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Abstract: For a conventional narrow-band radar system, the detectable information of the target
is limited, and it is difficult for the radar to accurately identify the target type. In particular, the
classification probability will further decrease when part of the echo data is missed. By extracting
the target features in time and frequency domains from multi-wave gates sparse echo data, this
paper presents a classification algorithm in conventional narrow-band radar to identify three different
types of aircraft target, i.e., helicopter, propeller and jet. Firstly, the classical sparse reconstruction
algorithm is utilized to reconstruct the target frequency spectrum with single-wave gate sparse echo
data. Then, the micro-Doppler effect caused by rotating parts of different targets is analyzed, and
the micro-Doppler based features, such as amplitude deviation coefficient, time domain waveform
entropy and frequency domain waveform entropy, are extracted from reconstructed echo data to
identify targets. Thirdly, the target features extracted from multi-wave gates reconstructed echo data
are weighted and fused to improve the accuracy of classification. Finally, the fused feature vectors are
fed into a support vector machine (SVM) model for classification. By contrast with the conventional
algorithm of aircraft target classification, the proposed algorithm can effectively process sparse echo
data and achieve higher classification probability via weighted features fusion of multi-wave gates
echo data. The experiments on synthetic data are carried out to validate the effectiveness of the
proposed algorithm.

Keywords: narrow-band radar; target classification; signal reconstruction; features extraction;
weighted features fusion

1. Introduction

Aircraft target classification is always a difficult problem for traditional narrow-band radar.
Even for the three distinct targets, i.e., helicopter, propeller and jet aircraft, the recognition rate of
traditional narrow-band radar is not high in practical applications. The main reasons for target
recognition probability deteriorating in traditional narrow-band radar include the following three
points: (1) it is limited of range resolution due to the narrow bandwidth of radar transmitting signal;
(2) a traditional mechanical scanning radar has a short dwell time, which results in limited azimuth
resolution; (3) special circumstances such as data missing increase the difficulty of target classification.

In order to overcome the aforementioned problems, many classification methods have been
proposed to improve the aircraft recognition rate. An intuitive idea is to increase the signal bandwidth
of the radar system. It is well known that the enlargement of signal bandwidth can improve the range
resolution of radar, so wide-band radar can provide more information for target classification. The
existing methods of aircraft classification in wide-band radar can be generally divided into three types:
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(1) methods based on image processing [1–5]. In Reference [6], the extracted image, instead of radar
data, was fed into a three-layered feed forward artificial neural network for aircraft classification;
(2) methods based on high-resolution range profile (HRRP) [7–11]. Liu et al. [12] proposed a multi-scale
target classification method based on the scale-space theory through extracting features from HRRP;
and (3) methods based on inverse synthetic aperture radar (ISAR) [13–17]. A shape extraction based
aircraft target classification method using ISAR images is proposed in [18]. Although image processing,
HRRP- and ISAR-based aircraft classification have achieved good simulation results in wide-band radar,
the radar system is more complex and the detectable range is shorter than that in narrow-band radar.
Therefore, it is still of great significance to study aircraft classification based on narrow-band radar.

In recent years, many micro-Doppler parameter estimation methods [19–21] were designed
to tackle the aircraft target classification problem in narrow-band radar. Two techniques of cubic
polynomial fitting and three-point models are developed to estimate the micro-Doppler parameters
from a fraction of the period in real-world scenarios [22]. In Reference [23] the minimal mean-square
error (MMSE)-based method was proposed for estimating the micro-Doppler parameter from a
fraction of the period data. Li et al. [24] proposed the parametric sparse representation and pruned
orthogonal matching pursuit to the micro-Doppler parameter estimation for target classification and
recognition. There are also many methods used in micro-Doppler parameter estimation for aircraft
classification, such as time-frequency transform [25,26], continuous wavelet transform [27], Hough
transform [25] and so on. However, these methods have the same common problem of inaccurate
parameter estimation while the micro-Doppler signal is weak and only single-wave gate echo data
is utilized in the aforementioned methods. Moreover, with echo data missing in narrow-band radar,
Wang et al. [28] proposed a complex Gaussian model [29] based and factor analysis model [30]-based
signal reconstruction methods. On the basis of the complex Gaussian model, the method of directly
reconstructing the time-frequency spectrum of the original is proposed in Reference [31]. Although
these methods mentioned above can effectively reconstruct the echo signals of aircraft, they have not
studied the problem of classification with missing samples.

