal temperature (top row), specific humidity (middle row), and pressure (bottom row) of an
exemplary simMetOp event (identified on top), for the dynamic approach. In the top row, the left
panel shows temperature profiles for background temperature (blue), temperature calculated with
specific humidity prescribed (green), and the optimally estimated temperature (red). The middle
panel shows the estimated uncertainty profiles for the three profiles shown left and for the observed
dry temperature (black) as well as the uncertainty of the background temperature from the OPSv5.6
approach (dashed blue). The right panel shows the differences between the temperature profiles shown
left and the reference profiles, where the references profiles are the ECMWF co-located analysis profiles.
In the three panels of the middle row, the same type of variables is shown as in the upper row, but
for specific humidity q; thus the intermediate variable here is specific humidity with temperature
prescribed (subscript “T”) and there is no dedicated input uncertainty profile in the middle panel
(such as uTd in the upper row). Similarly, the bottom row shows the corresponding variables for
pressure, whereby here the intermediate pressures from both humidity prescribed (subscript “q”) and
temperature prescribed (subscript “T”) are shown together with the optimally estimated pressure
(subscript “e”), and the middle panel also illustrates the input uncertainty profile of the dry pressure pd.
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Figure 4. Illustration of input, intermediate, and result variables relevant towards the estimation of
optimal temperature (top row), specific humidity (middle row), and pressure (bottom row) of an
exemplary COSMIC event (identified on top), for the dynamic approach. Figure format and style are
the same as for Figure 3; see that caption for explanation.

3. Results—Algorithm Performance Evaluation by Comparison to 1DVar Retrievals

The new algorithm in terms of both the OPSv5.6 and dynamic approach is evaluated using
simulated and real observed RO data. In addition to these two approaches, moist-air profiles retrieved
at ROM-SAF and CDAAC with 1DVar approaches are used for our comparison. The basis of the
comparison is to calculate difference profiles between RO retrieved profiles and their corresponding
reference profiles based on which we compare the approaches, first by inspecting individual RO events
and second by intercomparing statistical profile ensemble results, including systematic differences and
standard deviations in different latitudinal bands.

We focus on the comparison of the retrieved profiles of temperature, specific humidity, and
pressure. Other moist-air profiles such as density or water vapor pressure profiles, which can be readily
derived using these three variables (see Figure 1 and related description), are found to show similar
comparative characteristics and are hence for conciseness not additionally discussed here.

Following the successful basic performance evaluation approach of Li et al. [52,53], the data used
for the evaluation include simMetOp and real CHAMP and COSMIC data on 15 July 2008, plus, due to
the number of CHAMP RO events from one day being not sufficiently high, also CHAMP data on 14
and 16 July 2008. Co-located ECMWF operational analysis profiles are used as reference profiles for all
simulated and real RO events.

The End-to-End GNSS Occultation Performance Simulation and Processing System (EGOPS)
version v5.6 [54,55] was used for the forward simulation and retrieval of simMetOp data as well as for
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the retrieval of the CHAMP and COSMIC profiles by the OPSv5.6 and dynamic approaches. The EGOPS
software was developed by WEGC for the simulation of occultation observations and also retrieval,
based on the simulated or real observed RO observations. Its retrieval subsystem for RO atmospheric
profiles is also independently denoted as OPS. The version 5.6 is its most state-of-the-art version.
In simulation of occultation observations, users can carefully select observational noise modeling
options, antenna types, orbit accuracy settings, and many other choices. Details on the EGOPS/OPSv5.6
simulation and retrieval capabilities can be found in Fritzer et al. [54] and Schwärz et al. [55].

3.1. Insights from Individual Event Profiles

Figure 5 shows the differences between RO retrieved moist profiles and their corresponding
reference profiles for three exemplary RO events from simMetOp, CHAMP, and COSMIC for the
four approaches evaluated. The three events are intentionally selected to represent at the same time a
diversity of latitudes and hence atmospheric conditions, from northern hemisphere middle latitudes
(simMetOp) via southern hemisphere polar (CHAMP) to tropical region (COSMIC).
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Figure 5. Difference profiles between RO-retrieved temperature (left column), specific humidity (middle
column), and pressure profiles (right column) and their corresponding ECMWF co-located analysis
profiles, for three exemplary events (identified on top of each row) from simMetOp (top row), CHAMP
(middle row), and COSMIC (bottom row), respectively. The results for the dynamic (red), OPSv5.6
(black), CDAAC (green), and ROM-SAF (blue) approaches are shown.

From the simMetOp event we can see that the temperature and pressure differences from the
dynamic approach are smaller than those of the OPSv5.6 approach, while specific humidity differences
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from the dynamic approach are larger than those from OPSv5.6. For the CHAMP event, temperature
differences of the four approaches are generally consistent. Specific humidity differences of the four
approaches are generally similar, with the OPSv5.6 and dynamic approaches showing somewhat larger
differences from about 4 km to 7 km and CDAAC and ROM-SAF larger ones from about 7 km to 10 km.

