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Abstract: The way we drive, and the transport of today are going through radical changes. Intelligent
mobility envisions to improve the efficiency of traditional transportation through advanced digital
technologies, such as robotics, artificial intelligence and Internet of Things. Central to the development
of intelligent mobility technology is the emergence of connected autonomous vehicles (CAVs) where
vehicles are capable of navigating environments autonomously. For this to be achieved, autonomous
vehicles must be safe, trusted by passengers, and other drivers. However, it is practically impossible to
train autonomous vehicles with all the possible traffic conditions that they may encounter. The work
in this paper presents an alternative solution of using infrastructure to aid CAVs to learn driving
policies, specifically for complex junctions, which require local experience and knowledge to handle.
The proposal is to learn safe driving policies through data-driven imitation learning of human-driven
vehicles at a junction utilizing data captured from surveillance devices about vehicle movements
at the junction. The proposed framework is demonstrated by processing video datasets captured
from uncrewed aerial vehicles (UAVs) from three intersections around Europe which contain vehicle
trajectories. An imitation learning algorithm based on long short-term memory (LSTM) neural
network is proposed to learn and predict safe trajectories of vehicles. The proposed framework
can be used for many purposes in intelligent mobility, such as augmenting the intelligent control
algorithms in driverless vehicles, benchmarking driver behavior for insurance purposes, and for
providing insights to city planning.

Keywords: driverless vehicles; autonomous vehicles; policy learning; UAV; drone video analysis;
autonomous driving; imitation learning

1. Introduction

Transportation and driving of the present may become history sooner than we think as the
advances of self-driving cars continue to move towards a future where owning a car and driving
ourselves is obsolete [1]. Intelligent Mobility (IM) encapsulates the digital disruption of traditional
transportation-related industries, such as automotive engineering, logistics, and public transportation.
A key enabler of IM is the development of connected autonomous vehicles (CAVs), which are vehicles
that enable navigation without assistance from humans [2]. Arguably, the uptake of connected
and autonomous vehicles is ‘the greatest change to how we travel since the invention of the motor
car’. Leading brands in the automotive industry have realised the potential and the inevitability of
self-driving cars with many, including Ford, planning to have a “fully autonomous vehicle” on the
roads by 2021 [3]. The Society of Motor Manufacturers and Traders (SMMT) 2019 Connected Report
estimates that in the next 10 years, in the United Kingdom alone, current driver assistance technology
and the next generation of self-driving systems will save 3900 lives and create 420,000 new jobs in
automotive and related areas [4].

Remote Sens. 2019, 11, 2723; doi:10.3390/rs11232723 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-7535-141X
http://dx.doi.org/10.3390/rs11232723
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/23/2723?type=check_update&version=2


Remote Sens. 2019, 11, 2723 2 of 21

Another important enabling element of intelligent mobility is smart infrastructure. Smart
infrastructure means that roads and intersections could be fitted with sensors and connected to a
wider network of the city and vehicles within it, allowing data to be gathered, stored and shared from
infrastructure to vehicles and vice versa. Smart infrastructure will enable traffic data to be collected,
and analyzed for multiple purposes, such as improved city planning, automated traffic management
and for providing insights to insurance purposes. For example, south in Atlanta, a 2.3-mile corridor
has been set up with hundreds of Internet of Things (IoT) sensors over its 26 intersections. These
sensors capture data of oncoming traffic and respond (change signals) in real-time, and in 2018 reported
reducing accidents by 25%. Advancements are being made to this roadway to prepare for autonomous
vehicles [5].

Autonomous vehicles rely on being provided control algorithms to handle traffic conditions that
they face. They should be equipped with driving policies, which enable them to make decisions under
different situations. Some of the policies are learnt by training the driverless cars under many different
road conditions. However, given the nature of uncertainties associated with driving, it is extremely
difficult to exhaust all possible traffic conditions and road intersections that the autonomous vehicles
will have to navigate in the real world [6].

As connected autonomous vehicles (CAVs) are set to become a reality on our roads and in our
cities, it is important to consider the infrastructure and how it can be used as a tool to facilitate the
new age of driving [7]. Information on traffic and road conditions, including unexpected obstacles or
events, can be analyzed in real-time, sent to nearby CAVs, enabling then to make a more informed
decision, and therefore, improve safety and efficiency of traffic [8,9]. Smart infrastructure is becoming
a reality in some states in the US, such as in Ohio, where the 33 Smart Mobility Corridor [10] plans to
be the real-world playground for testing smart infrastructure and CAV systems. Smart intersections
are already in use in the city of Marysville, set up by Honda [11], and by 2020 it is planned that
1800 vehicles will be equipped with connective technology allowing them to connect to each other, and
the infrastructure.

The focus of this paper is to investigate how the infrastructure can be used to learn driving policies
by observing safe driving behavior of humans. We envisage a futuristic use case where the optimum
policies learnt can be transferred to CAVs by the infrastructure, through high speed connections with
the CAVs. This is particularly useful around complicated intersections and junctions that vehicles may
have had data to be trained on. Furthermore, such a real-time policy transferring functionality can be
used for centralized traffic control in smart city applications. Tesla uses the ‘fleet’ idea which means
that driving experience and data is shared across all vehicles in their fleet, therefore, a single car in the
fleet is not improving and updating its policies from not only it’s own driving, but also by all the cars
in the fleet [12]. Using infrastructure would mean that connected autonomous vehicles would have the
driving trajectories from all cars that visit that junction, the successful maneuvers would be recorded,
and the optimal policy for a certain goal could be transferred to an approaching CAV. Privacy could be
maintained by not recording anything about the cars on the intersection other than position, speed
and type (car, motorcycle, lorry, bus, etc.). An example of a video captured from a drone, to identify
the vehicle trajectories is shown in Figure 1. Also note that in Figure 1, the identities of the vehicles
are anonymized.