In addition, for the limited information of narrow-band radar, deep learning and machine
learning [32] based methods have also been introduced to aircraft target classification in recent years.
One of the most frequently used methods is the convolutional neural network (CNN) [33,34]. A novel
landmark and CNN based aircraft recognition method was proposed [35], in which it alleviates the
work of human annotation and can be used for any type of aircraft not contained in the training data set
without retraining, thus it is highly accurate and efficient. Zuo et al. [36] proposed a deep convolutional
neural network (DCNN) [37,38] based aircraft type recognition framework. Additionally, conditional
generative adversarial networks [39], a self-organizing neural network [40] and deep belief net [41]
have been used in aircraft targets classification. The networks used in the aforementioned methods,
as an intelligent technology developed recently, have achieved good performance on aircraft targets
classification, but they should be trained with large-scale datasets, which is quite time-consuming to
acquire and mark with label, and difficult to practice in radar equipment. Also there is still a certain
gap in the actual application of equipment.

In this paper, an aircraft target classification method is proposed for conventional narrow-band
radar with multi-wave gates sparse echo data. By contrast with the previous work where there are
only extract features from single wave gate echo for aircraft classification [10], the proposed method in
this paper uses multiple wave gates echo data for weight feature fusion, and combines sparse theory
to improve the probability of target classification in the case of missing data. Firstly, smoothed l0
norm (SL0) [42] and orthogonal matching pursuit (OMP) [43,44] algorithms are used to reconstruct the
sparse echo data in order to solve the low classification probability. Then we analyse the echo data
with three kinds of aircraft targets in time domain and frequency domain. According to the difference
of micro-Doppler effects [45] of rotating parts due to the difference in structure and rotating speed,
features of the amplitude deviation coefficient, time domain waveform entropy and frequency domain
waveform entropy are extracted to classify targets. Finally, features extracted from multi-wave gates



Remote Sens. 2019, 11, 2700 3 of 18

sparse echo data are weighted and fused to train and test the support vector machine (SVM) [46–48]
model for classification. Experimental results show that the proposed algorithm can improve the
classification probability, and four wave gates echo data in weighted features fusion used to extract
features is the optimal wave gate number for target classification.

The rest of this paper is organized as follows. The echo model and reconstruction algorithms
are reviewed in Section 2. The proposed algorithm based on multi-wave gates sparse echo data is
summarized in Section 3. Section 4 verifies the effectiveness of the proposed algorithm by simulated
experiments. Conclusions are presented in Section 5.

2. Reconstruction Algorithm of Sparse Echo Data

2.1. Echo Model

In narrow-band radar, the signal wavelength is much smaller than the target size, and the received
signal by radar is composed of echoes reflected by multiple scattering points. For targets with rotors,
such as a helicopter, propeller aircraft and jet aircraft, the echo can reflect not only the translation of
scattering points of the fuselage, but also the fretting characteristics of the scattering points of the
rotor blades.

Take a helicopter as an example; the special geometry between radar and a helicopter is shown
in Figure 1a, in which the distance between the radar and rotor target center is denoted as RC, and
the angle of pitch is denoted as β. Considering a 2-D slant-range plane, the simplified geometry is
shown in Figure 1b. A radar coordinate system XOY and target coordinate system X′O′Y′ are set up,
in which the rotor center is denoted as O′. The rotation radius of scattering point P on the rotor blade
is assumed to be r—i.e., the distance from P to O′ is r—and the distance from P to the radar is denoted
as RP. The scattering point P rotates around the target coordinate system center O′ with an angular
velocity ω, and the rotation angle at the initial time is denoted as θ0. Assume that the radial velocity of
the helicopter’s translational motion is v.
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Figure 1. Geometry between radar and rotor target: (a) space geometry; (b) 2-D plane geometry. 
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In the case of the far field, the instantaneous distance between the scattering point P and the radar
can be written as:

RP(tm) ≈ RC + vtm + r cos (ωtm + θ0), (1)

where tm = mTr is the slow time, m is the m-th echo pulse, and Tr is the pulse repetition period.
In this paper, we take the linear frequency modulation (LFM) as the transmitted signal, which can

be expressed as:
st(t̂, tm) = rect(t̂/Tp) exp (j2π( fct + µt̂2/2)), (2)

where rect(·) is the rectangular window, t̂ is the fast time, Tp is the pulse width, fc is the signal carrier
frequency, µ is the chirp rate, t is the total time, and t = t̂ + tm. There are two different time variables t̂
and t in the transmitted signal described in Formula (2), the reason is that the signal carrier frequency



