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Abstract: Urban search and rescue missions require rapid intervention to locate victims and survivors
in the affected environments. To facilitate this activity, Unmanned Aerial Vehicles (UAVs) have been
recently used to explore the environment and locate possible victims. In this paper, a UAV equipped
with multiple complementary sensors is used to detect the presence of a human in an unknown
environment. A novel human localization approach in unknown environments is proposed that
merges information gathered from deep-learning-based human detection, wireless signal mapping,
and thermal signature mapping to build an accurate global human location map. A next-best-view
(NBV) approach with a proposed multi-objective utility function is used to iteratively evaluate the
map to locate the presence of humans rapidly. Results demonstrate that the proposed strategy
outperforms other methods in several performance measures such as the number of iterations,
entropy reduction, and traveled distance.

Keywords: multi-layer mapping; next-best-view; search and rescue; victim localization; sensor fusion

1. Introduction

The current advanced development of aerial robotics research has enabled their deployment in a
variety of tasks such as urban search and rescue (USAR) [1–4], infrastructure inspection [5], 2D/3D
reconstruction for building using point cloud generated from UAVs Images [6] or 3D reconstruction of
historical cities by using the laser scanning and digital photogrammetry [7], and mining [8]. Notably,
the intervention of the UAVs in the USAR environment is critical in the sense that they require
rapid response to locate all victims and survivors in this environment. Many sensors, such as RGB
color cameras [9] and thermal cameras [10,11], were used to localize victims in the literature. Single
sensors methods cannot effectively locate victims due to the harsh nature of USAR environments.
Some sensors cannot operate under certain conditions such as smoke, dust, radiation, and gases.
For instance, vision-based systems are incapable of locating a victim under dark lighting condition or
in the presence of occlusions. Additionally, thermal-based systems can be deceived by excessive heat
sources such as fires. Consequently, recent studies have been conducted to reduce victim localization
time by using multiple sensors, thus improving the detection and localization performance in such
unfavorable environment. The work presented in this paper tackles considers each sensor as a victim
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detector module. These detector modules are independent of one another, and they are used to
generate victim-location maps. A probabilistic sensor fusion technique is performed on the generated
maps to create a new merged map. Consequently, this map is used by the robot for environment
exploration to localize the presence of victims.

In the current state of the art, a variety of contributions have been made to accomplish
autonomous exploration. Most autonomous exploration approaches use frontier exploration [12,13]
and, information gain theory, e.g., next-best-view(NBV) [14]. Different types of maps can be constructed
to project different information such as topological occupancy maps, metric maps, and semantic maps.
Human detection was widely studied by training Support Vector Machine (SVM) classifier to detect
human presence from 2D images [15–17]. Recently, deep-learning algorithms are applied for object
and human detection [18]. In a NBV exploration process, the UAV navigates in the environment using
a utility function, also called a reward function, which selects the next best exploration activities that
minimize the effort required to localize victims.

In this work, we present a multi-sensor-based NBV system to locate victims in a simulated urban
search and rescue environment. The proposed multi-sensor system uses different sensor sources,
namely vision, thermal, and wireless, to generate victim-location maps which are then fused into a
merged map using probabilistic Bayesian framework.

Moreover, a multi-objective utility function is proposed to speed up the search mission of locating
victims. The proposed multi-objective utility function evaluates viewpoints based on three desired
objectives namely exploration, victim detection and traveled distance. Finally, an adaptive grid
sampling algorithm (AGSA) is developed to resolve the local minimum issue where the robot tends
to move in a repeated pattern [19], a problem commonly occurs in the Regular Grid Sampling
Approach (RGSA).

In particular, our contributions are as follows:

• A multi-sensor fusion approach that uses vision, thermal, and wireless sensors to generate a
probabilistic 2D victim-location maps.

• A multi-objective utility function that uses the fused 2D victim-location map for viewpoints
evaluation task. The evaluation process targets three desired objectives, specifically exploration,
victim detection, and traveled distance.

• An adaptive grid sampling algorithm (AGSA) to resolve the local minimum issue occurs in the
Regular Grid Sampling Approach (RGSA).

The rest of the paper is organized as follows; Section 2 outlines the related work. The detailed
proposed approach is presented in Section 3. Section 4 presents the simulation process and the
experimental results. Finally, the conclusion and future works are given in Section 5.

2. Related Work

To autonomously locate victims inside an urban search and rescue environments with a robotic
system, multiple prerequisite components should exist on the robotic system to perform its task
effectively. In this section, the various robotic components that constitutes an autonomous search and
rescue robot are presented, and related work to this component will be described.

2.1. Victim Detection

Victim detection is the most critical task in search and rescue missions where victims should be
identified as fast as possible for the first responders to intervene and rescue them. Throughout the
literature, the human detection problem has been investigated extensively from different perspectives
such as thermal [17,20] and visual perspectives [15,16]. Various sensors enabled different strategies to
detect humans such as the RGB cameras and thermal cameras.



Remote Sens. 2019, 11, 2704 3 of 25

From thermal detection perspective, authors in [15] used a background subtraction along with
trained Support Vector Machine (SVM) classifier to detect human presence in images streamed from a
thermal camera. Similarly, authors in [16] used a combination of Histogram of Oriented Gradients
(HOG) and CENsus TRansform hISTogram (CENTRIST) features to train the SVM classifier for
thermal detection.

However, from the visual detection scope, the detection is extensively performed using machine
learning methods and currently through deep-learning methods. In the context of machine learning
approaches, authors in [17] used SVM classifier along with HOG features to locate victims with different
poses. They focused on diversifying their dataset with different human poses and lighting condition
to boost the detection accuracy. Additionally, in [20] a rotational invariant F-HOG classifier was used
to detect a lying-pose human in RGB image. They showed that the F-HOG is more discriminative and
performs better compared to the traditional HOG feature descriptor.

Machine learning detection methods suffer from several limitations resulting in lower
accuracy/precision performance. First, machine learning approaches consider training a set of
images with a nearly uniform background, which is not reliable when performing it in a real-world
disaster area. Additionally, machine learning algorithms represent human with pre-defined features.
However, this assumption may not be capable of generalizing human features, which lead to detection
error. Therefore, deep-learning models are used to achieve higher accurate detection without feature
extraction process.