To learn optimal driving policies, we propose to utilize data captured by the infrastructure. Data
driven policy learning majorly falls into two categories: Reinforcement learning [13], and Imitation
learning [14]. Reinforcement learning enables a machine to learn optimal decision-making behavior,
i.e., policies, by trying to maximize rewards given by the environment it operates. Imitation learning
is a data-driven policy learning algorithm, that learns optimal policies by observing expert behavior.
In contrast to Reinforcement Learning, Imitation learning does not require rewards, but need to be
provided examples of expert behavior. In this paper, we propose a data-driven imitation learning
framework to learn driving policies from safe human-driving. In effect, we treat humans that drive
safely, as experts. The contributions of this paper are, as follows:
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1. A new framework for infrastructure-led policy learning is proposed to augment intelligent
control algorithms of connected autonomous vehicles with situational knowledge specific to a
selected geo-location;

2. A novel deep imitation learning framework based on long short term memory (LSTM)
networks [15] is proposed as data-driven driving policy learning algorithm, by utilizing a
new data set captured through uncrewed aerial vehicles (UAVs).Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 22 
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The rest of this paper is organized as follows: The related work are background details are
presented in Section 2, and the proposed framework for infrastructure-led policy learning is presented
in Section 3. The experimental details, including the dataset description, are provided in Section 4.
Section 5 presents the results, and the discussion and Section 6 concludes the paper with directions for
future work.

2. Background and Related Work

The following sections describe the literature related to the current contribution, followed
up with background on neural networks as function approximator that will form the basis of the
proposed algorithm.

2.1. Connected Intelligent Infrastructure as Enabler of Intelligent Mobility

As was discussed in the introduction of this paper, as autonomous driving advances, infrastructure
will advance with it as an enabling technology. The authors of Reference [16] use discrete mathematics
and V2I (vehicle to infrastructure) communication as a method to get autonomous vehicles to drive
through an intersection, in this case, a symmetric four-way junction, with no collisions whilst driving
continuously, and so therefore, reducing congestion and waiting time at intersections. When an
autonomous vehicle approaches the intersection it will send its information, such as acceleration and
velocity to the intersection manager which will in response assign it a slot, giving a minimum/maximum
velocity for an approach to ensure it and other cars can all drive through the intersection, collision and
interrupt free.
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The study in Reference [16] assumes that all vehicles approaching the intersection have the ability
to connect and send their features to the Automated Intersection Manager, however, that may not
be a realistic approximation for the near future. In Reference [17], an intersection control algorithm
is created for automated vehicles with the aim of safe navigation and reducing congestion at the
intersection for both connected autonomous vehicles (CAVs) and human-driven vehicles. The authors
hypothesize that CAVs are capable of keeping a shorter distance between themselves and the vehicle
ahead (headway) more safely than human drivers can. Using this theory, along with signal phasing
and timing, a headway minimization model and a signal control model is produced. The controller
was tested in a simulator where the ratio of CAVs to human drivers could be changed, and it was
found that the higher ratio of CAVs resulted in less congestion which suggests that the higher the
population of CAVs on the road, the less traffic there would be.

Gopalswamy and Rathinam [7] argue how utilizing infrastructure greatly benefits autonomous
driving. The aim of their paper is to prove that with connected infrastructure, the risk is less, safety is
better, and liability is shared, therefore, there can be less hesitation with advancements, due to fear
of liability issues. They propose to achieve this by implementing smart corridors where situational
awareness is dealt with by the infrastructure sensors and decision making is controlled by another
third party, meaning that in these corridors the driving is outsourced. As a result, if an accident were
to occur, the liability is shared between multiple companies.

The papers discussed in this section so far are based on smart cities, intelligent infrastructure
and connectivity of autonomous vehicles and their surroundings, in particular, the benefits of using
infrastructure as enabling technology. The focus of these is on safely navigating intersections or roads
with maneuvering commands sent to and from a car to infrastructure. However, V. De Silva et al. [18]
propose deep imitation learning is for an infrastructure-led policy learning and communication network.
The results of Reference [18] state that learning new unseen situations from other cars could improve
the capability of a CAV. Furthermore, if the infrastructure was put in place to gather data from passing
vehicles and share it with approaching CAVs, with relaying successful decisions for situations, it may
not have come across yet. The optimal policy can be found and sent to new approaching connected
vehicles. This means a CAV is not learning and updating its algorithm through its own driving and
experiences alone, but through many others as well, much like Tesla does with its ‘Fleet’ [12].

