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Abstract: Multispectral imaging (MI) provides important information for burned-area mapping.
Due to the severe conditions of burned areas and the limitations of sensors, the resolution of collected
multispectral images is sometimes very rough, hindering the accurate determination of burned areas.
Super-resolution mapping (SRM) has been proposed for mapping burned areas in rough images
to solve this problem, allowing super-resolution burned-area mapping (SRBAM). However, the
existing SRBAM methods do not use sufficiently accurate space information and detailed temperature
information. To improve the mapping accuracy of burned areas, an improved SRBAM method
utilizing space–temperature information (STI) is proposed here. STI contains two elements, a space
element and a temperature element. We utilized the random-walker algorithm (RWA) to characterize
the space element, which encompassed accurate object space information, while the temperature
element with rich temperature information was derived by calculating the normalized burn ratio
(NBR). The two elements were then merged to produce an objective function with space–temperature
information. The particle swarm optimization algorithm (PSOA) was employed to handle the objective
function and derive the burned-area mapping results. The dataset of the Landsat-8 Operational
Land Imager (OLI) from Denali National Park, Alaska, was used for testing and showed that the STI
method is superior to the traditional SRBAM method.

Keywords: multispectral imaging; super-resolution burned-area mapping; space–temperature
information; random-walker algorithm; normalized burn ratio

1. Introduction

A challenging problem of the earth’s ecosystem is wildland fires, which affect the balance of
greenhouse gases, plant distribution, and inhabitant safety. The distribution of burned areas is
fundamental for the study of wildland fires [1], which can be achieved using multispectral imaging
(MI). However, due to the severe conditions of burned areas and the limitations of sensors, the resolution
of collected multispectral images is sometimes very rough, presenting many mixed pixels, which
hinders the accurate determination of burned areas [2]. Since there is more than one land-cover class in
one mixed pixel, traditional classification technology that assigns one land-cover class to one pixel often
cannot effectively deal with mixed pixels. Therefore, burned-area mapping using the classification
results of coarse images is usually not ideal [3]. To address this issue, the super-resolution mapping
(SRM) technology has been proposed to handle mixed pixels and obtain burned-area mapping, resulting
in the method named super-resolution burned-area mapping (SRBAM).
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In SRM, we segment a mixed pixel into S× S subpixels according to scale S, and each subpixel
is then given a class label to produce the final mapping result. In other words, we can handle the
fractional images that are obtained by spectral unmixing through MI and derive a high-resolution
classification map at the subpixel scale. Atkinson first suggested that SRM is usually based on the
spatial dependence theory. On the basis of this theory, the most likely SRM map is assumed to be the
one with the greatest spatial correlation [4]. There are two types of SRM, initialized-then-optimized
SRM and soft-then-hard SRM [5]. In the initialized-then-optimized type, land-cover class labels
are assigned randomly to subpixels, and the SRM result is proofread by gradually changing the
space position of the subpixels. The pixel-swapping algorithm (PSA) proposed by Atkinson [6]
is typically used for this type of SRM. In PSA, two subpixel classes that need swapping within
coarse pixels are first exchanged, then the SRM results are approached iteratively. Other approaches
such as perimeter of minimizing [7], values of neighboring [8], and Moran’s I [9] are also used
for this type of SRM. To achieve better results, artificial intelligence methods such as the genetic
method [10], simulated annealing [11], and particle swarm optimization [12] have been used to
optimize this type of SRM. The other SRM type is soft-then-hard SRM [13]. In the soft-then-hard
type, high-resolution fractional images with the proportions of all subpixels belonging to different
classes are derived through rough fractional images, using subpixel sharpening. On the basis of the
relevant proportions, each subpixel is then assigned a class label by using a class allocation method.
In subpixel-sharpening methods, various types of space attraction models have been proposed to
quantify spatial dependence [14,15]. Hopefield neural network [16,17] is applied to obtain the output
of neurons, representing subpixels, based on the energy minimization principle. Subpixel-sharpening
methods also include backpropagation neural network [18,19], indicator–co-kriging [20,21], and some
super-resolution reconstruction algorithms [22,23]. In addition, the class allocation method selected
has an impact on the final SRM results. The common class allocation methods include class units [24],
assigning highest soft attribute values first [25], linear optimization [26], and object units [27]. Because
SRM is an ill-posed inverse problem that aims to reconstruct detailed information at the subpixel scale
from coarser pixels, some auxiliary data, such as subpixel shifting images [28,29], light detection and
ranging [30], par-sharpening images [31,32], and fine-scale information [33] are utilized to improve
the results. For example, using subpixel shifting images as the additional information is an effective
way to improve mapping accuracy. The basic idea is to combine subpixel shifting images in the same
scene to produce a resolution-enhanced image. These SRM methods have been applied in many areas,
including flood inundation mapping [34], water boundary extraction [35], change detection [36], urban
development [37]. From the above introduction, we can get the following conclusions. First, with
artificial intelligence technology, initialized-then-optimized SRM can achieve ideal results. However,
this type of SRM usually requires complex physical structures and long computational time, which
hinders its wide application. Second, soft-then-hard SRM usually contains only two steps and can be
performed in a simple way. Therefore, this type is more commonly used. Finally, when appropriate
auxiliary data are available, we can use these data to improve the final SRM results.