Pressure differences from OPSv5.6 are largest among the four approaches and exhibit some
smaller-scale altitude variations. This is expected according to the algorithm choice (cf. Section 2.2)
that optimal pressure in the OPSv5.6 approach is calculated consistent with the Smith-Weintraub
formula, rather than with the hydrostatic equation, and is hence affected by the errors/fluctuations
of dry temperature. Pressure differences from ROM-SAF are smallest for the CHAMP event and
largest for the COSMIC event amongst the four approaches, indicating event-to-event variation in how
estimated temperature and humidity play together in yielding pressure profiles.

For the COSMIC event, temperature differences for the four approaches are again rather similar.
Specific humidity differences from all four approaches are generally consistent as well, with slightly
larger values from the dynamic approach between 5 km to 10 km. While these inspections provide
some insights to typical individual-event behavior, a more reliable comparison based on statistical
results is needed as discussed below.

3.2. Statistical Ensemble Results

In order to investigate the statistical performance of the four approaches in different latitudinal
regions, the error statistics in terms of the systematic differences and standard deviations of the
retrieved profiles against the reference profiles are calculated in six representative latitudinal regions,
comprising global total (90◦S to 90◦N) and five latitude bands (see Figure 6 and its caption).
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Figure 6. Number of RO profiles from simMetOp (left), CHAMP (middle), and COSMIC (right) as 
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TRO (tropics; 20°S to 20°N), NHP (northern hemisphere polar; 60°N to 90°N), SHP (southern 
hemisphere polar; 60°S to 90°S), NHSM (northern hemisphere subtropics and mid-latitudes, 20°N to 
60°N), and SHSM (southern hemisphere subtropics and mid-latitudes, 20°S to 60°S), on 15 July 2008 
for simMetOp and COSMIC and on 14-16 July 2008 for CHAMP. The red, black, green, and blue colors 
denote the dynamic, OPSv5.6, CDAAC, and ROM-SAF approaches, respectively, with the dynamic 
one plotted last (hence shadowing other colors above the lower to middle troposphere) and the 
profiles for different latitude bands denoted by distinct symbols (see legend). 

Figure 6. Number of RO profiles from simMetOp (left), CHAMP (middle), and COSMIC (right)
as function of altitude for the global domain (top row) and five latitudinal bands (bottom row),
including TRO (tropics; 20◦S to 20◦N), NHP (northern hemisphere polar; 60◦N to 90◦N), SHP (southern
hemisphere polar; 60◦S to 90◦S), NHSM (northern hemisphere subtropics and mid-latitudes, 20◦N to
60◦N), and SHSM (southern hemisphere subtropics and mid-latitudes, 20◦S to 60◦S), on 15 July 2008
for simMetOp and COSMIC and on 14-16 July 2008 for CHAMP. The red, black, green, and blue colors
denote the dynamic, OPSv5.6, CDAAC, and ROM-SAF approaches, respectively, with the dynamic one
plotted last (hence shadowing other colors above the lower to middle troposphere) and the profiles for
different latitude bands denoted by distinct symbols (see legend).
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In order to avoid outliers and ensure an identical RO event ensemble for all four approaches, RO
profiles that showed bad quality in any of the processing systems, based on the quality control settings
and flags in the respective data files supplied, were rejected from the joint event ensemble. In particular,
the quality of retrieved profiles from the OPSv5.6 and dynamic approaches was determined by the
OPSv5.6 system specifications [56] and the quality of the profiles retrieved at CDAAC and ROM-SAF
by the system they used at their centers [20,26,57].

Figure 6 shows the resulting number of profiles (i.e., number of RO events) available for the
joint statistical evaluation for the four approaches in the six latitudinal bands. Given our joint-events
selection noted above, the number of profiles above about 5 km to 8 km altitude is the same for the four
approaches; only in the lower and middle troposphere below about 8 km there is a number-of-profiles
reduction depending on the specific processing systems and their specific criteria to cut the tropospheric
penetration of individual moist-air profiles depending on retrieval quality.

In general, the number of profiles available deep into the troposphere from the OPSv5.6 and
dynamic approach is somewhat larger than that from CDAAC and ROM-SAF. Furthermore, the
number of ensemble members in the five latitude bands varies from about 50 (CHAMP in SHP) to
about 500 profiles (COSMIC in SHSM), with all bands enabling reasonable statistics for this initial
comparative performance evaluation study among the four approaches.

Figures 7–9 illustrate the statistical results for the RO retrieved profiles of simMetOp, CHAMP,
and COSMIC, respectively. Figure 7 shows for the simMetOp profiles ensemble that the systematic
differences for temperature and specific humidity from the dynamic approach are smaller than those
from the OPSv5.6 approach. The best relative improvements are found in tropical regions, where
the temperature systematic differences of the dynamic approach are 0.2 K smaller than those of the
OPSv5.6 approach, and specific humidity differences are about 15% smaller.