However, more accurate approaches to human detection are achieved using deep learning [18,21].
Unlike conventional methods, deep-learning models can perform higher detection accuracy by finding
the most efficient features patterns existed in trained visual input [18,21,22]. An accurate approaches
to human detection are achieved using deep learning is found in [18,21]. In [22] author succeeds
in running the deep-learning model called Fast R-CNN at 5 fps with reasonable detection accuracy.
A faster detection model was introduced in [21] where the authors designed a real-time deep-learning
network called Single-Shot multi-box detector (SSD). The model involves multiple convolutional
layers that perform the same detection but at different aspect ratio leading to higher overall detection
accuracy. The achieved detection speed is 59 FPS on Nvidia Titan X.

However, one main drawback in deep-learning classifiers is the accuracy vs. speed trade-off.
In other words, accurate CNN model tends to have more layers with a larger size to learn deep
features, which consequently requires a longer time to evaluate the input images streams in real-time
requirements. For examples, authors in [18] proposed a CNN structures containing 7 layers,
5 convolutional layers and 2 full-connected layers. The model is pre-trained on the ImageNet database,
and then the last two fully connected layers in the CNN were fine-tuned to provide the model with
distinguishable features for the victims. The main disadvantage of the system is that it possesses a
high computational load and need a separate server to run the detection model. Recent work was
designed to address and improve the accuracy vs. speed trade-off.

Another strategy that is used to localize humans accurately is the sensor fusion. Sensor fusion
allows taking the advantages of each sensor while compensating for their limitations. In [23],
authors performed sensor fusion to identify victim using rescue robots operating in cluttered USAR
environment. The sensor fusion was performed in the feature level where initially an RGB-D image
is captured from the environment. Then, a depth region segmentation is performed on the image
to get sub-region segmentation. After that, skin feature, body part association and the geometric
feature are extracted from the image. Finally, the extracted features are used to train a SVM classier
to identify the victim a captured RGB-D image. In [24], the thermal image is used to obtain rough
region of interest (ROI) coordinates of human location then the estimated ROI is fused with the depth
image to obtain the actual human location along with occlusion handling. In [25], the depth–color joint
features are extracted from the RGB-D images which used to train a human detector whose inputs are
multi-channels namely LUV, HOG and depth channel. Unlike conventional methods, deep learning
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can find the most efficient features patterns that existed in trained visual input, in contrast to the
conventional methods, which used pre-defined features leading to higher detection accuracy.

In this work, three different sensors are used to capture environment data, RGB Camera, thermal
camera, and wireless sensor. Each sensor data is going to be used to generate a 2D map called victim
maps. After that, the three maps are fused into one merged map that is going to be used for the
exploration process. Our method is different to the state-of-the-art method because of adding the
wireless sensor. The wireless sensor is used to indicate the presence of a victim from the mobile phone.
Using a wireless sensor with the visual and thermal sensors can help in locating the victim accurately.

2.2. Mapping

While attempting to locate victims in an USAR environment, exploration techniques require the
presence of a map that captures the information gathered by the sensors during the exploration method.
Among the methods which implemented a human detector, many of them used a mapping structure
to stores their detection results. The most popular mapping structure is the 2D and 3D occupancy grid
where the work-space is discretized into 2D squares or 3D cubic volumes known as pixels or voxels,
respectively and they are used to store the probability that a human is detected.

In occupancy grid maps, a mi is a cell with index i and this occupancy grid is simply a finite
collection of all the cells modeled as m = {m1, m2, . . . , mn). Where n is the total number of cells.
In a 2D occupancy grid representing victim presence, every cell contains victim detection probability.
Clearly, the higher the probability, the higher indication of human presence. The cell that holds a 0.5
probability indicated as an unknown cell where it is equally likely for the victim to be presented or not.
Figure 1 illustrates an occupancy cell obtained from an RGB-D camera where ray-tracing is performed
to update the map based on the camera visible field of view (FOV).

To update the map, many methods found in the literature used a Bayesian approach [26,27].
They either used the Bayes rule directly or indirectly through one of its derived methods such as
Kalman Filter, Particle Filter, etc. The concept behind the Bayes rule is that given some characteristic
information and level of confidence about it, it is used to determine the probability a human occupies
a given location. Some examples of work which used Bayes rule includes [26,27].

To capture human/victim detection, each cell in the occupancy grid map can hold one of the two
distinct states S = {human, Non human}. The probability that a human is observed will be denoted as
P (h) and probability of non-human is donated as P (h). Practically, determining the probability P (h)
at specific cell requires the last state on the cell, the observation from the human detection module and
the robot motion. Such information is taken into account using the Bayes filter [28].

In this work, three single 2D maps are generated from three different sensors, RGB camera, thermal
camera, and wireless sensor. All maps demonstrate the presence of humans and are updated using a
Bayesian approach. After that, a merged map is generated by combining the weighted re-scaled maps.
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(a)
(b)

Figure 1. (a) Shows the top-view of the scene containing people and an object scanned by an RGB-D
camera. (b) Shows the obtained occupancy grid of the scene wherein the higher the probability,
the darker the cell is, and vice versa.

2.3. Exploration

Exploration of unknown environment has been achieved using various methods throughout the
literature. Frontier-based [12,13,29] and Next-Best-View (NBV) [14] approaches are the most commonly
used approaches. The frontier-based methods aim to explore the frontiers (boundaries between free
and unexplored space) of a given area. However, the NBV approaches are used to determine the
next viewpoint or candidate position to visit to increase the chance of achieving the objective defined
in the utility function. The NBV approach selects the next pose from the list of possible candidates
(viewpoints) that score the highest according to the criteria defined in the utility function. The criteria
may include: the amount of information that could be potentially obtained by the candidate viewpoint;
the execution cost (i.e., energy, path) of the next action [30]; or the distance to be traveled to reach the
next best view [14]. Consequently, a proper utility function and information gain prediction have a
vital role in NBV selection.

In this research, we use the NBV as it is directly related to the work presented in this paper.
The main elements of the NBV approach are viewpoint sampling, viewpoint evaluation, and a
termination condition.