An accurate distribution of burned areas in rough multispectral images can be obtained by the
SRM technique SRBAM [3]. However, there are some problems with the existing SRBAM; first, it is
based on subpixel space information, and object space information has been proved to be more effective
and accurate [38,39]. Therefore, the space information used in the existing SRBAM is not accurate
enough. In addition, temperature information is also not fully taken into account in the existing
SRBAM [3,16]. Burned areas have higher temperatures than their surroundings. This important
temperature information should be utilized to improve the final mapping’s accuracy. To solve these
issues, we propose a novel SRBAM method based on space–temperature information, that we name
STI. STI includes a space element and a temperature element. In the space element, we utilize the
random-walker algorithm (RWA) [40] to obtain the object space information to replace the subpixel
space information. The temperature element is calculated using the normalized burn ratio (NBR) [41].
We can obtain an objective function with space–temperature information by combining the space



Remote Sens. 2019, 11, 2695 3 of 18

information with the temperature information. According to this objective function, the particle swarm
optimization algorithm (PSOA) is employed to obtain the final burned-area mapping.

The innovations of STI are twofold: (1) We utilize RWA to characterize the space element with
object space information. Since this takes into account the space information among and within objects,
it is more comprehensive and accurate than the subpixel space information [3]. (2) The temperature
information is utilized in the proposed STI by calculating the NBR. The experiments here reported
using the Landsat-8 Operational Land Imager (OLI) dataset show the superiority of STI over other
state-of-the-art methods.

2. Dataset

Lightning ignited the Castle Rocks fire in the deep backcountry of Denali National Park, Alaska,
in July 2013. More than 12,900 acres were burned in two months. The fire caused great losses to the
local ecosystem and economy. It is very important to obtain a fine space distribution of burned areas
for firefighting and disaster relief. The experimental dataset used was an image of this area obtained
by Landsat-8 OLI on 26 August 2013, which can be downloaded from the US Geological Survey
(USGS) website: http://earthexplorer.usgs.gov/. The image has a size of 2968 × 2052 pixels, 30 m space
resolution, and is centered at 64◦31′N, 152◦52′W. As shown in Figure 1a, the five visible main burned
areas are marked in red due to the false color of the image. For quantitative evaluation, we needed a
reference image derived from Figure 1a by a classification algorithm based on a least-squares support
vector [42]. There are two class labels (burned area and background) in the reference image shown
in Figure 1b. To highlight the burned area, the label is marked in red, and the background label is
marked in black.
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Figure 1. (a) False color image (short-wave infrared two bands, near-infrared band, and blue band for
red, green, and blue, respectively). (b) Reference image.

3. Methodology

3.1. Space Element

Here, we introduce the space element Tspa with the object space information to obtain more
accurate space information. Figure 2 shows the process of production of the space element. The rough
multispectral image was upsampled by bicubic interpolation. A fractional image with burned-area
classes of subpixel proportions was obtained by unmixing the upsampled image.

http://earthexplorer.usgs.gov/
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The first principal component (PC) was then extracted from the upsampled image through
principal component analysis (PCA). Because there was a lot of space information contained in this
first PC, we segmented it to obtain objects using a multiresolution segmentation method [43]. Q is
defined as the segmentation scale parameter, which determines the object size and the condition of
merger termination. The segmentation method is given by

H = λ×Hspectral + (1− λ) ×Hshape (1)

where H represents regional differences, and λ is a free parameter to balance the shape difference
Hshape and the spectral difference Hspectral.