Standard deviations of temperature and specific humidity from the dynamic approach are smaller
than or similar to those of OPSv5.6. The propagated uncertainties of temperature, uTe are larger
than the statistically estimated standard deviations, which is especially related to the fact that uTe

is calculated using uTd (cf. Equations (14) and (21)), which is empirically estimated for real rather
than simulated data based on the model by Scherllin-Pirscher et al. [51]. That is, for simulated data,
uTd is overestimated since the quality of dry temperature of our simulated data is better than real
observed data. The propagated specific humidity uncertainties are of similar magnitude compared to
the statistically estimated uncertainties.

The statistical differences of pressure for the dynamic approach are clearly smaller than those
from OPSv5.6, which is due to the different closure-scheme of the pressure computation as discussed
above (Section 2.2). The propagated pressure uncertainties are larger than the statistically estimated
uncertainties, similar to temperature, which is similarly related to the overestimation of the uncertainty
of dry pressure, targeted to real data, for these simulated MetOp data.

Figure 8 shows for the CHAMP profiles ensemble that the temperature error statistics in terms of
systematic differences and standard deviations from the dynamic, OPSv5.6, and ROM-SAF approaches
are rather similar in all latitudinal bands, with systematic differences reaching around ±0.2 K and
standard deviations being smaller than 1 K down to the boundary layer. Temperature statistics of
CDAAC are as well rather similar to the other three approaches, with standard deviation only slightly
larger below about 8 km. This slightly larger standard deviation of CDAAC is probably due to a
somewhat stronger weighting of observations vs. background at low to middle troposphere levels,
where observations are nosier compared to background. Furthermore, it needs to be kept in mind
that the reference profiles are for mean RO event locations, while actual tangent points drift during
occultation (e.g., [19]), which also contributes to enlarged deviations at lowest tropospheric levels.
The propagated temperature uncertainties uTe are basically consistent with the statistically estimated
uncertainty, which again indicates the reasonableness of this simplified uncertainty propagation.
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Figure 7. Systematic differences (SysDiff) and standard deviations (StDev) of retrieved temperature 
(left column), specific humidity (middle column), and pressure (right column), relative to ECMWF 
co-located analysis profiles as reference, of the ensemble of simMetOp events on 15 July 2008. 
Statistics for both the dynamic (red) and OPSv5.6 (black) approach are shown for four representative 
regions (top to bottom: Global, TRO, NHP, SHP). The propagated uncertainties of retrieved profiles 
from the dynamic approach (UncertDyn; red-dashed) are shown as well. 

Figure 7. Systematic differences (SysDiff) and standard deviations (StDev) of retrieved temperature
(left column), specific humidity (middle column), and pressure (right column), relative to ECMWF
co-located analysis profiles as reference, of the ensemble of simMetOp events on 15 July 2008. Statistics
for both the dynamic (red) and OPSv5.6 (black) approach are shown for four representative regions
(top to bottom: Global, TRO, NHP, SHP). The propagated uncertainties of retrieved profiles from the
dynamic approach (UncertDyn; red-dashed) are shown as well.
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co-located analysis profiles as reference, of the ensemble of CHAMP events on 14-16 July 2008. 
Statistics for the dynamic (red), OPSv5.6 (black), CDAAC (green), and ROM-SAF (blue) approach are 
shown for four representative regions (top to bottom: Global, TRO, NHP, SHP). The propagated 
uncertainties of retrieved profiles from the dynamic approach (UncertDyn; red-dashed) are shown as 
well. 

Figure 8. Systematic differences (SysDiff) and standard deviations (StDev) of retrieved temperature
(left column), specific humidity (middle column), and pressure (right column), relative to ECMWF
co-located analysis profiles as reference, of the ensemble of CHAMP events on 14-16 July 2008. Statistics
for the dynamic (red), OPSv5.6 (black), CDAAC (green), and ROM-SAF (blue) approach are shown for
four representative regions (top to bottom: Global, TRO, NHP, SHP). The propagated uncertainties of
retrieved profiles from the dynamic approach (UncertDyn; red-dashed) are shown as well.
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(left column), specific humidity (middle column), and pressure (right column), relative to ECMWF 
co-located analysis profiles as reference, of the ensemble of COSMIC events on 15 July 2008. Statistics 
for the dynamic (red), OPSv5.6 (black), CDAAC (green), and ROM-SAF (blue) approach are shown 
for four representative regions (top to bottom: Global, TRO, NHP, SHP). The propagated uncertainties 
of retrieved profiles from the dynamic approach (UncertDyn; red-dashed) are shown as well. 