2.3.1. Viewpoint Sampling

To determine the next viewpoint to visit in order to maximize the chance of detecting a victim,
the common methods sample the space into candidate viewpoints, and evaluate these viewpoints in
order to determine which one can provide the best chance of detecting a victim. Different sampling
strategies are commonly used in the literature such as (1) Regular Grid Sampling [31], (2) Frontier
Sampling [32], and (3) Rapidly exploring Random Trees [33].

In the regular grid sampling, the state space around the robot is discretized based on the number
of degrees of freedom (n-DOF) of the robot. Precisely, each degree of the robot is used to divide state
space and the possible poses that an n-DOF robot can is visualized as points lying in a discretized
n-dimensional space. In the case of 3- dimensional space, the sampled point will look like a crystal
lattice; hence the name “state lattice” [31].

In frontier sampling, moving the robot to the boundaries between known and unknown space can
maximize the chance of obtaining new information. This approach allows the robot to see beyond the
explored map and hence expand the map. Typically, this sampling procedure is done on an occupancy
grid map, as it is easy to allocate frontiers where the free and unexplored space presented clearly [13,32].
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A simple form of frontier selection is to identify the frontier cell which is closest to the current
robot location. Then, the robot moves to that frontier and captures data from its sensor to expand the
exploration map. The robot repeats this process until no frontier is left [32,34].

Rapidly exploring Random Trees (RRTs) are another method commonly used to sample in a
receding horizon manner [14]. By sampling possible future viewpoints in a geometric random tree,
the defined utility function will enable the exploration of unknown volume environment. During this
process, a series of random points are generated. Then, these points are connected in a tree-like
expanding through explored space. Each branch represents a set of random chains and the branch
which maps the unknown space is selected. Each branch of the samples RRT is then evaluated using
the defined utility function, and the branch with the best possible exploration outcome is used to select
the best new exploration position to travel to.

2.3.2. Viewpoint Evaluation

A utility function is usually used to select the best viewpoint from the list of available candidates
generated during the sampling process. Information metric used to evaluate the viewpoints is the
information gain [35]. The entropy (H) for a specific cell x in the occupancy map is given as

Hi = Pi log (Pi) + (1− Pi) log (1− Pi) (1)

From Equation (1), the entropyHi is a measure of uncertainty associated with the cell probability.
Hi is maxed when the all outcomes are equally likely while it is zero when the trial outcomes are certain.

The corresponding view entropy for a specific view denoted by subscript v is the sum on the
individual cell’s entropy within the sensor FOV, and defined as:

Hv =
1
N
∗∑

i=1
− (Pi ∗ log (Pi) + (1− Pi) ∗ log (1− Pi)) (2)

where N is a normalization factor that represents the number of visible cells in the sampled FOV [36]
An extension of the information gain is the weighted information gain with distance penalty [12],

given by:

Hv = e−λ∗d ∗ 1
N
∗∑

i=1
− (Pi ∗ log (Pi) + (1− Pi) ∗ log (1− Pi)) (3)

where λ is the penalization factor [12].
Another information gain utility function is the max probability. In this method, the viewpoints

that contain cells with higher maximum probability are preferred compared to other viewpoints with
cells with less maximum probability. This method works well when a victim is found as the next
evaluated viewpoints will cover the victim within their FOV aiming to higher or lower the victim
detection probability. The evaluation of the max probability gain of a viewpoint [2] is given by:

Hv = max
i

Pi where i = {1, ..., N} (4)

2.3.3. Termination Conditions

Autonomous exploration tasks terminate once a pre-defined condition has been achieved. There
are several type of termination conditions depending on the scenario such as whether a victim was
found [37], whether a maximum number of iterations has been reached [38], or whether the information
gain reached a max [19,31]. Additionally, for frontier-based methods, the exploration terminates when
no more frontiers generated [32].

Our work is different from the state-of-the-art approaches in two elements of the NBV, viewpoint
sampling, and viewpoint evaluation. The proposed Adaptive Grid Sampling Approach overcomes
the limitation of one of the existing state-of-the-art approaches, which is the Regular Grid Sampling
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Approach [30,31]. Also, we propose a new viewpoint evaluation (utility function) method to detect
a human as fast as possible and reduce the traveled distance. Our viewpoint evaluation function
considers occupancy, distance, and victim detection using both the proposed merged map and the
proposed sampling approach. The proposed utility function is compared with the state-of-the-art
utility functions presented in Equations (3) and (4).

3. Proposed Approach

In this work, a new approach for victim localization, depicted in Figure 2, is presented.
The proposed victim localization method consists of two main processes: the victim detection/mapping
and the NBV exploration processes. In the first process, victim detection/mapping, the victim is
detected and localized in multi-layer maps that are generated by fusing vision, thermal, and wireless
data. Victim detection is accomplished by applying a detection algorithm that estimates human
location with uncertainty. The victim location is stored in an occupancy grid map, which is recursively
updated to increase the confidence in locating the victim. In the second process, exploration, the NBV
approach is used, and a new utility function is proposed. The NBV approach includes viewpoint
sampling, viewpoint evaluation, navigation, and termination conditions.

The novelty of our solution is on the integration of the wireless signal with other various classical
sensors to assist in locating victims. This presents a unique solution along with the multi-sensor-based
mapping approach and the multi-objective exploration strategy. Furthermore, deep-learning-based
human detection is used to detect the presence of a human from a 2D image. This information is
then used with a synchronized 3D point cloud to localize the human accurately. Moreover, unlike
regular grid sampling approaches, our proposed adaptive viewpoint sampling method solves the
local minimum problem. This approach enables rapid exploration and victims’ detection in a USAR
environment. Finally, the performance of the proposed approach was compared with other approaches
available in the literature, described in Section 4. Results showed that our approach performs better in
various metrics such as the number of iterations, traveled distance, and entropy reduction.

Figure 2. Flowchart of the System Model.

3.1. Multi-Sensor Approach for Victim Localization and Mapping

3.1.1. Vision-Based Victim Localization

The procedure for the vision-based victim localization is summarized in Algorithm 1. It involves
two main stages: victim detection, where the victim is found in the image frame; and mapping which
register the detection confidences in a 2D occupancy grid map.