2.2. Deep learning Architectures for Autonomous Driving

Neural networks are modelled on the human brain and used to process large amounts of
data to make predictions, making them an ideal machine learning method for autonomous driving.
Convolutional neural networks (CNNs) primarily take images as input data and can be used for
classification and object recognition- a necessary component for driverless cars. In Reference [19],
M. Bojarski et al. trained a convolutional neural network on data gathered from one front-facing
camera. The network mapped raw pixels to steering commands and was able to drive on highways
with little training data. The CNN was not explicitly fed road outlines; however, it learnt this internally
and was able to drive on roads with no line markings in traffic. The authors believe that this end to
end learning approach will result in better performance since ‘internal components self-optimize to
maximize overall system performance’. A CNN was also created by the authors of Reference [20]
which aimed to create a more human-like system to solve the problem that is a major cause of accidents
for autonomous vehicles- a misunderstanding between them and human drivers. The CNN detects,
recognizes and infers information from the sensors to make a decision with the data being depth
information rather than RGB data as in Reference [19]. To speed up the process of training the network,
the paper proposes using simulations to create training data rather than real driving data which may
take many hours to collect, a strategy also used in many other papers, such as [21,22].

Advances of deep reinforcement learning with deep Q learning networks, has been proposed for
driverless vehicle control [21–23]. A network consisting of three convolutional layers and four dense
layers was created in Reference [21], and tested in a simulated urban environment made by Unity Game
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Engine [24]. It was used with a deep Q learning network, meaning a reward system was put in place
with the aim to teach the agent to move forward, when safe, and not to hit other objects. The results
from this experiment showed that the car could drive in a simulated urban environment with other cars
successfully. A similar reward system was implemented in TORCS [25], an alternative simulator, by
the authors of Reference [22]. The total distance travelled, and total rewards were recorded, and it was
found that as training continues both the distance and rewards increase, insinuating that the more data
collected, the more optimized the policy becomes. Optimizing learning is an area of great importance
in autonomous vehicles, an area also discussed by Sun et al. in Reference [26] where they propose
a framework that combines learning and optimization-based approaches in a 2-layer hierarchical
structure. The first layer being the policy layer and the second layer is the execution layer, a controller
that tracks trajectories given by the policy layer. Online imitation learning is also implemented with
dataset aggregation, so the policy layer can be improved rapidly and continuously. The results are
promising for situations, such as overtaking, multiple car lane situations, but intersections were
not tested.

LSTMs have been used before for autonomous driving papers, such as References [27–29].
Multiple different variations of LSTMs are used in Reference [28] to predict the next 10 seconds
of longitudinal and latitudinal trajectories of a target vehicle based on features of its nine nearest
neighbors. The dataset used was a section of simulation dataset called NGSIM US 101 [30]. The features
of neighbors used include velocities, distance from target vehicle, time to collision and type which are
all scaled. The design of LSTM used was a 256 LSTM layer, two dense layers and time distributed
layers of 256 and 128 neurons and final dense output layer containing as many cells as the number of
outputs. Interestingly, to begin with the first four input features (long/lat positions and velocities) of
the target vehicle were put directly into the dense layer, forgoing the first LSTM layer directly to allow
the LSTM layer to focus on differences of states so that the model did not just learn the steady state of
driving at constant speed. This could be since the dataset is highway driving, and the authors did not
want the model to generalize. This method was found to improve quality, and the network achieved
an average RMS (root mean squared error) of 70 cm for the lateral position, and less than 3 ms−1 for
longitudinal velocity, 10 s in the future.

2.3. Situational Intelligence for Driverless Vehicles in Intersections/Junctions

The majority of experiments described in the papers discussed in the above section use or create
data to simulate highway and straight road driving situations, where maneuvers are limited by the lack
of complexity of the road structure. Intersections are more difficult to manage as an autonomous vehicle,
and this section looks at research focusing on intersection management for autonomous driving.

In 2018, K. Sama et al. [31] established a method of teaching autonomous vehicles to proceed
through intersections using data recorded from expert drivers and inverse reinforcement learning.
It was assumed that intersections could be classified into groups, and each group requires a different
driving style. Data was gathered from a car fitted with sensors and LIDAR driven by five experienced
drivers through eight different intersections. These intersections were classified into groups, and the
optimal driving behavior was learnt for each, for example, T junctions did not cause a sizeable amount
deceleration on approach, whereas, a four-way intersection caused considerable deceleration, if not a
full stop. The models were tested in a simulator and found to be successful in most cases, but scaling
this method may become a problem as intersections come in a multitude of types and are handled
differently in different countries or cities even.

A study by Isele et al. [23] firstly looked at how deep reinforcement learning methods compare
to the Time To Collision (TTC) method in learning how to navigate unsignalized intersections using
four metrics for analysis: Success percentage, percentage of collisions, the average time and average
breaking time. Two deep Q networks (DQNs), such as those from References [21] and [22] were created.
One was based on ‘sequential actions’ and the other on ‘time-to-go’. It was found that time-to-go
outperformed the sequential action network, but both DQN methods were much better at reaching
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the goal than the TTC method. The second experiment described in this paper considers intersection
with occlusions and how DQNs can best navigate through them. From the results of this experiment,
the authors recommend that exploratory behavior, such as ‘creeping’ is needed to deal with these
intersections since ‘without the ability to move to a more favorable vantage point, both TTC and
Time-to-Go regularly encounter collisions’. In other words, the experimental results show that an
autonomous vehicle that cannot ‘see’ its environment is less likely to proceed without fault, and
therefore, needs to ‘creep’ forward at an occluded intersection, just as a human driver would do.