The specific humidity error statistics from the four approaches are basically consistent, on a 
global-mean scale, with systematic differences reaching around ±10 % and standard deviations 
varying from 10 % to 50 %. In more detail, the specific humidity statistics reveal clear altitudinal 
variations, with largest values in the upper troposphere (about 5 km to 10 km), and also latitudinal 
variations. For example, in the NHP region, error statistics of ROM-SAF and CDAAC are found to be 
comparatively larger above about 10 km, which is possibly related to the treatment of very small 
specific humidity values, where WEGC (dynamic, OPSv5.6) places a stronger constraint towards the 

Figure 9. Systematic differences (SysDiff) and standard deviations (StDev) of retrieved temperature
(left column), specific humidity (middle column), and pressure (right column), relative to ECMWF
co-located analysis profiles as reference, of the ensemble of COSMIC events on 15 July 2008. Statistics
for the dynamic (red), OPSv5.6 (black), CDAAC (green), and ROM-SAF (blue) approach are shown for
four representative regions (top to bottom: Global, TRO, NHP, SHP). The propagated uncertainties of
retrieved profiles from the dynamic approach (UncertDyn; red-dashed) are shown as well.

The specific humidity error statistics from the four approaches are basically consistent, on a
global-mean scale, with systematic differences reaching around ±10% and standard deviations varying
from 10% to 50%. In more detail, the specific humidity statistics reveal clear altitudinal variations,
with largest values in the upper troposphere (about 5 km to 10 km), and also latitudinal variations.
For example, in the NHP region, error statistics of ROM-SAF and CDAAC are found to be comparatively
larger above about 10 km, which is possibly related to the treatment of very small specific humidity
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values, where WEGC (dynamic, OPSv5.6) places a stronger constraint towards the background.
Therefore, WEGC profiles have less deviation from the (ECMWF-based) background humidity and
also from the ECMWF analysis reference here.

The propagated uncertainty of the specific humidity, uqe, is generally smaller below about 10 km
than the statistically estimated uncertainties (except in the SHP region, where absolute moisture content
is low). This is due to the reason that observed, background, and analysis specific humidity jointly
represent more (noisy) variations over the troposphere than the simplified error estimates used here
do capture. In other words, part of the “representativeness error” is not captured.

Pressure error statistics below 10 km from all four approaches are basically rather consistent,
with systematic differences varying within about ±0.1% and standard deviations reaching about
±0.2%. Pressure differences of the OPSv5.6 approach are somewhat larger and exhibit comparatively
more fluctuations below 5 km (below 2 km for systematic differences), which is due to the different
refractivity-based (rather than hydrostatic-based) closure scheme explained in the algorithm description
above (Section 2.2).

The propagated uncertainties of pressure are similar to the statistically estimated uncertainties
above about 5 km. Below 5 km, the propagated uncertainties are found somewhat larger than the
statistically estimated uncertainty. This is due to the reason that the simplified input uncertainty
estimate used here for dry pressure, which is the basis for calculating the propagated uncertainty, is
rather large at low altitudes. In WEGC’s future rOPS context, this input uncertainty will be more
realistic as part of a full chain of uncertainty propagation [44].

Figure 9 shows for the COSMIC profiles that the comparative performances of the four approaches
are similar to what is visible and was just discussed for the CHAMP profiles shown in Figure 8. We
note that in the tropical lower troposphere below about 3–4 km, where moisture content is largest, the
OPSv5.6 and dynamic approaches exhibit a negative systematic difference of up to around −10% in
specific humidity. Similar to other differences between the approaches visible in the upper troposphere,
this is likely related to different uncertainty weighting choices and points to room for further refinement
in future.

3.3. Simple Observation-to-Background Weighting Ratio Profiles and Comparative Results

In order to know how much observation information was used in the retrieved moist profiles,
we calculate observation-to-background uncertainty weighting ratio profiles, robw, of temperature
and specific humidity for the dynamic, OPSv5.6 and ROM-SAF approaches (CDAAC-provided moist
profile files do not contain uncertainty information, hence these data are not included here). Since
both our approaches and the 1DVar approach used by ROM-SAF are not (fully) linear, it is not an
easy task to calculate the real robw in a comparable manner. Hence we implemented and inspected an
approximation as follows.

Considering that the calculation of retrieval-to-background uncertainty ratio (rrbu) is straightforward
and consistently possible for all four datasets, we used this ratio to calculate an approximate robw.
The retrieval-to-background uncertainty ratio is defined and calculated as rrbu = 100 uret

ub
, where uret

is the uncertainty profile of the retrieved (optimally estimated) profile and ub is the corresponding
background uncertainty profile. Based on the rrbu profile, we can then estimate robw as:

robw = 100
(
1−

( rrbu

100

)2
)
= 100

1−
u2

ret

u2
b

, (36)

which implicitly assumes an inverse-variance weighted combination of observations and background
in the optimal estimation, being a reasonable approximation.