The shape difference Hshape is calculated by

Hshape = λshape
×A/

√

N +
(
1− λshape

)
×A/R (2)

where A is the actual frontier length of the object region, R is the rectangular frontier length of the
object region, N is the subpixel number in the object region, A/

√
N and A/R represent the smoothness

and compactness of the object region, respectively, and λshape is a free parameter.
The spectral difference Hspectral is defined by

Hspectral =
B∑

b=1

λ
spectral
b ×Db (3)

where b represents a spectral band (b = 1, 2, . . . , B; with B being the total band number), Db is the bth

band spectral value standard deviation in the object region, and λspectral
b is the free parameter here.

Among adjacent object regions, we merged two objects with the minimum difference. When H
was larger than Q, we terminated the merging process and extracted the final objects.

Third, the space element Tspa with the object space information was derived by RWA. M objects
Om (m = 1, 2, ..., M) were derived by segmenting the upsampled image, where object Om comprised
Nm subpixels. The burned-area class proportion L(pi) of subpixel pi (i = 1, 2, ..., Nm) was obtained from
the spectral unmixing of the upsampled image, and we averaged the burned area class proportions of
subpixels to generate the burned area class proportion G(Om) of object Om.
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G(Om) =

Nm∑
i=1

L(pi)/Nm (4)

The space part T(i)spa corresponding to the ith subpixel was then obtained by RWA, according to
Equation (5):

T(i)spa = βTamong(G) + (1− β)Twithin(G) (5)

where Tamong(G) is the space information among objects, Twithin(G) represents the space information
within each object, G = [G(O1), G(O2), . . . , G(Om)] is a column vector, and β is set to 0.5.

Tamong(G) is given by
Tamong(G) = GTLG (6)

where L is the Laplacian matrix:

L =


∑
−vmb if m = b

−vmb if m and b are adjacent objects
0 otherwise

(7)

where vmb = exp(−ε(v̂m − v̂b)
2). The free parameter ε was set to 0.6, and v̂m was the mth object Om

spectral value.

v̂m =

Nm∑
i=1

vi/Nm (8)

where vi is the spectral value of the ith subpixel in object Om. Twithin(G) is defined as

Twithin(G) = (1 −G)TΛ(1 −G) + (G − 1)TΛ(G − 1) (9)

where the diagonal values in the diagonal matrix Λ are the background class proportions, and the
diagonal values in the diagonal matrix Λ represent the burned area class proportion.

We minimized the space element Tspa for all land-cover classes. The minimized formula is

x(pi) =

{
1, if subpixel pi belongs to burnt-area class
0, otherwise

(10)

Tspa= Min
Nm∑
i=1

x(pi) × T(i)spa (11)

3.2. Temperature Element

A new temperature part Ttem is here proposed to fully utilize the temperature information. Ttem

aims to minimize the difference in spectrum between the observed NBR value (NBRobe) and the
simulated NBR value (NBRsim). The near-infrared (NIR) band and short-wave infrared band 1 (SWIR1)
were used to calculate NBRobe here [41]:

NBRobe =
K∑
1

ρobe
NIR
− ρobe

SWIR1

ρobe
NIR

+ ρobe
SWIR1

(12)

where the observed reflectance of both NIR band ρobe
NIR

and SWIR1 band ρobe
SWIR1

are obtained directly
from the original MI, and K is the number of mixed pixels.

Suppose rbur
NIR

and rbur
SWIR1

are the reflectance of the burned area in the NIR and SWIR1 bands, and rnon
NIR

and rnon
SWIR1

are the corresponding reflectance of the background. For each mixed pixel in these bands,
the ratio of burned area subpixel number to total subpixel number is the proportion of burned area
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abur
NIR

or abur
SWIR1

. The proportions of background in the 2 bands are then 1−abur
NIR

and 1−abur
SWIR1

, respectively.
We built a linear mixture including all subpixel spectra to consider the reflectance of each mixed
pixel. Then, each mixed pixel-simulated reflectance in the NIR band ρsim

NIR
and SWIR1 band ρsim

SWIR1
were

calculated using Equations (13) and (14), respectively:

ρsim
NIR

=
(
rbur

NIR
× abur

NIR

)
+

[
rnon

NIR
×

(
1− abur

NIR

)]
(13)

ρsim
SWIR1

=
(
rbur

SWIR1
× abur

SWIR1

)
+

[
rnon

SWIR1
×

(
1− abur

SWIR1

)]
(14)

NBRsim is given by:

NBRsim =
K∑
1

ρsim
NIR
− ρsim

SWIR1

ρsim
NIR

+ ρsim
SWIR1

(15)

The temperature part Ttem was then obtained by minimizing the difference between NBRobe and
NBRsim:

Ttem= Min
(
NBRobe

−NBRsim
)2

(16)

3.3. Implementation of STI

To improve the burned area mapping result, STI is proposed as shown in Figure 3. It includes the
following 3 steps:

Step 1. Bicubic interpolation, segmentation, and RWA were utilized to obtain the space element
Tspa with more accurate space information. At the same time, the temperature element Ttem, which
contains rich temperature information, was obtained by calculating the NBR.