The research in Reference [32] tries to solve the problem of training for intersections, in general,
by predicting human intentions. The authors state that LSTMs outperform state of the art methods.
The paper further solidifies this statement with accuracy averaging over 85% for intersections in
their experiment, which predicts human intentions as they approach an intersection. Both three- and
four-way intersections were investigated where the options for a driver are to turn left, right or continue
straight, and the prediction is the option with the highest probability. As was used in Reference [28],
this research uses NGSIM, a simulation dataset containing positions of vehicles in intersections.

2.4. Neural Networks as Non-linear Function Approximators

Neural networks are a machine learning technique modelled on the human brain where many
processing components work together to learn relationships or patterns, make predictions and deal
with large volumes of data [33].

A Neural network is a collection of many simple computational units known as nodes. These
nodes are arranged in a number of layers, as shown in Figure 2. There are different types of nodes,
which are specialized in different types of computations. Each computation node typically has weights
applied on its inputs, and an activation function which scales the weighted inputs. There are different
types of activation functions, such as rectified Linear Units (ReLU), and hyperbolic tangent (tanh) and
sigmoid, as shown in Figure 2b. When the neural networks with many hidden layers with many nodes
are utilized, these are referred to as Deep Neural Networks. A layer of nodes that connects all its
inputs to all the outputs, as shown in Figure 2c is known as a fully connected layer or a Dense layer.
The performance of a NN lies in how well the weights are allocated in individual nodes.
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connections are not shown for the sake of clarity.
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The typical method that is used to learn the weights from example data is known as
backpropagation algorithm. The backpropagation algorithm works by trying to adjust the weights of
the individual nodes to minimize the difference between the target outputs and the output predicted
by the network. The difference between the target output and predicted output is known as the “loss”,
which can be measured using different metrics, such as Mean Squared Error (MSE). The data set is
fed forward through the network multiple times, and weights adjusted through the backpropagation
algorithm. Each time the dataset is fed forward through the network is referred to as an “epoch”.
The backpropagation algorithm effectively is an optimization method, where the objective is to find
the set of weights that minimizes the overall loss of the network. The amount by which the individual
weights are updated at each epoch is determined by the error gradient at a given node. The weights
are updated in the direction that minimizes the error and is known as gradient descent algorithms.
There are different gradient descent optimization schemes that are utilized for this purpose, within the
backpropagation algorithm. These gradient descent algorithms include, Stochastic Gradient Descent
(SGD), Adaptive Momentum Estimation (ADAM), and Adaptive Learning Rate Method (ADADELTA).
An overview of different methods of gradient descent algorithms can be found in Reference [34].

There are many different techniques that makes the training of deep neural networks efficient.
The input data are often segmented into batches. Batch size means the number of training examples
used in the estimate of the error gradient. It affects the speed of convergence and also directly affects
the use of memory. For example, a batch size of 16 means 16 samples from training dataset will be used
to update the gradient descent before the weights are updated. Generally, in the real-world application,
when the batch size is too small, the gradient changes from time to time, which is very inaccurate and
difficult for the network to converge. Then with the increase of batch size, and the gradient becomes
more accurate.

Normalizing the input data of neural networks to zero-mean and constant standard deviation
has is beneficial to neural network training. For improved performance in deep learning, Batch
normalization extends this practice towards the intermediate (hidden) layers, but due to complexity
issues normalization is performed only per mini-batch. Another important technique that is used for
efficient training of neural networks is to include dropout layers. While there each node is connected
to the nodes of the previous layer, as shown in Figure 2, during training, some random connections are
dropped at each epoch. This is known as dropout, and is explained as a percentage of the connections
that are not trained at each epoch.

2.5. Neural Network Models for Time Series Modelling

The recurrent neural networks (RNNs), a type of neural network in which the output of a previous
layer is fed as part of the input to the adjacent layer [35], as shown in Figure 3.
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However, RNNs suffer from the vanishing gradient problem whereby the network stops learning
when very small weights are multiplied repeatedly, and therefore, tend to 0. The result of this is that
the weights of primary layers do not vary greatly, and the network lacks the ability to learn long-term
dependencies [36]. Long short-term memory networks (LSTMs) are a branch of RNNs with nodes
of a special structure, which effectively overcomes the vanishing gradient problem. LSTMs were
introduced in a 1997 paper written by Hochreiter and Schmidhuber [15], and solve the vanishing
gradient problem since they can learn long term dependencies, due to the addition of three gates; input,
forget and output.

Figure 4 shows an individual LSTM cell [37]. Going from left to right, we see that the inputs are
the current input data xt, and the output ht−1 from the previous cell, which is scaled between −1 and 1
using a tanh activation function. The input gate uses sigmoid activation functions (scales between 0
and 1) essentially to filter what information continues, expressed as:

it = σ(Wi · (xt, ht−1) + bi) (1)

W represents weights and b, the bias. This output it, from the input gate is then multiplied
together with the output of the tanh activation function. Moving along the top line to the forget gate,
this gate uses sigmoid activation function to choose what information to pass through and what to
‘forget’. This can be expressed as:

i f = σ
(
W f · (xt, ht−1) + b f

)
(2)

The output of the forget gate is then multiplied by the internal state of the previous cell St−1 and
then added to the result of the first multiplication to produce the current cell state, St:

St = it · tanh(xt, ht−1) + St−1 · i f (3)

This addition is what allows LSTMs to avoid vanishing gradients since weights are not multiplied
together. To produce output ht, the inputs go through another sigmoid activation function just as in the
input and forget gates, called the output gate. This is then multiplied by the result of tanh activation
function acting on the internal cell state St.