Figure 10, illustrating the robw results for temperature and specific humidity, shows that the
robw for temperature from dynamic, OPSv5.6, and ROM-SAF approaches are generally consistent,
with dynamic robw comparatively largest. This indicates that, by its observational and background
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uncertainty choices, the dynamic approach uses more observation information in the temperature
retrieval. The temperature results of the three approaches reveal clear latitudinal variations, with less
observation information used in the tropics (TRO), where humidity is large, and more in polar regions
(especially SHP), where humidity is small and RO likewise accurate.
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Figure 10. Observation-to-background weighting ratio profiles for temperature (six panels in upper 
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Figure 10. Observation-to-background weighting ratio profiles for temperature (six panels in upper
two rows) and specific humidity (six panels in lower two rows), for the COSMIC data ensemble of 15
July 2008, are shown for the global ensemble (Global) and the five latitudinal bands TRO, SHSM, NHSM,
SHP, and NHP (identified in the panel titles). The results for the dynamic, OPSv5.6 and ROM-SAF
approaches are all shown.
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The robw profiles of specific humidity from all three approaches are generally consistent, with
values from ROM-SAF approach largest (except for NHSM and NHP region), in line with how the
temperature weighting is tentatively going the other way. That is, higher relative weight on temperature
will generally lead to lower relative weight on humidity, and vice versa. In NHSM and NHP region,
values from OPSv5.6 are largest probably due to larger background errors (cf. Figure 2) and subsequent
more observation information used in the final optimal estimation.

4. Discussion

The results of Section 3 and Figure 5, Figure 8, and Figure 9 provide clear evidence that our new
“simplified 1DVar” approach with the “direct-retrieval method” results obtained as intermediate step,
both in form of the OPSv5.6 and the dynamic approaches, provide (at least) the same level of quality as
the ROM-SAF and CDAAC “full 1DVar” approaches. Especially when comparing the results from the
OPSv5.6 and ROM-SAF approaches, which use the most similar background uncertainties, the error
statistics of these two approaches are generally very close.

In general, the background and observation uncertainties are key for determining the weights
of background and observations. Hence mainly the weights of background and observations in
the optimal estimation determine the statistical errors of moist profiles, which depend on RO data
processing centers’ evaluation of the quality of background and observation data. Comparing the
OPSv5.6 and the dynamic approach, we find that the dynamic approach has reduced the systematic
differences of temperature and the statistical errors of humidity as well as improved the thermodynamic
consistency of the pressure results, which confirms the effectiveness of improvements of the dynamic
approach on top of the OPSv5.6 approach.

The inter-comparison results here demonstrate the performance and general accuracy of the
new algorithm in its basic form, without accounting for error correlations and further uncertainty
propagation advancements. Schwarz [44] advanced the dynamic approach by propagating estimated
random uncertainties using covariance propagation, controlled by Monte-Carlo ensemble methods.
The covariance propagation, accounting for error correlations, also enabled to implement a full
covariance-weighted optimal estimation. These specific most recent advancements are published
elsewhere, together with a further step of performance evaluation on its added value.

Overall it is already clear from the results of this study that the “simplified 1DVar”, with its special
features of step-by-step transparency of state retrieval as well as systematic and random uncertainty
propagation, is a viable new algorithm achieving the quality of “full 1DVar”.

5. Conclusions

In this study, a new sequentially linearized “simplified 1DVar” algorithm was introduced that
combines the so-called direct method, with temperature or humidity prescribed, with optimal estimation,
for providing accurate temperature, humidity, and pressure profiles from RO in the troposphere. It was
also evaluated using the “full 1DVar” algorithm implementations from the ROM-SAF and CDAAC
processing centers.

While approximating the matrix inversion and iteration approach used in 1DVar algorithms
in simplified form, we find the new algorithm to nevertheless effectively allow retrieving accurate
optimally estimated profiles, along with systematic and random uncertainty propagation and effective
observation-to-background weighting ratio tracking. The direct-method retrieval results, temperature
profiles with background humidity profiles prescribed as well as humidity profiles with background
temperature profiles prescribed, are available as intermediate results and can hence be considered a
useful by-product.

The uncertainties of background and observational variables are dynamically estimated in the
new algorithm, using statistical calculations and empirical modeling. The estimated uncertainties
account for latitudinal and seasonal variations. Residual biases in background profiles (ECMWF
short-range forecast profiles) are corrected for by using co-located ECMWF forecast-minus-analysis
difference bias profiles and are found useful in reducing biases in resulting profiles.
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The comparison of the new algorithm against the moist-air profiles provided by the current
OPSv5.6 processing system and profiles from ROM-SAF and CDAAC showed that it provides robust
and high quality temperature, humidity, and pressure profiles in the troposphere, comparable in
performance with “full 1DVar”, plus uncertainty estimates in good quality.