Remote Sens. 2019, 11, 2700 4 of 18

fc exists on the whole pulse transmission time axis, while the chirp rate µ is used to adjust the change
of Doppler frequency within a pulse. The echo signal of scattering point P can be expressed as:

sr(t̂, tm) = σrect(tm/Ta)rect((t̂− 2RP(tm)/c)/Tp) exp (j2π( fc(t− 2RP(tm)/c) + µ(t̂− 2RP(tm)/c)2/2)), (3)

where σ is the scattering coefficient of the scattering point P, Ta is the observation time, and c is the
speed of light. The target echo signal after pulse compression can be expressed as:

sP(t̂, tm) = σTp sin c[B(t̂− 2RP(tm)/c)]rect(tm/Ta) exp (−j4πRC/λ)·
exp (−j4π(vtm + r cos (ωtm + θ0))/λ) + w(t̂, tm)

(4)

where B is the signal bandwidth, λ is the wavelength, and w(t̂, tm) denotes the Gaussian white noise
signal. By taking the derivative of the phase, the micro-Doppler frequency can be obtained as:

fd−P =
1

2π
dφ
dtm

=
1

2π
d[−4π(vtm + r cos (ωtm + θ0))/λ]

dtm
= −2(v−ωr sin (ωtm + θ0))/λ, (5)

It can be seen from the above formula that the Doppler frequency of the scattering point echo
on the target rotor blade is related not only to the radial velocity v of the scattering point echo on the
target rotor blade is related not only to the radial velocity of the translational motion, but also to the
angular velocity ω of the rotating component and the blade length r. Because the rotational motion of
scattering points on the fuselage is negligible, it is equivalent to only translational motion. Therefore,
the instantaneous distance between scattering point F on fuselage and the radar can be written as:

RF(tm) ≈ RC + vtm, (6)

The echo signal of scattering point F on fuselage after pulse compression can be expressed as:

sF(t̂, tm) = σTF sin c[B(t̂− 2RF(tm)/c)]rect(tm/Ta) exp (−j4πRC/λ) exp (−j4πvtm/λ) + w(t̂, tm), (7)

Compared with the echo of blade scatterer in Formula (4), the fuselage echo lacks only the fretting
term. In addition, the Doppler frequency of echo is only related to translational radial velocity, that is
fd−F = −2v/λ.

The frequency domain echo of helicopter, propeller aircraft and jet aircraft are simulated as shown
in Figure 2. The simulation parameters of radar and transmitting signal are set as follows, the pulse
repetition frequency Fr is 5000 Hz, the pulse-repetition period Tr is 0.2 ms, the pulse width Tp is 50 µs,
the signal carrier frequency fc of LFM signal is 1 GHz, the signal bandwidth B is 2 MHz, and the
observation time Ta is 0.05 s. The parameters of three types of aircraft targets are shown in Table 1.Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 18 
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Figure 2. Target frequency domain echo: (a) helicopter; (b) propeller; (c) jet. 
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Table 1. Three kinds of aircraft targets simulation parameters.

Target Type Rotor Length
(m) Blade Number Rotation Velocity

(rad/s)
Translational

Velocity (km/h)

Helicopter 8 4 20 250
Propeller 2 4 130 500

Jet 1 27 380 800

The rotation plane of the helicopter main rotor is parallel to the ground, so the micro-Doppler
effect produced can be observed easily by conventional ground radar. It can be seen from Figure 2a that
in addition to the fuselage echo, there are strong echo components caused by micro-Doppler motion of
rotor blades in the frequency domain echo of the helicopter, and the micro-Doppler spectrum width of
the helicopter is higher than that of the propeller in Figure 2b, which is due to the fact that the length
of the helicopter rotating parts is significantly longer than that of propeller. In addition, because the
rotating plane of the propeller’s engine blade is perpendicular to the flight direction of the aircraft, the
blade is easily obscured by the fuselage, and its micro-Doppler effect is relatively weak. Because of the
small size of jet engine blades and the particularity of its position, the micro-Doppler effect caused by
blade rotation can hardly be observed by ground radar. It can be seen from Figure 2c that the echo of
the jet aircraft only contains the fuselage component, but not the micro-Doppler component caused by
blade rotation.

2.2. Reconstruction Algorithm

The multi-wave gates echo data can be obtained from the echo reflected by the transmitted signal
after encountering the target during each resolution of the radar antenna in the continuous observation
of the aircraft target by the radar. The definition of multi-wave gates echo data is shown in Figure 3.
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As we can see from Figure 3, it is a radar display that denotes the position relationship between
the radar and the aircraft target from the perspective of top view. Let us assume that the aircraft target
flies in a positive direction along the x-axis with a velocity of v, and the blue two-way arrow line in the
Figure is the signal transmission route. In the rotation of radar antenna, when the aircraft target is seen
for the first time, the aircraft target is located at position A, when the antenna comes to the aircraft
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target after a rotation cycle, the aircraft target is located at position B, the next position is C, and so on.
While the radar irradiates the aircraft target, it will receive the echo data in the area, marked by red,
green and purple square boxes in this Figure, where the aircraft target is located, and we count it as a
wave gate echo. After multiple irradiations, we can obtain multi-wave gates echo data.