io = σ(Wo · (xt, ht−1) + bo) (4)

ht = io · tanh(St) (5)

LSTMs and RNNs, in general, are used for time-based series or sequences, such as stock trends
and language and more recently, autonomous driving which is the focus of the research.
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2.6. Summary

This literature review looked at various research papers written on the broad topic of autonomous
driving, separating into smaller categories for the purpose of this research. What was clear across all
papers was that neural networks and LSTMs, in particular, are a good choice for experiments, with
Reference [32] reporting that LSTM outperforms state of the art methods. Results in References [22,26]
agreed that more data improves the driving algorithm, as was seen as an underlying results in all
papers. The final section saw that smart infrastructure could be a useful enabling technology for CAVs.
Authors of References [7,16,17] agree that infrastructure should be used in the new age of autonomous
driving, whether for better intersection management to ease congestion or to share liability. Specifically,
the research in Reference [18] suggests that infrastructure can be used as a tool to optimize policy
learning within CAVs, and this theory is what this dissertation aims to take further.

3. Proposed Framework for Infrastructure-led Driving Policy Learning

This section describes the proposed framework for learning driving policies from data gathered
through the infrastructure. The proposed framework is summarized in Figure 5, where the four major
elements are data capturing, pre-processing, driving policy learning and application layer. Each of
these elements is explained in the following sub-sections.
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3.1. Data Capturing and Processing

The first element of the proposed architecture is to capture appropriate data. The most practical
source of data would be video data streams captured through cameras positioned on roadside
infrastructure. One emerging source of data for such purposes may originate from UAVs equipped
with cameras. The most obvious advantage of using UAVs for the purpose of traffic video capturing is
that it can be deployed on request. For example, when there is an accident or a roadblock obstructing
the free flow of traffic, real time data can be gathered. Another data source appropriate for the task
is Geographic Positioning System (GPS) tracking data. However, collecting such GPS tracking data
would require that each vehicle to transmit its position, which may not be practical. Furthermore,
video data enables to capture not only the vehicle movements, but also the movements of pedestrians
and cyclists. In the current demonstration, we shall utilize a video dataset captured from UAVs. More
information about the dataset can be found in the next section.

3.2. Scene Perception and Extraction of Expert Data Trajectories

The next block of the proposed framework is to extract scene information from the video stream
as suitable for data-driven policy learning. The scene information to be extracted are the vehicle type,
pedestrian identification, distance to nearby vehicles, speed of the vehicles, and trajectories of vehicles.
Once such details are extracted from the video streams, the next step is to identify examples that reflect
safe driving. Most important criteria to be applied to identify safe driving examples is when vehicles
are not involved in a crash/accident. Further criteria may be applied to extract a subset of vehicle
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trajectories that reflect safe driving, such as, when a vehicle is traveling too fast, or it is traveling too
slow, or the vehicle shows unsafe behavior, such as excessive or sudden acceleration/deceleration.
As such, this step involves identifying vehicle trajectories that may act as examples of safe driving
behavior, and thus, forms a collection of expert data trajectories. The proposed algorithm for expert
data trajectory extraction is given in Algorithm 1.

In the demonstration of this paper, the functionality of DataFromSky viewing software [37] is
used for scene understanding, including to obtain the time to collision (TTC) between two as a measure
of safe driving. In other words, video understanding algorithm is utilized to convert the videos from
the UAV to extract the individual vehicle trajectories. The output of this step is, thus, a data field
corresponding to the vehicle/pedestrian positions at each time step of the video sequence. To create a
data frame for each target vehicle, the trajectory of the given vehicle is augmented with additional
information about the neighboring vehicles at each time step. The result of this step is illustrated in
Figure 6. This dataframe is utilized for the policy learning task in Section 3.3.

Algorithm 1. Extraction of Expert Data Trajectories

Input: Object Tracking data: Positions of vehicles at each timestep with a tracking id

1. Extract x, y positions at all timesteps and for all vehicles within a given time window, with each vehicle
being given a unique ID

2. Scale all values of x and y to a range between 0 and 1.
3. Identify target vehicles that perform the maneuver, for which the driving policy is to be learnt
4. Exclude any vehicles identified in step 3, which violates the safe driving criteria
5. At each timestep, identify vehicles that are on the road with each target vehicle identified in step 3
6. Create a separate data frame for each target vehicle with position of five nearest neighboring vehicles
7. Split data frames from step 6, to be of equal length time sequences, as shown in Figure 7.

Output: A set of example data frames with the location of the target vehicle and its nearest neighbors at each
time step.
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3.3. Data-Driven Policy Learning

The next element of the proposed framework is to utilize the extracted example vehicle trajectories
to learn driving policies. Generally, there are two classes of data-driven policy learning algorithms
that can be used for this purpose. Firstly, the data-driven policy learning problem can be framed
as a reinforcement learning algorithm. For this purpose, it is necessary to define an appropriate
reward function that relates to the utility of being in an environmental state. In real-world driving
environments, it is difficult to define a reward function, as motives of individual drivers can be very
different, such as some may prefer to travel fast, and some may prefer to travel slow. Another option is
to employ a global measure of utility, such as overall fuel efficiency, or congestion, but such reward
functions often are unrealistic, unless in a futuristic scenario where the entire vehicle population in a
local environment is controlled by a central authority.