• Victim Detection: In this work, Single-Shot Multi-box detector (SSD) [21] structure was adapted
in our classifier, trained it with visual object class challenge (VOC2007) dataset [39]. The SSD
structure is depicted in Figure 3. The input to the detection module is a 2D RGB image and the
desired output is a box overlapping the detected human with a probability reflecting the detection
confidence. The victim detection aims to find a human in a received RGB image.
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Figure 3. System Model of SSD detector. Taken from [21].

• Victim Mapping: Based on the analysis of the SSD detector, the minimum size of the detected box
in the training-set is 7× 10 pixels. This box size corresponds to 0.6× 0.8 in meter. To estimate the
distance between the detected human and the camera [40], the ratio rp of the box B to the image is

along the y-axis is given as rp =
By
yres

= 10
300 = 0.033 where rp is re-calculated for the tangent of the

half-angle under which you see the object which given as rp = rp · tan( v f ov
2 ) = r · tan( 60

2 ) = 0.019.
The distance d to the camera is estimated as d = l

2∗r = 0.8
2∗0.019 = 21m. The victim will appropriately

be located if its distance separation from the camera is within the camera depth operational range.

Algorithm 1 Vision-Based Victim Localization Scheme
Input:
• I — Input RGB Image
• P — Point Cloud synchronized with the RGB Image
• CameraFOV — Camera Field of View
• MC — Current Occupancy Map for the Vision Detection

Output:
• MU — Updated Occupancy Map for the Vision Detection

1: L ← ∅ . initialize L as empty vector to hold victim locations
2: {B(C), k} ← DetectHuman(I)

. where B is a matrix containing Box coordinates, C = [c1, c2, c3, c4] represents the box coordinates,

and k is a vector containing the human corresponding probabilities
3: for i=1:length(k) do
4: if ki > threshold then
5: Pe ← ExtractPointCloud(B(c))
6: C← EuclideanClusterExtraction(Pe)
7: if C is empty then
8: continue
9: end if

10: sort {C} in ascending order
11: Cmajor ← C0
12: P← FindCentroid(Cmajor)
13: P2D ← project P in x-y plane
14: L ← Append(L, P2D) . append P2D to the list of victim locations L
15: end if
16: end for
17: for all cells c ∈ MC&c ∈ CameraFOV do
18: for all ht do
19: bel(ht)← c
20: bel(ht) = ∑

ht−1
p(ht|ut, ht−1) · bel(ht−1)

21: bel(ht) = η · p(dt|ht) · bel(ht)
22: end for
23: c← bel(ht)
24: MU ← UpdateMap(MC, c)
25: end for
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3.1.2. Thermal-Based Victim Localization

The procedure for thermal-based victim localization summarized in Algorithm 2 involves two
stages: victim detection, where the victim is found in the thermal image based on heat signature;
and thermal occupancy mapping; where detection confidences obtained from the thermal detector
is stored.

• Victim Detection: Thermal detection is used to detect human heat signature presented using the
infrared light which is part of the electromagnetic (EM) spectrum. This approach is useful when
the human cannot be detected in RGB images, especially, in dark lighting condition. The method
adopted here is a simple blob detector which locates blobs in a thermal image for a temperature
range of 34◦ to 38◦ (normal human temperature). The procedures for thermal detection is presented
in Figure 4 which is composed of three stages. In the first stage, the thermal images are converted
into mono-image. Then, two thresholds, Tmin = 34◦ and Tmax = 38◦ are applied to the mono-image
to get a binary image that correspond Tmin < T < Tmax. After that, contouring is done to extract
regions which represented the human thermal location. The blob detector was implemented
using OpenCV where the minimum blob area is set to 20 pixels and a minimum adjacent distance
between blob is set to 25 pixels. A human face was detected as shown in Figure 4. A full-human
body can also be detected using the thermal detector by relaxing the choice of Tmin and Tmax.

• Victim Mapping: After a box is resolved on the human thermal image, the center of the box Bc is
calculated in the image frame give as

Bc = [(cx,max − cx,min)/2, (cy,max − cy,min)/2]T (5)

Then a ray is broadcast from the thermal camera center through the obtained Bc pixel.
After identifying the corresponding 3D ray in the world frame, orthogonal projection is deployed
as (Px, Py, Pz) −→ (Px, Py) where the Pz is removed. The final location is stored as Pproj = [Px, Py]T .

Figure 4. Demonstration of thermal detection using the Optris PI200.
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The thermal map is updated when using 2D rays by assigning P(D|h) to 0.6 for the cells
corresponding to the 2-D ray and 0.4 for the other cells within the camera FOV. Then P(D|h)
is obtained by finding the belief distribution bel (ht)at time t using the previous bel(ht−1) where
(ht) = ηP(Dt|ht) ¯bel(ht) and ¯bel(ht) =

∫
P(ht|ut, ht−1)bel(xt−1)dht−1. Both control ut and the

distribution of the state ht1 are used to determine the distribution of the current state ht. This step is
known as the prediction. When the state space is finite, the integral in ¯bel(ht) results in a finite sum.
The η used here for normalization, to make sure that the resulting product is a probability function
whose integral is equal to 1. The map resolution is set to 0.2 m as the thermal-based victim localization
is a bearing-only localization and required multiple ray generations of different poses to sufficiently
locate a victim as shown in Figure 5.