It is difficult for conventional narrow-band radar to obtain continuous observation of the same
target for a long time, and it may lead to the loss of target echo pulse in one observation time which can
be called sparse echo data. The description of complete and sparse echo data are shown in Figure 4.
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As we can see from Figure 4a, there are M received echo pulses in one observation time which are
called the single-wave gate echo data, among which the pulses marked in red randomly indicate the
echo data that may be lost when the radar receives the echo. From Figure 4b, it can be seen that the
number of pulses of sparse echo data is less than that of complete echo data in one observation time,
we can also say that less echo information is available in sparse echo data, which is not conductive to
aircraft target classification. Therefore, it is feasible and necessary to reconstruct sparse echo data by
appropriate sparse signal recovery methods.

Since the emergence and development of compressed sensing (CS) [49,50] technology, sparse
signal recovery algorithms have mainly been divided into greedy algorithms, non-convex function
minimization algorithms, and Bayesian algorithms. The most typical and widely used greedy algorithm
is orthogonal matching pursuit (OMP), which finds the best matching dictionary unit by solving the
maximum inner product of the residual and the dictionary matrix, then obtains the approximate value
of the sparse vector by using the least square method, and finally obtains the reconstruction signal
by alternately updating the support set and solving the sparse vector. The smoothed l0 norm (SL0)
algorithm is one of the most famous non-convex function minimization algorithms, which transforms
the l0 norm minimization problem into an optimization problem by introducing a smooth Gaussian
function to approach the l0 norm. The reason for doing this is that we can avoid the non-deterministic
polynomial (NP) time hard problem caused by the direct solution of l0 norm minimization. Therefore,
we use the SL0 and OMP algorithms to reconstruct the sparse echo signal, respectively in this paper.

Assuming that the number of pulses of sparse echo data is M′, and the typical model of CS can be
expressed as:

Y = ΦX, (8)
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where Y is an M′ × 1 measurement vector. Actually, Y is the superposition of sparse echo data of
scattering point and fuselage, which can be expressed as:

Y = sP(tm) + sF(tm) m = 1, 2, · · · , M′, (9)

Φ is an M′ ×N dictionary matrix, and X is an N × 1 sparse vector to be determined. According to
CS theory, the sparse solution X can be obtained by:

X̂ = argmin
X
‖X‖0 s.t. ‖Y−Φ ·X‖22 ≤ ε, (10)

where ‖ · ‖0 and ‖ · ‖2 donate L0 and L2 norms respectively, ε is the error threshold in the sparse recovery
processing. The solution for (10) can be obtained by the SL0 and OMP algorithms through iteration.
The main steps of the two algorithms are summarized in Tables 2 and 3.

Table 2. Main steps of orthogonal matching pursuit (OMP) reconstruction algorithm.

Input: estimated signal Y ∈ CM′ , dictionary matrix Φ ∈ CM′×N , error threshold ε0.
Initialization: let the iterative counter k = 1, residual matrix γ0 = Y, the index set Λ0 = ∅.
Iteration: at the k-th iteration
(1) Update the index set Λk = Λk−1 ∪ λk, where λk = argmax

i=1,2,··· ,N

∣∣∣〈γk−1,ϕi
〉∣∣∣, ϕi is the i-th column of Φ.

(2) Update the support set ΦΛk =
[
ΦΛk−1 ,ϕλk

]
, and calculate the signal

X̂k = argmax‖Y−ΦΛk Xk‖2 = (ΦΛk
HΦΛk )

−1
ΦΛk

HY.
(3) Update the residual matrix γk = Y−ΦΛk X̂k.
(4) Increment k, and return to Step (1) until the stopping criterion ‖γk‖2 ≤ ε0 is met. The selection of the error
threshold ε0 is related to the precision requirement.
Output: Reconstructed signal X̂ = X̂k.

Table 3. Main steps of smoothed l0 norm (SL0) reconstruction algorithm.

Input: estimated signal Y ∈ CM′ , dictionary matrix Φ ∈ CM′×N , the search step length α.
Initialization: Choose an appropriate standard deviation parameter decrement sequence [σ1, σ2, · · · , σI], the
outer loop number is I, the inner loop number is J. The initial solution is the minimum L2 norm of Y = ΦX,

that is X0 = (ΦHΦ)
−1

ΦHY.
Iteration:
(1) The i-th outer iteration, i = 1, 2, · · · , I, at this time σ = σi, X = Xi−1.
(2) The j-th inner iteration, j = 1, 2, · · · , J

1. Update the signal with X = X + αd, where d =
[
−x1 exp (−x1

2/2σ2), · · · ,−xn exp (−xn
2/2σ2)

]
.