The new algorithm was implemented in the OPSv5.6 system with static uncertainty profiles
as an initial scope, while the further advanced dynamic approach presented in this paper, is using
dynamic uncertainties and the further improvements described. In future, the algorithm in a further
advanced form, based on the work by Schwarz (2018) [44], will be used as part of the WEGC’s new
rOPS processing system. This rOPS-implemented moist-air algorithm that is built on the algorithm
introduced in this study, is also used in the first large-scale reprocessing towards a tropospheric climate
data record 2001-2019 by the rOPS and its integrated uncertainty propagation.
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Appendix A Detailed Numerical-Algorithm Formulations of Steps 1a and 1b

This Appendix describes the detail numerical-integration formulation of step 1a “retrieval of
temperature and its uncertainty with specific humidity prescribed” and step 1b “retrieval of specific
humidity and its uncertainty with temperature prescribed”. Based on this description, interested
readers should be enabled to implement this approach also in their processing systems. The description
provides details of practical implementation expertise at WEGC, such as on assigning robust initial
values and ensuring very rapid convergence of iterations, which may help save substantial testing and
tuning time in case of re-implementation in other systems.

Step 1a–Retrieval of temperature and its uncertainty with specific humidity prescribed

The inputs of this retrieval step include the prescribed background specific humidity qb and its
associated uncertainty uqb, the observed dry temperature Td and its uncertainty uTd, and the observed
dry pressure pd and its uncertainty upd. As noted in the main text of the paper, Vwb can be calculated
using Equation (3). Then, based on Equations (12) and (13), the profiles Tq(z) and pq(z) can be solved
by iteration, level by level top-downward from the level below the first level (ziniMoist = 16 km) to the
bottom level, of the (T-β-p)-three-equation system:
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Tq,k+1(zi) = Td(zi)
pq,k(zi)

pd(zi)

(
1 +

cT

Tq,k(zi)
Vwb(zi)

)
, (A1)

pq,k+1(zi) = pq(zi−1)

(
pd(zi)

pd(zi−1)

)βq,k+1(zi−1/2)

, (A2)

where βq,k+1(zi−1/2) =
Td(zi)+Td(zi−1)

Tq,k+1(zi)+Tq(zi−1)
·

1+bw
√

Vwb(zi)Vwb(zi−1)

1+2bw
√

Vwb(zi)Vwb(zi−1)
.

At each altitude level zi, initial values for the iteration are (k = 0):
(1) Tq,0(zi) = Tq(zi) + 0.8·cq2T·qb(zi) and pq,0(zi) = pd(zi)− 0.2·cq2T·qb(zi)pd(zi)/Td(zi), if Td(zi) ≤

TdThres ∨ zi = ziniMoist, where Tdthres = 240 K is a threshold in dry temperature Td above which it can
typically deviate by more than 1 K from actual T;

(2) Tq,0(zi) = Tq(zi−1) and pq,0(zi) = pq(zi−1)·(1 + |zi − zi−1|/H0) if Td(zi) > TdThres ∧ zi < ziniMoist,
where H0 = 8 km.

The iteration ends at k = k + 1 that satisfies
∣∣∣Tq,k+1(zi) − Tq,k(zi)

∣∣∣ < dTtol, where dTtol = 0.01 K is
the convergence tolerance. At all higher levels, zi > ziniMoist, use the same formulations to assign Tq

and pq as used at ziniMoist, i.e., the initial-value formulations under iteration condition (1) above.
In order to obtain the uncertainty of the retrieved Tq, we first derive a linearized version of

Equation (12). Using the approximate assumptions of Vwb ≈ qb/aw, dpd/pd ≈ dpq/pq, dTd/Td ≈ dTq/Tq

and dTd/Td ∧ dTq/Tq << dVwb/Vwb, which are reasonably valid over the moist air retrieval altitude
range, the linearized version becomes:

dTq =

(
pq

pd

)
dTd +

(
pq

pd

Td

Tq
cq2T

)
dqb. (A3)

Based on this linear relation, the variance profile of retrieved temperature u2
Tq can be calculated

using u2
Td and u2

qb according to the variance-based uncertainty propagation law:

u2
Tq =

(
pq(z)

pd(z)

)2

u2
Td(z) +

(
pq(z)

pd(z)
Td(z)
Tq(z)

cq2T

)2

u2
qb(z), (A4)

so that the square-root of this result is the uncertainty profile of the retrieved temperature profile with
specific humidity specified: uTq(z).