Algorithm 2 Thermal-Based Victim Localization Scheme
Input:
• I — Input Thermal Image
• CameraFOV — Camera Field of View
• MC — Current Occupancy Map for the Thermal Detection

Output:
• MU — Updated Occupancy Map for the Thermal Detection

1: R ← ∅ . initializeR as empty vector to hold the rays
2: Imono ← ConvertToMono(I)
3: for all pixels p ∈ Imono do
4: if Tmin < p < Tmax then
5: Ith(p) = 1
6: else
7: Ith(p) = 0
8: end if
9: end for

10: B(C)← BlobDetection(Ithreshold)
. where B is a matrix containing detected Box coordinates in I , C = [c1, c2, c3, c4] represents the

box coordinates
11: if B(c) is not empty then
12: i = 0
13: for all boxes c in B do
14: generate 2-D line , L, that pass through the center of box c and terminate at the end of

CameraFOV
15: R ← Append(R,L) . append L to the list of raysR
16: end for
17: end if
18: for all cells c ∈ MC&c ∈ CameraFOV do
19: for all ht do
20: bel(ht)← c
21: bel(ht) = ∑

ht−1
p(ht|ut, ht−1) · bel(ht−1)

22: bel(ht) = η · p(dt|ht) · bel(ht)
23: end for
24: c← bel(ht)
25: MU ← UpdateMap(MC, c)
26: end for
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Figure 5. Thermal map update for three different robot poses.

3.1.3. Wireless-Based Victim Localization

In the literature, many various techniques are used to find the distance or the angle to localize
an unknown static node which in this work is assumed to be the cell-phone of the victim. One of the
popular methods for the ranging techniques is the Received Signal Strength (RSS) which provides a
distance indication to the unknown node. The robot will act as a moving anchor node and captures
multiples RSS readings with the aim of locating the victim. The proposed system assumes the
transmission power of victim wireless device is fixed and known. This section explains the log-normal
channel model which adopted in the wireless detection module. Also, the updating procedure for the
captured measurement is explained to speed up the victim search.

• Victim Detection: A victim can be detected wirelessly by monitoring a given transmitted signal
from the victim phone. In this configuration, the victim phone can be treated as a transmitter
while the wireless receiver can be placed on a robot. If no obstacle between the transmitter and
receiver is found, the free-space propagation model is used to predict the Received Signal Strength
in the line-of-sight (LOS) [41]. The RSS equation is derived from Friis Transmission formula [42]

Pr = PtGtGr
λ2

(4π × dij)2 (6)

where Pr is the Received Signal Strength from receiver node i at node transmitter node j at time
t,Pt is the transmitted power, Gt is the transmitter gain, Gr is the receiver gain, dij is the distance
from sensor node i at node j, and λ is the wavelength of the signal. From Equation (6), the received
power Pr attenuates exponentially with the distance dij [41]. The free-space path loss PLF is
derived from the equation above by 10 log the ratio of the transmitted power Pt to the received
power Pr and setting Gt= Gr=1 because, in most of the cases, the used antennas are isotropic
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antennas, which radiate equally in all direction, giving constant radiation pattern [41]. Thus,
the formula is the following:

PLF(dij)[dB] = 10 log
(

Pt

Pr

)
= 20 log

(
4π × dij

λ

)
(7)

When using the free-space model, the average received signal decreases with the distance between
the transmitter and receiver dij in all the other real environments in a logarithmic way. Therefore,
the path-loss model generalized form can be obtained by changing the free-space path loss with
the path-loss exponent n depending on the environment, which is known as the log-distance
path-loss model which will result in the following formula [41]:

PLLD(dij)[dB] = PLF(d0) + 10η log
(dij

do

)
(8)

where d0 is the reference distance at which the path loss inherits the characteristics of free space
in (7) [41]. Every path between the transmitter and the receiver has different path loss since the
environment characteristics changes as the location of the receiver changes. Moreover, the signal
may not penetrate in the same way. For that reason, more realistic modeling of the transmission is
assumed which is the log-normal modeling.

PL(dij)[dB] = PLF(d0) + 10η log
(dij

do

)
+ Xσ (9)

where PL(di j)[dB] = Pt[dB]-Pr[dB] is the path loss at distance dij from the transmitter, PLF(d0) is
the path-loss model at the reference distance d0 which is constant. Xσ is Gaussian random variable
with a zero mean and standard deviation σ [43].

Due to the presence of noise in the log-normal model, the path loss PL(dij) will be different even
the same location with distance dij. To obtain a relatively stable reading, PL(dij) is recording for K
samples ,then, an averaging process is done to get the measured PL(dij). The victim can be set to
be identified wireless if the detected distance is less than a specific distance threshold ∆dt. This is
because RSS reading is high when the transmitter is closer to the receiver leading to a less noise
variance. Hence, from a log-normal model, it is sufficient to state that the victim is found in the
measured distance dij satisfy the condition dij < ∆dt

The same idea is used in weighted least-square approach where high weights are given for low
distances leading to a less RMSE in the localized node when compared to the conventional
lease-square approach which assumes constant noise variance across all measured distances [44].

• Victim Mapping: When RSS is used to locate an unknown node, a single measured distance is
not sufficient because the unknown node can be anywhere over a circle with radius equal to the
distance. That can be solved using trilateration as shown in Figure 6. In 2D space, trilateration
requires at least three-distance measurements from anchor nodes. The location of the unknown
node is the intersection of the three circles as show in Figure 6 [45].

Using trilateration can lead to a problem in case all the measured distances are large (with high
noise variance), which can lead to a false located position. To alleviate this problem, the use of
occupancy grid is proposed when updating the map. The measured distance is compared based
on the criteria dij < ∆dt. If this criteria it met, the measurement is trusted, and the map is updated
with victim probability within a circle of radius equal to dij. Otherwise, the measured distance is
discarded. The updating process is shown in Figure 7.
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Figure 6. Trilateration

(a) Wireless map obtained at
first robot pose.

(b) Wireless map obtained at
second robot pose

(c) Wireless map obtained at
third robot pose

Figure 7. Wireless map update for three different robot poses.