2. Project X onto the feasible domain, that is X← X−ΦH(ΦΦH)
−1
(ΦX−Y) .

(3) Update the reconstructed signal X̂i = X.
Output: Reconstructed signal X̂ = X̂I.

SL0 and OMP algorithms are used to reconstruct the sparse frequency domain echoes of three
types of aircraft targets. In order to simulate the sparse echo data in real radar equipment, we randomly
cut half of the pulses in the complete echo data as sparse echo data in this paper, that is the pulse
number of sparse echo data equals M′ = M/2. The reconstructed results of SL0 and OMP algorithms
are shown in Figures 5 and 6, respectively, where the dictionary matrix is the Fourier transform matrix
because the time domain echoes are reconstructed to obtain the frequency domain echoes in this paper
and the error threshold is set as ε0 = 0.05‖Y‖22, that is the iteration process is stopped when the residual
energy is equal to or smaller than 5% of the received signal energy. Comparing the complete frequency
domain echoes in Figure 2, we can see that SL0 and OMP algorithms can realize the reconstruction of
sparse echo data. Compared with the reconstructed results of SL0 and OMP algorithms in Figures 5
and 6, it can be seen that the reconstructed result of SL0 algorithm is better than the OMP algorithm in
the similarity to the complete frequency domain echo of Figure 2. The echo data reconstructed by these
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two algorithms are used to extract features, and the simulation experiment of classification probability
will be given in Section 4.
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3. Classification Algorithm Based on the Weighted Features Fusion of Multi-Wave Gates

By analyzing the characteristics of the helicopter, propeller aircraft and jet aircraft in time and
frequency domains, we can classify three kinds of aircraft targets through the micro-Doppler effect
caused by rotating parts due to the difference in structure and rotating speed.

3.1. Features Extraction

According to the difference of echoes in time domain and frequency domain, this paper classifies
three types of aircraft targets by extracting amplitude deviation coefficient, time domain waveform
entropy and frequency domain waveform entropy. Three feature extraction methods are described
as follows:

1. Amplitude deviation coefficient

The amplitude deviation coefficient gy of the discrete echo signal Y =
{
yi
}
, i = 1, 2, · · · , M′ reflects

the proportional relationship between the rotating parts of an airplane target and its fuselage, which
can be defined as:

gy = σy/
¯
Y, (11)

where gy denotes the amplitude deviation coefficient, σy =
M′∑
i=1

(yi −
¯
Y)

2
/(M′ − 1) is the variance of

echo amplitude,
¯
Y =

M′∑
i=1

yi/M′ is the mean of echo amplitude, M′ is the length of the echo signal.

Generally speaking, the higher the complexity of the target structure, such as the helicopter and
propeller aircraft, the larger the proportion of the micro-Doppler modulation component of the rotating
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parts to the radar echo, the greater the overall fluctuation of the echo amplitude and the larger the
amplitude deviation coefficient of the echo.

2. Waveform entropy

Waveform entropy is usually used to describe the waveform characteristics of radar echo signals.
From the analysis of Section 2, it can be seen that there are differences in the blade’s number, length and
rotating speed of the rotating parts in helicopter, propeller aircraft and jet aircraft, so the micro-Doppler
effect of the rotating parts is different in the echo waveform. Therefore, we can distinguish the
difference of waveform between different targets by extracting waveform entropy in time domain and
frequency domain.

Time domain waveform entropy Et and frequency domain waveform entropy E f of echo signal
are defined as follows:

Et = −
M′∑
i=1

pi log10 (pi), (12)

E f = −
M′∑
i=1

qi log10 (qi) (13)

where pi = yi/
M′∑
j=1

y j and qi = fi/
M′∑
j=1

f j are normalized signals in time domain and frequency domain

respectively, F =
{
fi
}
, i = 1, 2, · · ·M′ is the result of fast Fourier transform (FFT) of echo signal Y.