Similarly, based on Equations (9) and (14), reasonably assuming that d ln p(z) ≈ dp(z)/p(z) and
d ln pd(z) ≈ dpd(z)/pd(z), we can write here as linearized version:

dpq(z) = β′q(z)
pq(z)

pd(z)
dpd, (A5)

where βq(z) =
Td(z)(1+bwVwb(z))
Tq(z)(1+2bwVwb(z))

. Using this single-term result, the uncertainty propagation is
straightforward and the uncertainty profile of the retrieved pressure profile with specific humidity
prescribed, upd(z), is obtained via:

upq(z) = βq(z)
(

pq(z)

pd(z)

)
upd(z). (A6)

Step 1b–Retrieval of specific humidity and its uncertainty with temperature prescribed

The inputs of this step are the prescribed background temperature Tb and its uncertainty uTb,
the observed dry temperature Td and its uncertainty uTd, and the observed dry pressure pd and its
uncertainty upd. Using these input profiles, we can solve for profiles VwT and pT based on Equations (16)
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and (17), based on iterating level by level as for step 1a above. The (V-β-p)-three-equation system in
this case is:

VwT,k+1(zi) =

pd(zi)

pT,k(zi)
Tb(zi) − Td(zi)

cT
Td(zi)
Tb(zi)

≥
qminE

aw
, (A7)

pT,k+1(zi) = pT(zi−1)

(
pd(zi)

pd(zi−1)

)βT,k+1(zi−1/2)

, (A8)

where βT,k+1(zi−1/2) =
Td(zi)+Td(zi−1)
Tb(zi)+Tb(zi−1)

·
1+bw

√
VwT,k+1(zi)VwT(zi−1)

1+2bw
√

VwT,k+1(zi)VwT(zi−1)
.

At each altitude level zi, the initial values for the iteration are (k = 0):
(1) VwT,0(zi) =

qb(zi)

aw+bwqb(zi)
and pT,0(zi) = pd(zi)− 0.2·cq2T·qb(zi)pd(zi)/Td(zi), if Td(zi) ≤ TdThres ∨

zi = ziniMoist;
(2) VwT,0(zi) = VwT(zi−1) and pT,0(zi) = pT(zi−1)·(1 + |zi − zi−1|/H0), if Td(zi) > TdThres ∧ zi <

ziniMoist, where H0 = 8 km and Tdthres = 240 K.
The iteration ends at k = k + 1 that satisfies

∣∣∣∣(VwT,k+1(zi) −VwT,k(zi)
)
/VwT,k(zi)

∣∣∣∣ < (dVw/Vw)tol,
where (dVw/Vw)tol = 0.01% is the convergence tolerance, yielding VwT(zi) and pT(zi) as converged
values. At all higher levels, zi > ziniMoist, we use the same formulations to assign VwT and pT as used at
ziniMoist, i.e., the initial-value formulations under iteration condition (1) above.

The reason that set a low-bounded value in Equation (A7), with qminE = 0.001 g/kg, is because we
try to prevent unphysical (negative) values in case Tb < Td occurs, which can happen within errors of
Tb and Td at upper troposphere levels where q is very small (less than about 0.1 g/kg). We note that
the error estimation is unaffected by this low-bounding as it does not depend on q itself. Also, the
resulting humidity profile after the optimal estimation step is receiving essentially negligible weight at
the high tropospheric altitudes from this step 1b profile compared to the background humidity profile.

The reason to set a low-bounded value based on profile VwT(z) the retrieved specific humidity
profile qT(z) can be computed using the inverse version of Equation (3) in the main text in the form:

qT(z) =
awVwT(z)

(1 + bwVwT(z))
. (A9)

Using this equation together with Equation (7) in the main text, we can derive a linearized version
(differential form) of qT related to Tb and Td. Using for the purpose the approximate assumptions
VwT ≈ qT/aw and dpd/pd ≈ dpT/pT, which are reasonably valid over the moist air retrieval altitude
range of interest, the linearized version reads:

dqT =

2 pd
pT

Tb − Td

Td
cT2q

dTb −


pd
pT

T2
b

T2
d

cT2q

dTd. (A10)

The variance of the retrieved specific humidity u2
qT(z) can hence be calculated using the

variance-based uncertainty propagation law as:

u2
qT =

2 pd
pT

T(z)b − Td(z)

Td(z)
cT2q


2

u2
Tb(z) +


pd(z)
pT(z)

T2
b(z)

T2
d(z)

cT2q


2

u2
Td(z). (A11)

Similarly, based on Equations (8) and (15), we obtain for the linearized expression of pT(z):

dpT(z) = β′T(z)
pT(z)
pd(z)

dpd(z), (A12)
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where βT(z) =
Td(z)(1+bwVwT(z))
Tb(z)(1+2bwVwT(z))

. Based on this single-term equation the uncertainty of pT(z) can be
propagated in a straightforward manner from the dry pressure uncertainty upd(z) via:

upT(z) = βT(z)
(

pT(z)
pd(z)

)
upd(z). (A13)

Appendix B Bias Correction of Background Profiles and Its Effects

Taking the advantage of the variables calculated in daily error fields, the bias-corrected background
temperature profiles Tb can be calculated as:

Tb = Tf − ∆Tf−a, (A14)

where Tf is co-located ECMWF forecast temperature, ∆Tf−a is the bias-correction term obtained from
bi-linear interpolation of ∆Tf−a from the four surrounding grid points, where ∆Tf−a at each grid point is
calculated as the difference profile between mean forecast temperature and mean analysis temperature,
∆Tf−a = Tf − Ta. Similarly, the bias-corrected specific humidity profile is calculated as:

qb = qf − ∆qf−a. (A15)

Again, ∆qf−a is obtained from bi-linear spatial interpolation and ∆qf−a at each grid point is
calculated as ∆qf−a = qf − qa. Illustrations of the effects of bias-correction of background profiles are
shown in Figures A1 and A2 below.