An alternative approach to driving policy learning is to frame the problem as an imitation learning
problem, where the policies are learnt by observing experts. The expert data trajectories extracted in
Section 3.2, will act as examples for learning the policy. In the proposed implementation, the driving
policy learning is framed as an imitation learning problem, where a given vehicle is considered as an
agent in the environment. The agent is modelled as a time series prediction, where the objective is to
predict the future trajectory of the agent, given the past trajectory and the proximity of neighboring
vehicles. An LSTM network is trained and used for time series prediction in the current demonstration.
More information about the data structures used and the LSTM network architecture is presented in
the next section.

The function approximator task of the LSTM network is to predict the next location of the target
vehicle, given the current locations of neighboring vehicles and the target vehicle. The data structure
used for the current implementation of LSTM network is given in Figure 6. Accordingly, the input
data frame contains the spatial location of five nearest neighbors and the current position of the target
vehicle. The expected output is the next spatial location of the target vehicle. The structure of the
LSTM network is shown in Figure 8.
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note that the finalized network architectures are much complex and often contains more than one
hidden layer.

3.4. Application Layer

The application layer can be configured for any appropriate purpose. The application layer will
utilize the learnt driving policies for a variety of services. For example, the learnt driving policies can be
used to gain insights on the safety of certain road intersections, thus, informing city planners. Another
useful, futuristic application is to augment the intelligence of driverless cars, by transferring the most
up-to-date driving policy at certain intersection/junction, when the car approaches the junction. This
is especially suitable when the traffic conditions at a certain junction are very dynamic and unusual.
The demonstrations of this paper are focused on the Section 3.2 to Section 3.3 in the above descriptions.
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4. Experimental Details

This section describes experimental details pertaining to the proposed methodology.

4.1. The Dataset

The dataset was commissioned to be captured by DataFromSky [38], and consists of five video
sequence sets, taken from drones over three unique intersections around Europe, from Italy and
Denmark. The data is then anonymized, and the vehicle tracking details are provided in a proprietary
tglx format, which can be opened using proprietary software in which each frame is able to be viewed.
The software allows users to select trajectories, define gates and export information into a csv file. Gates
are used to defining entrance and exit and direction of a vehicle on an intersection. The trajectories can
be extracted from the software in a CSV file with the following features: Unique vehicle ID, vehicle
type (Bicycle, Motorcycle, Car, Medium vehicle, Heavy vehicle, Bus), the entry gate and the exit gate,
spatial location given by (X and Y position), velocity, lateral acceleration, longitudinal acceleration,
timestep at 40ms intervals.

The three videos were taken of the Italy intersection as shown in Figure 9a at GPS coordinates
43.839917, 13.019667, were acquired over different conditions, including day, night, light traffic and
heavy traffic. The videos have an average length of 2 h 20 m and captured tracks for a maximum of
9362 vehicles for one video. Furthermore, videos were captured from two different geographic positions,
as shown in Figure 9b,c (at GPS Locations 55.406289, 11.341097, and at 55.858421, 9.824669, respectively).
Denmark Intersection videos were 2 h 5 m and 1 h 41 m and tracked 3400 and 5097 vehicles, respectively.
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Figure 9. (a) The screenshot of the Italy intersection taken from Google Maps [39] (Coordinates:
43.839917, 13.019667). (b) The screenshot of the Denmark A intersection taken from Google Maps [39]
(Coordinates: 55.406289, 11.341097). (c) The screenshot of the Denmark B intersection taken from
Google Maps [39] (Coordinates: 55.858421, 9.824669.

4.2. Data Pre-processing

The pre-processing of the first dataset is discussed in more detail than the others since they
followed the same method, but any changes and modifications are stated.

The dataset chosen to use first was a daylight video from the Italy intersection consisting of
3792 vehicles tracks over a period of 2 h 20 m with varying levels of traffic. Five entry and exit gates
were defined using the software, and these gates are used to define a specific maneuver. For example,
one maneuver chosen for the demonstration is entering at gate A and exiting gate at E on Figure 10.
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Figure 10. The vehicle trajectories marked in light blue and target maneuver shown in yellow for
Italy dataset.

Figure 11a,b show examples of a target vehicle performing the maneuver successfully in different
traffic conditions. Car with ID 57 could join the main road with little braking and no stopping time
since there were no oncoming cars. Car with ID 1104 approached the entrance and stopped as cars were
blocking the entrance. It then had to wait until the car blocking its front moved, by which time several
other vehicles had entered its vicinity, and it now needed to slot in between two cars. Please note that
these images in Figure 9; Figure 10 are obtained by superimposing tracked vehicles as rectangles on
a static image of the location. As such, please note that cars that can be seen in the background are
coming from this static image and are not in motion at the given time frames. The vehicles shown as
black boxes with ID tags are the ones in motion and are considered in this modelling task.
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Figure 11. (a) Three frames taken from the video sequence for car ID 57, which performs the chosen
maneuver successfully in light traffic conditions. (b) Five frames taken from the video sequence for car
ID 1104, which performs the chosen maneuver successfully in moderate traffic conditions.

4.3. The Neural Network Model Building

Neural network architecture details and terminology.
The terminology used in this section and in results Section 5, is consistent with the background

information provided in Sections 2.4 and 2.5. The neural network architecture used in these experiments
is LSTM networks. We use the python packages Tensorflow [40], and Keras [41] to create and train
these neural networks.