In this paper, three kinds of aircraft target echo models are established, and the time domain and
frequency domain echoes of targets are simulated according to the parameters of the rotor in Table 1.
Then, the amplitude deviation coefficient, time domain waveform entropy and frequency domain
waveform entropy are extracted. We simulate 200 sparse echo signal samples of three types of aircraft
targets respectively from different radar perspectives where one sparse echo signal sample corresponds
to one observation angle which denotes the relationship between the aircraft target’s flying direction
and the radar’s line of sight, and it changes uniformly from 0

◦

to 360
◦

at an interval of 1.8
◦

. Therefore,
the angle varies from different samples, and the dataset includes 600 samples in all. The results of
features extracted from 600 sparse echo signal samples are shown in Figure 7, where the signal to noise
ratio (SNR) of target echo before pulse compression is −13dB, which is defined as SNR = ‖Y‖22/(M′σ2),
where σ2 is the variance of noise.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 18 
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As can be seen from the above figure, in the case of SNR it is−13 dB, because of the difference among
the rotating parts of three types of aircraft targets, the amplitude deviation coefficient, time-domain
waveform entropy and frequency-domain waveform entropy are different among targets. Taking
the amplitude deviation coefficient as an example, it can be seen from Figure 7a that the amplitude
deviation coefficients extracted from the echoes of three kinds of targets have cross-values, which will
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inevitably lead to erroneous judgment in the process of target classification and reduce the classification
probability. The reason may be the low SNR or the change of the angle of view between the aircraft and
the radar, which results in small fluctuation of the extracted features. However, we can also see from
the graph that the mean values of each feature differ greatly among the three kinds of aircraft targets
and are more stable than those extracted from each sparse echo signal sample. Therefore, we need to
adopt appropriate methods to make the features extracted from each sparse echo signal sample close
to the mean value, so as to eliminate the impact of the target echo fluctuation model and improve the
classification probability of the aircraft targets.

3.2. Weighted Features Fusion

On the basis of the above simulation analysis, we propose a target classification algorithm based
on the weighted features fusion of multi-wave gates sparse echo data. This algorithm uses multi-wave
gates echo data to extract features, which are fused by weighting to improve the correct classification
probability. The fused features can be expressed as:

F̃ =
K∑

i=1

αiFi, (14)

where F̃ is the fused feature, Fi is the feature extracted from the echo data of the i-th wave gate, K is the
number of gates for feature fusion, αi is the weight of the i-th wave gate feature.

In this paper, we consider that the features extracted from different gates have the same contribution
to aircraft target type classification. Therefore, we adopt the same weighting value for feature fusion,
that is to say, the weights αi = 1/K. In Section 3.1, we simulate 200 single-wave sparse echo signal
samples of one aircraft target where one sparse signal sample corresponds to one radar observation
angle. While in the simulation experiment of weighted features fusion, we collect four-wave gates
sparse echo data at each radar observation angle which is set the same as that in Section 3.1 during the
observation of the aircraft target. That is to say, in each observation angle, we reconstruct four-wave
gates sparse echo signal samples, then extract the features from each reconstructed sample and fuse
them as a fusion feature. Therefore, each type of feature consists of 200 fusion features for each aircraft
target. Figure 8 shows the result of the fusion features extracted and fused from four wave gates
echo data. Compared with Figure 7, the cross-value of extracted features between different targets is
significantly reduced under the same SNR, we can also say that the fused features are more clustered
near the mean of all samples.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 18 
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We know that variance is a measure of the degree of dispersion of a set of data. In this paper, we
calculate the variance of the fused features extracted from four wave gates sparse echo data with SNR
is −13 dB, which is shown in Table 4. For comparison, we also compute the variance of the features
that are not fused. We can see from Table 4 that the variance of the fused features is less than that of the
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features without fusion, no matter which kind of feature. In other words, fusion of extracted features is
more conducive to distinguishing the three types of aircraft targets mentioned in this paper.

Table 4. Comparison of variance of extracted features whether to fuse or not.

Target Type
Amplitude Deviation
Coefficient (×10−4)

Frequency Domain
Waveform Entropy

Time Domain Waveform
Entropy (×10−3)

No Fusion Fusion No Fusion Fusion No Fusion Fusion

Helicopter 8.60 2.19 0.45 0.13 8.50 1.60

Propeller 11.00 2.70 0.98 0.31 18.60 4.80

Jet 0.21 0.14 0.27 0.09 0.31 0.27

3.3. Classification Algorithm

In this paper, support vector machine (SVM) method is used to classify the extracted fusion
features of three types of aircraft targets. SVM was first proposed by Vapink for the classification of
two types of liner separable data [51]. By finding the optimal hyperplane which makes the boundary
distance between the two classes the maximum, the sample data was divided into two types. Later,
it was extended to linear separable data. To solve the problem of three types of aircraft targets
classification in this paper, we use the one-vs-one method to construct an SVM classifier between any
two types, and construct three classifiers in total, and then obtain the final classification result by voting
scheme. Three types of aircraft targets classification method based on SVM that we adopted in this
paper are shown in Figure 9.
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In Figure 9, the flow of red dotted box marked is the training process, in which the training dataset
labeled in advance are divided into three parts belonging to different aircraft targets, and the two parts
of them are combined to train three SVM models, respectively. The flow of purple dotted box marked
is the testing process, in which the testing dataset which are completely different from the training
dataset are sent to three trained SVM models, and then vote on the results of the SVM model to get the
final classification results.