3.1.4. Multi-Sensor Occupancy Grid Map Merging

In this work, three different victim-location maps are generated using three different sensors.
The probability of the victim’s presence in each map is obtained by the Bayesian-probabilistic
framework independently. These maps are then fused in a Bayesian-probabilistic framework to
obtain a merged map that indicates human presence probability. Following the Bayesian approach
in generating the multi-sensor occupancy grid may introduce undesired errors. For example, some
victim detectors may have less confidence compared to others due to sensor limitations. For this
reason, multiple sensors with different weights can be used for each victim detector. Let D represents
a victim detector and Ci is the confidence assigned for each detector. Each of the victim detectors
gives two quantities, which are the measured probability P(Ci|Yj) of finding a human given detector
D and the weight wi(C) that reflects how much confidence assigned to a victim detector. The posterior
probability is given as:

P (C|D1 . . . Dm) = α
m

∑
i=1

wi (C) P(C|Di) (10)

where α =

[
m
∑

i=1
wi (C)

]−1
is a normalized factor for all the weights. Figure 8 shows the process of

updating a single cell in the combined map taken into consideration the different weights for the
victim modules implemented in each map. Let Mapmerged be the combined map from the three sensors.
The merged map from the three sensors is used to monitor the maximum probability. The merged map
is obtained by re-scaling the three occupancy maps to the smallest resolution resolutionmin which is
the lowest resolutions of the three used maps. The combined map is given as

Mapmerged = α
m

∑
i=1

wi (C) ∗Mapm,rescaled (11)
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Figure 8. Merged map obtained from three maps of different resolutions where a single cell update
is highlighted.

3.2. Exploration

We adapt the NBV approach to explore the environment. The typical pipeline for NBV includes
viewpoint sampling, viewpoint evaluation, navigation and termination. In this work, two viewpoint
sampling methods are used for NBV evaluation and viewpoint selection which are the Regular Grid
Sampling Approach (RGSA) and a proposed Adaptive Grid Sampling Approach (AGSA). After that,
the different sample viewpoint are evaluated using a utility function. Then, the robot navigates to the
selected viewpoint and update the maps simultaneously. The search mission is terminated when a
termination condition is met.

In this work, the search process terminates when a victim is found or when all the viewpoints
provide a zero reward from the utility. The victim is assumed to be found in the maximum probability if
the occupancy map went above a specific threshold or if the number of iteration exceeded a pre-defined
number of iterations.

The proposed NBV approach uses a multi-objective utility function which is composed of three
components. The first function Uexp is the information gain, which focuses on the exploration objective
while the function Uvictim is biased towards exploring occupancy grids with higher victim presence
probability. Traveling further distances is penalized by the function Udist to compromise between
satisfying the objectives and the traveling cost. The multi-objective utility defined as:

U =
(
wexp ×Uexp + wvictim ×Uvictim

)
×Udist

=

(
wexp ×

(
HIG

max{HIG}

)
+ wvictim × e−|ζ|

β

)
× e−wdist∗d

where ζ = 1−
max{PMAX}

max{P} , P is the probability of a cell in a viewpoint, PMAX is the maximum probability

cell within a given viewpoint, HIG is the information gain (IG) for a given viewpoint, d is the distance
from the current location to the evaluated viewpoint, β is the exponential penalization parameter while
wexp, wvictim and wdist are the weights used to control each of the three objectives. The impact of β on
the selectivity of Uvictim is illustrated in Figure 9, used to control how much emphasis should be put
on victim detection vs environment exploration.
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Figure 9. Impact of the β parameter on the selectivity of Uvictim function where PMAX = 0.9.

After viewpoint evaluation, different navigation schemes are used based on the selected view
generation method. For Regular Grid Sampling approach, a collision-checking is performed over the
line between the vehicle and the evaluated viewpoint, to ensure that the path is safe for the drone to
traverse. For adaptive sampling, initially, a straight line is performed. In case it failed, then an A* [46]
planner is used.

Upon finding a victim, the search process is terminated to allow the robot to report back the victim
location to the rescue team. The victim is assumed to be found in the maximum probability if the
occupancy map went above a specific threshold or if the number of iteration exceeded a pre-defined
number of iterations. This method can also be extended to incorporate more than one victim.

4. Experimental Results

Simulation experiments were performed on an Asus-ROG-STRIX Laptop (Intel Core i7-6700HQ
@ 2.60 GHz × 8, 15.6 GB RAM). The victim localization system was implemented on Ubuntu-kinetic
16.04 using the Robot Operating System (ROS) [47], where the system consists of a group of nodes
with data sharing capability. Hence, the use of ROS simply the direct implementation of the system on
the hardware platform. The environment was simulated using Gazebo, and the code programmed
in both C++ and Python. The GridMap library [48] was used to represent the 2-D occupancy grid,
navigation was done using Octomap [49] and point cloud data (PCL) was handled using the Point
Cloud Library (PCL) [50]. An open source implementation of the proposed approach can be found
at [51] for further use.

4.1. Vehicle Model and Environment

The adopted vehicle model in the tests is based on a floating sensor approach, where the sensor
moves virtually in space and captures data from the selected viewpoints. The floating sensor is
presented as a virtual common base link among candidate sensors. Static transformations are
used to refer the sensors links to the floating sensor base link. Upon moving the floating sensor,
the way-point command is applied in the floating sensor local frame where the sensors take their
new positions based on their respective transformations. Figure 10 shows the floating sensor along
with its components. By using the floating sensor approach we skip continuous data that could be
acquired during the transition between the viewpoints, resulting in a better evaluating setup where
only data and information gathered from the viewpoints is used to conduct the exploration and victim
detection. The system is equipped with three sensors, namely an RGB-D camera, a thermal camera,
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and a wireless adapter. The specifications of the RGB-D camera, thermal camera, and wirelesses
transmitter specifications are presented in Table 1. Both RGB-D and thermal camera are mounted
underneath to increase the unobstructed field of view (FOV). The proposed system can adapt to
any UAVs.

Figure 10. Floating sensor model.

Table 1. RGB camera, Thermal camera, and Wireless Sensor specifications.

Specs RGB-D Thermal Specs Wireless

HFOV 80 60 Type isotropic
VFOV 60 43 N of samples 150
Resolution 640 × 480 px 160 × 120 px frequency 109 Hz
Range 0.5–5.0 m N/A SNR 5 dB
Position y −0.05 m −0.09 m Position 0.05 m
Pitch 15 15 - -

The simulated environment is shown in Figure 11 with dimensions 13 m× 15 m. This environment
has multiple rooms with dead-ends and a corridor which can demonstrate the problems that the system
can experiences and how to be tackled. Due to the difficulty in simulating an actual heat signature in
the environment, the output of the thermal blob detector is simulated by the detection of the victim
red-shirt from the captured RGB image.