The general structure of a neural network, as given in Tables 1–3, is shown in Figure 12. It should
be noted that Figure 12 is the same as Figure 8, but Figure 12 is known as the rolled out version of
Figure 8. Figure 12 shows what happens at each time step, where the LSTM network computes a
hidden state (denoted by hX

T in Figure 12, where X denotes the layer number, and T denotes the time
step) by using the current input and the hidden state from the previous time step. It is important to
note that there is only one LSTM network that produces the hidden states. Furthermore, there can be
more than one layer of LSTM nodes, as is shown in Figure 12. The example in Figure 12 is synonymous
with Neural Network of type in Table 2. Moreover, note that within one block of LSTM there are a
different number of nodes or LSTM cells, as shown in Figure 4. For example, in the neural network
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defined in Table 1, there are 10 LSTM cells. This layer of LSTM cells (nodes) is followed by dropout
and batch normalization functions.

Table 1. Network architecture and hyper parameters for the Italy Intersection.

Feature Name Value

Architecture Layer 1 LSTM (10, activation = ‘relu’, input shape = (100,12),
return_sequences = True))

Layer 2 Dropout (0.2)
Layer 3 Batch Normalization
Layer 4 Dense (100, activation = ‘softmax’)
Layer 5 Dropout (0.2)
Layer 6 Time Distributed (Dense(2))

Optimizer Adam (learning rate = 0.01, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1 × 10−8, decay = 0.00)
Loss Function Mean Squared Error

Batch Size 2
Epochs 50

Sequence
Length 100

Table 2. Network Architecture and hyper parameters for the Denmark-A.

Feature
Name Value

Architecture Layer 1 LSTM (10, activation = ‘tanh’, input shape = (100,12), return_sequences = True))
Layer 2 Dropout (0.4)
Layer 3 (LSTM(10, activation = ‘relu’, input_shape = (100,12), return_sequences = True)
Layer 4 Time Distributed (Dense(2))

Table 3. Network Architecture and hyper parameters for the Denmark-B.

Feature
Name Value

Architecture Layer 1 LSTM (10, activation = ‘relu’, input shape = (100,12), return_sequences = True))
Layer 2 Dropout (0.2)
Layer 3 Batch Normalization
Layer 4 Time Distributed (Dense(2))

The return_sequences function in Table 1 to Table 3, means whether the hidden state of each time
step is returned as an output, or not. For example, in all our networks return_sequences was true
meaning that the hidden state is returned. Alternatively, the hidden state may not be returned at each
time step, but only at the end of the sequence, i.e., only ht in Figure 12 is returned to the above layers.
Time distributed layer works as a linear combination of the hidden states of all the timesteps. As such,
the final output of the network is a linear combination of all the hidden states from the LSTM nodes at
each time step.

The training of all the neural network architectures is performed through the Adaptive Gradient
Descent Optimization algorithm, often denoted as ADAM [42]. The following parameters are necessary
to be set for appropriate operation:

Learning rate: The proportion by which the weights are updated. Larger values result in faster
updating of weights. When the learning rate is set too low, the convergence process will become too
slow. When the learning rate is set too high, the gradient may oscillate back and forth around the
minimum value, and may even fail to converge.

Decay rate: Refers to the proportion by which the learning rate is changed over time.
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Beta 1 and Beta 2, refer to the exponential decay rate for the first and second moment estimates,
respectively. As Reference [42] suggests, 0.9 and 0.999 as appropriate values for beta 1 and beta
2, respectively.Remote Sens. 2019, 11, 2723 16 of 22 
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Epsilon is a very small value that is used to prevent division by zero.
Training and validating neural network architectures
Python 3.7 [43] was used to pre-process the data using libraries, such as NumPy, pandas and

scikitlearn in Jupyter Notebook [44].
Throughout the training process, the dataset was run through a variation of the model, and

then the model was amended to achieve better results. Better results, in this case, refer to the model
achieving high accuracy, good bias-variance trade-off, not overfitting and having low losses. Overfitting
is when the accuracy for the training dataset is much higher than that of the validation dataset meaning
the model has learnt particulars for that training set and will not perform well on unseen test data.
The following changes were experimented with and made at various times to try and increase accuracy
and avoid overfitting:

1. Changing the architecture by adding/removing/shuffling layers;
2. Changing learning rate, decay rate, and different loss functions;
3. Increasing or decreasing number of epochs and/or batch size;
4. Changing data pre-processing, timesteps, sequence size, decimal places.

Multiple neural network architectures were tried out with a number of changes made to training
hyper parameters, the best-found parameters and architectures will be presented in the results section.

The dataset is made up of the example trajectories. The dataset is segmented into a training set
and validation set. The training set is used to learn the weights of the neural network at a given run
(epoch) by trying to minimize the loss. Once a set of weights is determined, the effectiveness of these
weights is measured by checking the trained network performance on the validation set. Note that the
validation set is not used for training the weights, and hence, act as a verification method. The ratios
used were 10% for testing, 30% for validation and 60% for training. Data was shuffled every epoch
using the package random and shuffle function. The indexes for inputs and outputs were shuffled
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in the same way and then used to shuffle data to ensure the inputs still owned the same index as its
corresponding output.

5. Results and Discussion

In the following sections, we describe the results obtained from policy learning algorithms and
discuss the implications of them.