Step 2. We merged the space element Tspa and the temperature element Ttem through a trade-off

parameter θ to produce the objective function T with space–temperature information. The aim of the
proposed STI is to minimize T. In STI, we consider a weighted sum of the space and temperature
elements of STI, because this information-fusion method has a simple physical meaning and is easy to
implement. Of course, we can also use other more effective information-fusion techniques, such as
multiobjective optimization [44], alpha integration [45], and so on.

Min T = (1− θ)Tspa + θTtem (17)

Step 3. To optimize the objective function, PSOA was employed. First, we randomly assigned a
burned area or background label to all subpixels. Second, the labels of these subpixels were iteratively
changed until the minimum value of T was derived. During each iteration, the burned-area label was
changed to the background label and vice versa. If T increased, the change was rejected, otherwise it
was accepted. When less than 0.1% of labels were changed, the PSOA was terminated.
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4. Experiments and Results

4.1. Experimental Settings

Fine images of five visible main burned areas from the experimental dataset are shown in Figure 4.
The test sizes of the five burned areas were 720 × 720 pixels, 300 × 300 pixels, 720 × 720 pixels,
400 × 400 pixels, and 500 × 500 pixels. A flowchart of the experimental process is shown in Figure 5.
We used the most commonly used experimental process of SRM to conduct the experiments. The five
visible main burned areas were downsampled via an S× S mean filter to produce a rough multispectral
image. Here, scale S was set to 8, namely 8× 8 pixels in the original fine image were merged into one
mixed pixel in the simulated rough image. In this case, we could directly evaluate the impact of the
error of image registration on SRM. In addition, a quantitative evaluation could be carried out more
reasonably in this way; a reference image could be derived from the classification result of the fine
image, which was compared with the SRM result from the simulated rough image. Rough images of
the five burned areas are shown in Figure 6. Although the false color rough image could highlight
the burned area, it was difficult to obtain more accurate distribution and boundary information of
the burned area due to the rough resolution. For example, because of the presence of many mixed
pixels at the edge of the burned area, there is an obvious vertical line at the edge of the burned area in
Figure 6d compared with Figure 4d. In addition, it was difficult for the classification technology to
handle the mixed pixels, because one mixed pixel contained more than one land-cover class. To solve
this problem, SRM was utilized to handle the mixed pixels and produce accurate burned-area mapping.
The least-squares linear mixture model (LSLMM) [46] was applied to the rough images to derive
fractional images as inputs. In the segmentation method, the selected λ, λshape, and λspectral

b were set
to 0.5, 0.4, and 1, respectively, according to multiple tests. The trade-off parameter θ was set to 0.4, 0.5,
0.4, 0.6, and 0.4 in the five test areas, while the segmentation scale parameter Q was set to 15, 10, 15, 20,
and 15. All experiments were performed using MATLAB 2018a.
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Figure 6. Rough image of five burned areas. (a) Area 1, (b) Area 2, (c) Area 3, (d) Area 4, (e) Area 5.

We tested four SRM methods: the hybrid spatial attraction model (HSAM) [15], the object-scale
spatial SRM (OSRM) [39], the SRBAM [3], and the proposed STI. The ratio between the number of
correct mapping subpixels belonging to burned areas derived from each SRM result and the total
number of subpixels belonging to burned areas derived from the reference image was defined as
burned area (%), and the ratio between the number of correct mapping subpixels derived from each
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SRM result belonging to background and the total number of subpixels belonging to background
derived from the reference image was defined as background (%). The four methods were evaluated
on the basis of the determination accuracy of each class (burned area (%) and background (%)), overall
accuracy (OA (%)), and kappa coefficient (Kappa) [5].