Bias correction effects illustrated for individual-event temperature and humidity profiles

In order to investigate the effects of bias-correction of background profiles on retrieval results,
we compare the moist profiles retrieved using the bias-corrected background profiles and the profiles
retrieved using the original background profiles. As a first example, we used three exemplary events
from simMetOp, CHAMP, and COSMIC. The results are shown in Figure A1. From this result, and
also from extensive further testing results, we find that bias-correction of background profiles is useful
for enabling reduced biases also in retrieved profiles.
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Figure A1. Differences between RO retrieved profiles and ECMWF co-located analysis profiles obtained
from using the bias-corrected background profiles (red, “Bias Corr”) and from using the original
background profiles (black, “No Bias Corr”) profiles for three exemplary RO events from simMetOp
(upper), CHAMP (middle), and COSMIC (bottom) from 15 July 2008.

Bias correction effects illustrated for test-day ensemble of temperature and humidity profiles

The effects of the background bias correction scheme are investigated as well statistically, again by
comparing the retrieval results between those obtained using the bias-correction retrieval results and
those obtained without using the bias-correction. The uncertainties used for the retrieval examples
illustrated here are the dynamic uncertainties. In Figure A2, from left to right panels, statistical results
are shown for the simMetOp, CHAMP, and COSMIC missions.

In particular in tropical regions a good quality of humidity retrievals can be rather challenging
so that bias correction is expected to be most helpful in such conditions. Indeed, from the results in
Figure A2 we can see that the bias-correction scheme can obviously reduce the biases in retrieved
moist profiles, especially for the humidity profiles in tropical regions, where the amount of moisture is
significant and the humidity profiles are more readily biased.Remote Sens. 2019, 11, x FOR PEER REVIEW 30 of 35 
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Figure A2. Systematic differences and standard deviations of moist temperature and specific humidity
for simulated MetOp (left), CHAMP (middle), and COSMIC (right) events in the global domain (upper
two rows) and TRO regions (bottom two rows). Statistics are shown for the bias-corrected case (Bias
Corr) and the no bias corrected case (No Bias Corr).

Appendix C Vertical Correlations of Observations and Background Errors

The vertical correlations of the input parameters were also investigated in order to understand
the level of approximation if they are disregarded in the current OPSv5.6 and dynamic approach
implementations of the new algorithm. The error correlation matrix was calculated by constructing
a global-mean error covariance matrix using all the ensemble of difference profiles between the
forecast/observed and analysis profiles. By dividing the values in the error covariance matrix by the
corresponding squared-uncertainty values (variances) in the matrix diagonal, the error correlation
matrix can be obtained (e.g., [52]).

Figure A3 shows the correlation matrix (left), exemplary correlation function (middle), and
correlation length (right) for the four input parameters, i.e., observed dry temperature, observed dry
pressure, background temperature, and background specific humidity. The data shown are mainly
from 15 July 2008. However, in order to show the variations of correlations with day of month, we also
show the correlation functions and correlation lengths from the 5th and 25th of July.

Figure A3 shows that both correlation functions and correlation lengths show little variations
with day of month. Correlation functions of all the four parameters are close to Gaussian shape at
the main peak. From the main peak outwards, the correlation functions of observed dry temperature,
background temperature, and observed dry pressure have some negative side peaks, while the
functions of background specific humidity are all positive. Except the correlation lengths of observed
pressure being slightly larger, with values varying around 2 km, the correlation lengths of the other
three parameters are limited to about 1 km to 1.5 km.

These results indicate that except the observed pressure, the correlations of the other three
parameters are not significant. Therefore, in the new algorithm as presented here, it was considered
reasonable to disregard the correlations of the input variables within the scope of this study. Further
advancements that include the full covariance formulation and propagation in the algorithm are
described in a separate follow on paper, based on initial descriptions in Kirchengast et al. [40] and
Schwarz [44].
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Figure A3. Correlation matrices (left), exemplary correlation functions at three exemplary altitude
levels of 11 km, 7 km, and 3 km (middle), and estimated correlation length for correlation functions
(right) for the observed dry temperature uncertainty (first row), observed dry pressure uncertainty
(second row), background temperature uncertainty (third row), and background specific humidity
uncertainty (fourth row). The correlation matrices are shown for 15th July 2008 only, and the correlation
functions and correlation lengths are shown for 5th, 15th, and 25th of July 2008.
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