To sum up, with the sparse echo data, the classification algorithm of aircraft targets based on
the weighted features fusion of multiple wave gates is summarized in Figure 10. In the proposed
algorithm, the multi-wave gates sparse echo data are obtained as described in Figure 3: K is the number



Remote Sens. 2019, 11, 2700 12 of 18

of wave gates in weighted feature fusion, and the SL0 and OMP methods are used to reconstruct
sparse echoes and by which three types of features are extracted: amplitude deviation coefficient, time
domain waveform entropy and frequency domain waveform entropy. In addition, in order to improve
the classification probability of three types of aircraft targets, a classification algorithm based on the
weighted features fusion of multiple wave gates is proposed. Finally, the fused features are used to
classify three aircraft targets by three class support vector machine model.
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4. Experimental Results

4.1. Dataset Details

In experiments, the parameters of radar, transmitting signal and aircraft targets are the same as
those in Section 2.1. In this paper, several groups of comparative experiments are constructed where
the noise is all considered for classification probability. In the classification experiment of complete
echo data, we simulate 200 single-wave gate complete echo signal samples for each aircraft target as
the dataset where one complete signal sample corresponds to one radar observation angle. While the
sparse echo data of multi-wave gates continuously are simulated in one angle in the classification
experiment of sparse echo data, in other words, the dataset contains 200 multi-wave gates sparse echo
signal samples for each aircraft target. What we want to emphasize is that the testing dataset are
completely different from the training dataset with different aircraft target distance and view angle,
and the aircraft target correct classification probability can be obtained by comparing the classification
result of the SVM model with the real label of the aircraft target, which is equal to the number of
correctly classified samples divided by the total number of samples.

4.2. Validity Experiment of Reconstruction Algorithm

With the aim of verifying the validity of SL0 and OMP reconstruction algorithm for the classification
of aircraft targets, we conduct an experiment. In this experiment, in order to better simulate the
actual work of radar target classification and recognition, the training dataset of 600 single-wave gate
complete echo data samples are extracted features which are used to train the SVM model. Several
comparative testing experiments are conducted with different testing dataset, two of which take the
reconstructed echo data obtained by SL0 and OMP algorithms as the testing dataset, and the results
are shown as the blue curve and the black curve, respectively, in Figure 11. As a comparison, we take
another complete echo data samples as the testing dataset, and the result of average classification
probability is shown as the red curve. In addition, we take the sparse echo data samples as the testing
dataset to verify that the sparse echo data worsen aircraft targets classification due to the loss of several
echo information elements.
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From Figure 11, we can see that the classification probability of sparse echo data is the lowest,
which distributes around 33%, and does not vary with the change of SNR. This shows that the sparse
echo data loses the components reflecting the micro-Doppler effect of the rotating parts. We can
also say that the helicopter, propeller aircraft and jet aircraft cannot be distinguished correctly by
extracting the three kinds of features through the sparse echo data. The correct classification probability
of the complete echo data is the highest, and with the increase of SNR, the correct classification
probability increases gradually and stabilizes at 99.33%. Although the correct classification probability
of reconstructed echo data obtained by the SL0 and OMP algorithms is lower than that of complete echo
data, it is obviously higher than that of sparse echo data, which verifies the validity of the two kinds
of reconstruction algorithms for reconstructing echo data. When the SNR is lower than −12 dB, the
classification probability of the reconstructed echo data between the two algorithms is similar. When
SNR is higher than −12 dB, the classification effect of the SL0 reconstruction algorithm is better than
that of OMP reconstruction algorithm, which is consistent with the reconstructed results of frequency
domain echoes of two kinds of algorithms in Section 2.2.