4.2. Results Analysis

First, a visual comparison was performed. The burned-area mapping results of the SRM method
in the five test areas are given in Figures 7–11. The detailed area is marked in a rectangular white
frame. When we compared the reference images with the four experimental results, we found that
STI outperformed the other three SRM methods, and the results from STI were more similar to the
reference images. For burned areas with complex distribution, such as Areas 1, 3, 4, and 5, there were
many disconnected patches, and some small areas disappeared in the results of HSAM, OSRM, and
SRBAM. For some areas with simple distribution, such as Area 2, there were many obvious burrs at the
boundaries between burned area in the results of HSAM, OSRM, and SRBAM. There are two reasons
for these phenomena: First, the space information was not accurate enough. HSAM and SRBAM
only consider pixel-level space information, which is less detailed than object-level space information.
Although OSRM utilizes object-level space information, it only calculates space information among
object regions and does not consider space information within object regions. Since the proposed
STI utilizes object-level space information among and within object regions through RWA, the space
information is more accurate in STI than in the other three methods. In addition, STI is better able to
make full use of temperature information than the other methods, so it obtains better burned-area
mapping results.
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Figure 7. Burned-area mapping results in area 1. (a) Reference image. Images obtained by (b) hybrid
spatial attraction model (HSAM), (c) object-scale spatial SRM (OSRM), (d) super-resolution burned-area
mapping (SRBAM), (e) STI.
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Figure 9. Burned-area mapping results in area 3. (a) Reference image. Images obtained by (b) HSAM,
(c) OSRM, (d) SRBAM, (e) STI.
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(c) OSRM, (d) SRBAM, (e) STI.
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Figure 11. Burned-area mapping results in area 5. (a) Reference image. Images obtained by (b) HSAM,
(c) OSRM, (d) SRBAM, (e) STI.

Second, we analyzed the accuracy evaluation index. The performance of the four SRM methods
was evaluated on the basis of burned area (%), background (%), OA (%), and Kappa. Checking the
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evaluating indicators in Table 1, the burned area (%) measured by STI was higher than that measured
by the other three methods. Compared with SRBAM, the burned area (%) of STI increased by 3.29%,
4.73%, 2.85%, 0.63% and 3.55% in the five test areas. With the aid of space–temperature information,
the proposed STI produced the highest OA (%) and Kappa.

Table 1. Evaluating indicators by the four methods. OA: overall accuracy.

Area 1

HSAM OSRM SRBAM STI

Burned area (%) 76.30 77.66 79.84 83.13
Background (%) 93.10 93.50 94.13 95.09

OA (%) 89.31 89.93 90.91 92.39
Kappa 0.6940 0.7116 0.7397 0.7622

Area 2

HSAM OSRM SRBAM STI

Burned area (%) 56.50 59.73 63.66 68.39
Background (%) 95.62 95.94 96.34 96.82

OA (%) 92.04 92.63 93.35 94.21
Kappa 0.5212 0.5567 0.6000 0.6321

Area 3

HSAM OSRM SRBAM STI

Burned area (%) 72.18 73.98 77.02 79.87
Background (%) 95.52 95.81 96.09 96.76

OA (%) 92.28 92.78 93.39 94.42
Kappa 0.6770 0.6979 0.7112 0.7463

Area 4

HSAM OSRM SRBAM STI

Burned area (%) 94.23 95.35 95.41 96.04
background (%) 98.54 98.59 98.60 99.23

OA (%) 98.18 98.26 98.47 99.01
Kappa 0.9448 0.9494 0.9531 0.9596

Area 5

HSAM OSRM SRBAM STI

Burned area (%) 71.60 73.14 76.27 79.82
Background (%) 96.41 96.61 97.01 97.45

OA (%) 93.63 93.98 94.68 95.48
Kappa 0.6801 0.6975 0.7328 0.7627

Third, we tested the performance of SRM by different scales S, which represent the simulated
rough images with different resolution as inputs. The scales S set to different values confirmed that
the STI still had the best performance for inputs with different resolutions. HSAM, OSRM, SRBAM,
and STI were tested using the other two scales (5 and 10) in the five test areas. The burned area (%) of
these methods in relation to S = 5 and S = 10 are shown in Figure 12. We found that, as the value of S
increased, the burned area (%) determined by the four methods decreased. This is because as S became
larger, the input image became rougher, producing a greater challenge to SRM. The experimental
results showed that STI still determined the highest burned area (%) when using different scales S.