5.1. Driving Policy Learning

For each of the intersections considered, different LSTM network architectures were tried
out. For the first intersection, i.e., Italy junction, multiple different network architectures were
considered, and the best model was selected based on the cross-validation performance. The best
network architecture that was obtained for Italy junction is given in Table 1, and the corresponding
cross-validation curves are provided in Figure 13.
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5.2. Comparison of the Models

Overall the architectures are very similar, with a small difference in activation functions of
LSTM cells and addition of batch normalisation layers or even a dense layer for the Italy model.
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The architecture used for the Italy dataset was the largest and most complex and yet gave the least
accurate results. All datasets were able to be pre-processed successfully and run through a neural
network. The final accuracies and losses are summarised in the Table 4 below.

Table 4. Network cross validation results summary.

Intersection
Training Validation

Accuracy Loss Accuracy Loss

Italy 0.8148 0.0133 0.7517 0.0116
Denmark A 0.9925 0.0040 0.9445 0.0059
Denmark B 0.9591 0.1059 0.9345 0.0660

5.3. Discussion of Results

The purpose of the driving policy learning experiments was to illustrate that a position predictor
can be learnt effectively from extracted data trajectories. The cross-validation results produced
illustrates that models can be learnt with a good bias-variance tradeoff, and good accuracy. This means
that we can utilize LSTM networks as an effective function approximator to predict vehicle movements.

The training and validation accuracy of Denmark-A dataset show that high accuracy can be
achieved, at low loss. This indicates that the variance in the dataset is limited, which is mainly due to
low levels of traffic during the time of capture. Whereas, in the Italy dataset, the accuracy levels are
low, and this is mainly because the Italy data set has high traffic at the time of capturing.

Also, noteworthy is that the trained LSTM networks are of relatively low complexity, which
would enable models to be learnt quickly. While we did not consider online learning of policies, such
a methodology would be quite useful when it is necessary to learn policies very soon. For example,
when there is an accident, and it is necessary to update a useful policy, it is important to learn this
model quickly, so that driverless cars can be updated with appropriate driving policies.

The network architectures that are learnt in the experiments above generally have a similar
architecture. This also renders it useful when it is necessary to learn driving policies for similar road
intersections. In the current implementation, only a fixed number of neighboring vehicles are used to
generate the features. Due to this reason, it is easy to do transfer learning of driver policies, which
means a network that is trained for one junction/intersection can be fine-tuned with very little data
from a different intersection.

In summary, data captured from air-borne drones can be effectively utilized to learn driving
policies that are suitable for a given road intersection/junction. The pre-processing algorithm and the
policy learning algorithm proposed in this paper is an effective tool to support this vision.

5.4. Limitations and Future Work

The purpose of the experiments in this paper is to demonstrate a practical way to implement a
viable solution towards infrastructure-led driving policy learning. There are a few areas that warrant
further research, along with this topic. While the dataset contained a couple of videos from Italy
intersection during night time, in this work, we have only considered traffic conditions during day
time. While with the limited data, we were able to illustrate the possibility to learn a driving policy,
it is necessary to investigate how adaptable are the models when presented with different traffic
conditions. Furthermore, experiments need to be performed on a larger dataset for the neural networks
to show better convergence properties. For example, the choppiness of the curves in Figures 12 and 13
illustrate the stochastic (random) nature of the weight updates in the neural network. The choppiness
is accentuated by the fact that the validation set contains only 30% of the data, whereas, the training set
has more data, hence, the overall loss/accuracy is averaged more.

Another important aspect for further research is in multi-agent policy learning and simulations.
In this study, we treated the policy learning problem as a single agent imitation learning scenario.
The decisions taken by one agent is not made in a stationary environment as the action of other
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agents makes the environment non-stationary, and hence, the Markov property does not hold. While
that assumption simplifies the problem, more appropriate to the setting at hand is multi-agent
imitation learning.

From an application perspective, this framework will be most welcome in areas/countries where
traffic is not disciplined, and the law is not enforced appropriately. In such situations, driverless
vehicles that are trained in disciplined roads will not be able to perform adequately. For example,
in certain areas, there are no lane markings, nor pavements for pedestrian travel. In such situations,
the driverless cars will have to learn some survival techniques, and take safety precautions to consider
pedestrians. Such techniques and control systems cannot be defined based on rule-based algorithms,
hence, would require data-driven control algorithms. While collecting data for centralized training
of CAVs is not practical, a framework, such as the one proposed in the current paper would be well
suited. However, to test such a hypothesis, a more comprehensive data set need to be collected from a
representative environment.

6. Conclusions

Connected autonomous vehicles (CAVs) form an important element of future intelligent mobility
systems. Currently, training autonomous vehicles that autonomously navigate environments requires
extensive training mileage. However, it is difficult to exhaust all possible intersections and traffic
conditions that it may face. To assist CAVs in situations for which they were not trained with adequate
training data, this paper presents an alternative approach where the sensing infrastructure can be
utilized to learn appropriate driving policies, which can then be uploaded to the vehicles when
they approach a particular junction. In this paper, we demonstrate a workflow of data processing
and data-driven policy learning on a unique video data set captured by uncrewed aerial vehicles
(UAVs) positioned above three different geo-locations across Europe. After appropriate processing
and selection of vehicle trajectories, experiments in the paper illustrated that it is possible to learn an
appropriate driving policy, which tries to imitate the vehicle trajectories. The long short-term memory
(LSTM) networks are used as a function approximator to predict the vehicle trajectories given the
trajectories of the neighboring vehicles.
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