4.3. Selection of Wave Gate Number in Weighted Features Fusion

Although SL0 and OMP reconstruction algorithms can accurately reconstruct the sparse echo
data, the correct classification probability of the extracted features still lags behind that of the complete
echo data. However, as we analyzed in Section 3.2, after using the weighted features fusion method for
the features extracted from the multi-wave gates reconstructed echo data, the fused features are more
clustered near the mean of all samples. Therefore, a classification algorithm based on the weighted
features fusion of multi-wave gates reconstructed echo data is proposed in this paper in order to
improve the classification probability. In this experiment, we compare the influence of the wave gate
number on the probability of target classification in order to get the best wave gate number in weighted
features fusion. The training and testing dataset of features are all extracted from the reconstructed
multi-wave gates echo data. The experimental results are shown in Figure 12.
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We can summarize from the above figure that the classification probability among the wave gate
number from one to six in weighted features fusion increases with the raise of SNR. When only one
wave gate reconstructed echo datum is used to extract features which is selected for classification, the
probability is lower than that of multi-wave gates. When the SNR is low, the probability of choosing
two fused wave gates features to classify aircraft targets is lower than that of choosing three to six
wave gates fused features, but with increasing of the SNR, the probability of choosing two fused wave
gates features is similar to that of using more. The experimental results also show that the classification
probability curves of choosing three to six wave gates for weighted features fusion has the same change
rule and is similar with each other under the same SNR. On the one hand, the experimental result
shows that the classification effect of using multi-wave gates reconstructed echo data to classify three
types of aircraft targets is better than that of using only one gate reconstructed echo datum. On the
other hand, by fusing the features extracted from multi-wave gates reconstructed echo data, the fused
features can be close to the mean value, and the number of cross-values of features extracted from
different aircraft targets is reduced. However, if too many wave gates in weighted features fusion
are selected, during this period, there are some differences between the extracted features due to the
change of the aircraft’s motion direction and flight attitude, and the probability of target classification
does not increase with the increase of the number of wave gates. In summary, when the wave gate
number in weighted features fusion is four, the classification probability of aircraft targets is the best.

4.4. Classification Experiment Based on Weighted Features Fusion with Four Wave Gates Sparse Echo Data

In this section, based on the target classification algorithm of multi-wave gates in weighted
features fusion proposed in this paper, we conduct two comparative simulation experiments. One
is that we train the SVM model with the dataset composed of single wave gate complete echo data,
classify aircraft targets with the dataset consisting of four wave gates complete echo data and the
dataset consisting of four wave gates reconstructed echo data respectively. The simulation results are
shown in Figure 13. Another comparative simulation experiment is that we train the SVM model with
the dataset composed of four wave gates complete echo data, while the testing datasets consist of
four wave gates complete echo data and of four wave gates reconstructed echo data, respectively. The
experimental results are shown in Figure 14.
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Compared with the experimental result of single wave gate echo data as the testing dataset in
Figure 11, we can conclude from the results of four wave gates echo data that the best way to classify
targets, as testing dataset in Figure 13 that the classification probability of the complete echo data is
obviously improved. The classification probability of features extracted from reconstructed echo data
by SL0 and OMP algorithms after weighted features fusion is also higher than that of features without
weighted features fusion. Therefore, we come to the conclusion that the echo data of multi-wave gates
to classify the aircraft targets can improve the correct classification probability.

Comparing the experimental results in Figures 13 and 14, the classification probability of using
four wave gates complete echo data for both training and testing is better than that of the single wave
gate complete echo data for training and four wave gates complete echo data for testing, and the
reason for this is that the SVM model can learn more target echo information by using four wave gates
echo data. Moreover, the classification probability of the two kinds of reconstruction algorithms can
reach 99.83% in Figure 14, which verifies the validity of both kinds of reconstruction algorithm and the
effectiveness of the classification algorithm based on weighted features fusion of multi-wave gates
reconstructed echo data. Therefore, it can be summed up that in the process of radar classification
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of three types of aircraft target, we can use four wave gates echo data as far as possible in weighted
features fusion for training the SVM model, in which the parameters of the SVM model trained in this
way are optimal. Also the classification probability of the target is highest when testing with four wave
gates echo data.

5. Conclusions

In this paper, an aircraft target classification algorithm is proposed based on weighted features
fusion of multi-wave gates sparse echo data. Not only are the SL0 and OMP algorithms utilized to
reconstruct the sparse echo data to solve the problem of low classification probability in this case,
but also the amplitude deviation coefficient, time domain waveform entropy and frequency domain
waveform entropy are extracted to classify aircraft targets according to the analysis of the micro-Doppler
effect of echo data. The proposed algorithm works on the multi-wave gates echo data in weighted
features fusion, rather than single wave gate echo data, which is helpful for reducing the number
of cross-value features of different targets. Experimental results show that the proposed algorithm
can improve the classification probability of reconstructed echo data obtained by the SL0 and OMP
methods, and four wave gates echo data in weighted features fusion used to extract and fuse features
and to both train and test the SVM model is the optimal wave gate number for target classification.

Although our method is effective in aircraft target-type classification, it can still be improved
further. In the future, we not only study the aircraft target classification algorithm within unmanned
aerial vehicle (UAV) types, but also verify the effectiveness of the algorithm in the actual radar
equipment by conducting an experiment with measured data.
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