Figure 11. Simulated environment.

4.2. Tests Scenario and Parameters

The tests are carried out to show the effectiveness of the proposed approach, namely the combined
map, viewpoint sampling method, and the multi-objective utility function. The executed tests are
divided into two classes based on the sampling approaches, Regular Grid Sampling Approach (RGSA)
and the proposed Adaptive Grid Sampling Approach (AGSA). The proposed AGSA is compared with
the state-of-the-art RGSA [30,31]. In each sampling approach, the proposed merged map including



Remote Sens. 2019, 11, 2704 17 of 25

the wireless map, is compared with the state-of-the-art single generated maps using single sensor.
In addition, the proposed utility (U3) function is compared with the state-of-the-art utility functions
(U1) and (U2), weighted information gain [12] obtained using Equation (3) and max probability [2]
obtained using Equation (4), respectively. The evaluation metrics used for each test are the number of
iteration, distance traveled, and entropy reduction. The parameters used for RGSA and AGSA are
shown in Tables 2 and 3, respectively.

In each test, the four different maps: vision, thermal, wireless, and merged map were used
to test their performance. The viewpoint evaluation is executed using the three utilities: weighted
information gain (U1), improved max utility (U2), and the proposed multi-objective utility (U3). Table 4
lists the parameters used in the map generation.

Table 2. Regular Grid Sampling Approach Parameters.

Regular Grid Sampling Parameters Value

x displacement between samples 0.8
y displacement between samples 0.8
yaw step-size π

4
Straight-line Collision Check Box size 0.8

Table 3. Adaptive Grid Sampling Approach Parameters.

Adaptive Grid Sampling Parameters Value

Adaptive scale factor base a 2
Entropy change per cell ∆Ev 0.1 m
A∗ grid resolution 0.3 m
A∗ circular distance to goal 0.3 m
A∗ circular distance to robot in case of
no-path found

0.5 m

Table 4. Parameters used in the simulation.

Vision Map Parameters Value Thermal Map Parameters Value

map resolution 0.5 map resolution 0.2
P(D|H) 0.8 P(D|H) 0.7
P(D|H) 0.1 P(D|H) 0.3
P(D|H) 0.2 P(D|H) 0.3
P(D|H) 0.9 P(D|H) 0.7
SSD probability threshold 0.8
minimum cluster size 10 points minimum cluster size 40 pixels
minimum distance between clusters 0.01 m minimum distance between clusters 30 pixels

Wireless Map Parameters Value Merged Map Parameters Value

map resolution 0.5 map resolution 0.5
P(D|H) 0.7 vision map weight w1 (C) 0.65
P(D|H) 0.3 thermal map weighted w2 (C) 0.2
P(D|H) 0.3 wireless map weighted w3 (C) 0.15
P(D|H) 0.7
wireless distance threshold 5 m

The Octomap resolution is set to 0.2 m. A termination condition of maximum iteration is used
in all the tests where the maximum iteration nmax is set to 120, and the victim probability threshold
Pmax is set to 0.9 (the probability at which a victim is considered found). For the utilities, The distance
weight λ is set to 0.05, while for the proposed utilities, the weights are selected as wexp = 1 and
wvictim = 2 when evaluated in the vision and thermal map. For the wireless map, it is assigned as
wexp = 1 and wvictim = 1. The penalization parameter β is set to 1. The metrics used in the evaluation
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are the total number of iterations before termination (It), total map entropy before the victim search
begin subtracted by total map entropy after the victim is found (TER), and the total distance traveled in
meters (D). Some of the parameters used during the experimentation were carefully tuned to achieve
the optimum setup given the experimental environment. The benchmarking, however, was conducted
with the same parameters for all the methods.

4.3. Regular Grid Sampling Approach (RGSA) Results

The obtained results of the different utility functions are shown in Figure 12a in terms of entropy
and Figure 12b in terms of distance traveled. For comparison, the same results listed in Table 5.

(a) (b)

Figure 12. Regular Grid Sampling Approach Results. (a) Entropy vs. Iteration using Regular Grid
Sampling Approach. The fastest method is indicated by the magenta vertical dash line. (b) Distance
vs. Iteration using Regular Grid Sampling Approach. The fastest method is indicated by the magenta
vertical dash line.

Table 5. Results of RGSA tests. VF: victim Found It: Iterations, D: Distance, TER: Total
Entropy Reduction. The numbers in bold indicate better performance.

Scenario VF It D (m) TER

U1-vision No 120 101.1 368.9
U2-vision Yes 81 72.4 382.2
U3-vision Yes 77 68.0 440.9

U1-thermal Yes 100 88.1 2494.4
U2-thermal Yes 104 91.71 2067.2
U3-thermal Yes 98 83.46 2395.0

U1-wireless No 120 75.59 732
U2-wireless No 120 85.17 472.1
U3-wireless No 120 76.20 824.2

U1-merged No 120 98.46 2810
U2-merged No 120 17.24 587
U3-merged Yes 73 64.34 2344.3
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In the vision map, the proposed utility (U3) has fewer iterations (77), entropy reduction,
and distance traveled when compared to the other utilities within the same map. It is also noticeable
that the weighed information gain (U1) failed to find the victim as it exceeds the maximum iteration
120. This because of U1 experience a local minimum indicated by the stabilized entropy curve for
an extended number of iterations. The max utility (U2) succeeded in locating the victim but with a
relatively higher number of iterations as this utility does not have an exploration capability.

In the thermal map, U3 has fewer iterations (98), and distance traveled when compared to the
other utilities within the same map. Also, U1 has more iterations but a better entropy reduction
compared to U3. U2 has the worst performance with a higher number of iterations and distance travel
to locate the victim.

In the wireless map, all the three methods failed in locating the victim where the total iterations
reached the maximum allowable iteration. That is due to the nature of the wireless transmitter wherein
the map update is done in a circular manner making it easy for the robot to fall in a local minimum.

In the merged map, U3 has the best performance with a lower number of iterations (73), entropy
reduction and distance traveled compared to the other utilities in the same map as well as across all
maps. In U1, the method failed to locate the victim as the vehicle experience a set of local minima
which was mainly inherited from the wireless component. The merged map with U2 failed because
the utility falls in an inescapable local minimum. Figure 13 shows the path trajectory of the vehicle in
U3-merged test using RGSA.