Fourth, the influence of the selected parameter θ on the proposed method was studied. Five test
areas (S = 8) were rerun for 10 combinations of θ from 0 to 0.9, at an interval of 0.1. The results are
shown in Figure 13. There was no contribution of the temperature element Ttem when θ = 0. At this
time, only the space element Tspa was working, therefore the value of burned area (%) was low. As θ
increased, the burned area (%) increased. This is because the use of temperature information from
the temperature element Ttem increased as θ increased. When θ = 0.4, θ = 0.5, θ = 0.4, θ = 0.6,
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and θ = 0.4 in the five test areas, the burned area (%) reached its highest value. At this time, the
contributions of the space term Tspa and the temperature term Ttem reached a state of balance. However,
when θ increased, the space term Tspa reduced its contribution to Equation (17). The burned-area
mapping accuracy was affected as a consequence of the decreased space information from the space
term Tspa. The parameter θ in STI required several experiments to be determines, that is, adaptability
is not ideal in STI.
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Figure 13. Burned area (%) derived using the four methods tested for different values of the weight
parameter θ. (a) Area 1, (b) Area 2, (c) Area 3, (d) Area 4, (e) Area 5.
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Fifth, the impact of the segmentation scale parameter Q on the proposed method was studied.
In the proposed STI, the space element Tspa was obtained by calculating the class proportion of objects
through RWA. Therefore, the step of segmentation that produces the object is very important for STI,
and the quality of the objects is determined by the segmentation scale parameter Q in the segmentation
method. Because Q determines the object size and the condition of merger termination, we studied the
optimal selection of Q in this experiment. Ten Q values from 5 to 50 at an interval of 5 were tested in the
five test areas (S = 8). As shown in Figure 14, the selection of Q had an impact on the final mapping
accuracy. When the value of Q was not properly selected, the burned area (%) was low. This is because
an inappropriate Q resulted in low-quality objects, which affected the accuracy of space information in
the space element Tspa. After many experiments, it was noted that the best Q values of the five test
areas were 15, 10, 15, 20, and 15. The segmentation scale parameter Q also required many experiments
to be determined; therefore, this also proves that the adaptability of STI is not ideal.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 20 
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Figure 14. Burned area (%) derived using the four methods tested for different values of the segmentation
scale parameter Q. (a) Area 1, (b) Area 2, (c) Area 3, (d) Area 4, (e) Area 5.

Finally, we analyzed the operation time (s). Figure 15 shows the operation time (s) of the four
SRM methods in the five test areas (S = 8). The results showed that STI required the longest time.
This is because the proposed STI is characterized by a more complex processing. Although STI requires
more computation time than the other SRM methods, it shows improved performance. Therefore, the
long computation and running times are disadvantages of the proposed method.
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5. Conclusions

Often, traditional classification technology cannot effectively deal with mixed pixels in rough
multispectral images. In order to obtain accurate distribution results of land-cover classes in rough
images, the SRM technology has been proposed. SRM can produce better mapping results than
traditional classification methods when processing rough images. In this paper, STI is proposed to
improve burned-area mapping by fully utilizing the space–temperature information of burned areas.
The space element and the temperature element are used in STI. The RWA is used to compute the
segmented objects to obtain the space element with accurate and comprehensive space information.
At the same time, the temperature element with full temperature information is obtained by calculating
the difference between NBRobe and NBRsim. An objective element with the space–temperature
information is derived by integrating the space element and the temperature element. Finally, the
PSOA is utilized to optimize the objective element to produce burned-area mapping results. Thanks to
the space–temperature information, the proposed STI obtains better burned-area mapping results than
the existing SRBAM. Experiments on Landsat-8 OLI images of burned areas in Denali National Park,
Alaska, showed that STI produced the highest OA (%), achieving 92.39%, 94.21%, 94.42%, 99.01%, and
95.48% OA in the five tested areas. Although it seems that STI performed only 1–2% better in OA (%)
than the other SRM methods, in fact it successfully corrected thousands of pixels. For example, the OA
(%) of STI was around 1.5% greater than that of SRBAM in Area 1. According to the definition of OA
(%), since Area 1 had 720 × 720 pixels, the number of corrected pixels obtained by STI included about
7776 pixels more than that that obtained by SRBAM. Therefore, the gain in accuracy of the proposed
method is obvious.

The appropriate values of the parameters θ and Q were selected by multiple tests when using STI.
To improve the final mapping results, it is worth studying an adaptive method for selecting the most
appropriate value of the parameters θ and Q in future work. In addition, it is worth further studying
how to simplify the structure of the proposed STI and improve the running speed. Finally, the use of
new artificial intelligence technology and a large number of auxiliary data to improve STI and obtain
OA values closer to 100% is also worth studying in the future.
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