Figure 13. Vehicle traversed path in the U3-merged test using RGSA where (a) start location,
(b) direct-path trajectory, (c) location of the detected local minimum where A* Planner was invoked to
generate path, (d) end location.

4.4. Adaptive Grid Sampling Approach (AGSA) Results

Here, the Adaptive Grid Sampling Approach (AGSA) is used to test the performance of the
utilities when implemented on the individual maps as well as the merged map. The settings used in
the AGSA are shown in Table 3. The obtained results of the different tests shown in Figure 14a in terms
of entropy and Figure 14b in terms of distance traveled. Also, the instants when the AGSA detected
local minimum as shown in Figure 15. For comparison, the same results listed in Table 6.
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(a) (b)

Figure 14. Regular Adaptive Grid Sampling Approach Results. (a) Entropy vs. Iteration using Adaptive
Grid Sampling Approach. The fastest method is indicated by the magenta vertical dash line. (b) Travel
distance vs. Iteration using Adaptive Grid Sampling Approach. The fastest method is indicated by the
magenta vertical dash line.

Figure 15. Generator states vs. iterations using Adaptive Grid Sampling Approach.
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Table 6. Results of AGSA tests. VF: victim Found It: Iterations, D: Distance, TER: Total Entropy
Reduction. The numbers in bold indicate better performance

Scenario VF It D (m) TER

U1-vision No 84 78.4 645.52
U2-vision Yes 81 72.4 718.06
U3-vision Yes 80 68.4 671.1

U1-thermal Yes 89 88.7 4608.2
U2-thermal Yes 104 91.7 4932.7
U3-thermal Yes 86 75.6 4752.1

U1-wireless No 120 223 490.8
U2-wireless No 120 115.4 245.8
U3-wireless No 120 223 490.8

U1-merged Yes 76 73.6 4459.4
U2-merged No 120 96.8 4959.8
U3-merged Yes 66 61.6 4772.7

In the vision map, the proposed utility (U3) has fewer iterations to find the victim (80).
The weighed information gain (U1) succeeds due to the local minimum’s problem been mitigated by
the AGSA. The max utility (U2) has the same performance as in the case of RGSA. That is because the
U2 works by selecting a viewpoint with maximum entropy, making it hard to fall under the threshold
∆Ev,threshold.

In the thermal map, U3 has fewer iterations to find the victim (86). In comparison to U3, U1 has
a lower entropy reduction but more iterations to locate the victim. U2 has the worst performance
compared to the rest of the method. Also, the performance U2 is the same as in the case of RGSA. In the
wireless map, all the utilities failed, as they require more iterations to find the victim.

In the merged map, U3 has fewer iterations to find the victim (66). Unlike in RGSA, U1 succeeds
in locating the victim as the vehicle was able to escape local minima. U2 failed in locating the victim as
this method does not encourage the vehicle to explore upon initial detection of the victim. That can
lead to a problem if the victim is located through the wireless sensor, but an obstacle such as a wall
occludes the victim. Under this scenario, it is preferable to explore and found a line-of-sight with the
victim allowing the vision and the thermal module to operate, a feature the max utility is lacking.

Across all the tests, U3-merged using ARGS has the best performance in terms of iterations and
distance travel with a relatively better entropy reduction.

Figure 16 shows the traveled path of the vehicle in the U3-merged test using AGSA. A video
that demonstrates the efficiency of indoor environment exploration using AGSA is provided in [52].
A video that represents a real-time experiment for victim detection is shown in [53], which was
conducted to demonstrate the effectiveness of the proposed work.
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Figure 16. Vehicle traversed path in the U3-merged test using AGSA where (a) start location,
(b) direct-path trajectory, (c) location of the detected local minimum where A* Planner was invoked to
generate path, (d) end location.

4.5. Discussion Results

The best performance was obtained when merging the probabilistic information in an occupancy
grid map, and using it to guide the search strategy. In this case, the combined information merged in a
probabilistic Bayesian framework is used instead of local optima of each system individually.

Using the Adaptive Grid Sampling Approach (AGSA), the proposed merged map with the
proposed utility function outperforms both traditional single-vision and thermal maps using the
proposed utility function on the number of iteration and the traveled distance. The reduction in the
number of iteration was in a range of 17.5% to 23.25% while the reduction in the traveled distance was
in a range of 10% to 18.5% respectively.

In addition, using the Regular Grid Sampling Approach (RGSA), the proposed merged map with
the proposed utility function outperforms both proposed single-vision map and single-thermal map
using proposed utility function on the number of iteration and the traveled distance. The reduction in
the number of iteration was in a range of 5.2% to 25.5% while the reduction in the traveled distance
was in a range of 5.4% to 23%, respectively.

Hence, the merged map results in a moderate performance over the other single maps when using
the Regular Grid Sampling Approach. However, combining the merged map with the Adaptive Grid
Sampling Approach presents higher performance.

5. Conclusions

In this work we proposed an USAR exploration approach based on multi-sensor fusion that
uses vision, thermal, and wireless sensors to generate a probabilistic 2D victim-location maps.
A multi-objective utility function exploited the fused 2D victim-location map to generate and evaluate
viewpoints in a NBV fashion. The evaluation process targets three desired objectives, specifically
exploration, victim detection, and traveled distance. Additionally, an adaptive grid sampling
algorithm (AGSA) was proposed to resolve the local minimum issue occurs in the Regular Grid
Sampling Approach (RGSA). Experimental results showed that the merged map results in a moderate
performance over the other single maps when using the Regular Grid Sampling Approach. However,
combining the merged map with the Adaptive Grid Sampling Approach presents higher performance.
In both cases, the results demonstrated that the proposed utility function using merged map performs
better than methods that rely on a single sensor in the time it takes to detect the victim, distance
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traveled, and information gain reduction. The tests were conducted in a monitored environment yet
there are different sources of uncertainty. In future work, we will extend the system to address these
uncertainty with scalability, and conduct experimental tests in real-world scenarios.
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