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Abstract: Wind resources assessment plays a significant role in site selection for the construction
of offshore wind farms. Mean wind speeds (MWS), wind power densities (WPD), and Weibull
parameters are the most important variables for wind resources assessment. These variables were
estimated with the synergetic use of multiple satellite data (QuikSCAT + WindSAT + ASCAT) and
meteorological data from coastal stations using spatial interpolation methods, including inverse
distance weighting (IDW), ordinary kriging (OK), and ordinary co-kriging (OCK). The spatial
variability of offshore wind energy resources over the China Sea is assessed at heights of 10 m and
100 m (hub height of wind turbine). Then, 8 buoy measurements were used to evaluate the accuracy
of the offshore wind resources assessment. Our results show that combining multiple satellite data
and coastal meteorological data improves the accuracy of wind resources assessment in the offshore
areas and the OCK method show the best performance for accuracy in most cases. The statistical
results comparing buoy-derived MWS and interpolated MWS show a root mean square error (RMSE)
of 0.17 m/s and correlation coefficient (Corr.) of 0.987 at a height of 10 m. Statistics of the comparison
between buoy-derived WPD and interpolated WPD by OCK show a RMSE of 23.38 W/m2 at a height
of 10 m. The results show that the highest wind resources are mainly found in the Taiwan Strait and
offshore regions in Fujian province.

Keywords: offshore wind resources; spatial interpolation; QuikSCAT; WindSAT; ASCAT; meteorological
data; China Sea

1. Introduction

China’s economic growth and rapid urbanization has required substantial energy consumption.
Traditional fossil fuels have a damaging impact on the environment. China needs to utilize renewable
energy to ensure energy security and environmental sustainability. Wind energy has been one of
the fastest growing renewable energy sources during the last decade. In China, the total installed
wind energy capacity rose from 25.8 GW in 2009 to 211.4 GW in 2018. The newly installed wind
energy capacity of China in 2018 was 23 GW, comprising nearly 45 percent of the world’s new wind
energy installations [1]. Due to the lower surface roughness of ocean compared with land, offshore
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wind resources are higher than onshore wind resources. Coastal provinces in China have advanced
economies and higher demand for energy than other regions, so taking full advantage of the offshore
wind resources could save land resources and transportation costs [2]. The total installed capacity of
global offshore wind power was 23.1 GW in 2018. Of this total, 4.6 GW of offshore installations in 2018
were in China, putting the country in third place globally, behind the United Kingdom (7.96 GW) and
Germany (6.4 GW). China installed 1.8 GW of new offshore wind capacity in 2018, taking the world’s
lead for the first time, followed by the United Kingdom (1.3 GW) and Germany (0.97 GW) [1].

Accurate offshore wind information plays an important role in offshore wind energy assessment
and planning [3]. In situ wind measurements used for offshore wind energy resources assessment [4–12]
are usually limited and sparse, involving coastal stations, buoys, ships, masts, and oil platforms.
Due to the development of microwave remote sensing, previous studies revealed that sea surface
wind data derived from satellite data have been applied to offshore and ocean wind resources
assessment, including sea surface wind data derived from synthetic aperture radars (SAR) [13–24],
scatterometers [3,19,23–40], and radiometers [39–42]. The low temporal resolution (3−7 images
each month) of SAR leads to less overlapping of samples [24]. Ocean wind fields retrieved from
scatterometers and radiometers have higher temporal resolution (two observations per day). Previous
researches pointed out that the accuracy of wind resources estimation could be improved with the
synergetic use of multiple satellite data due to the increasing number of observations and different
equatorial crossing times [24,39,43].

Spatial interpolation can be used to obtain onshore and offshore wind information [27,36,37,40,44–47].
Deterministic interpolation methods create surfaces from measured points and can either force the
resulting surface to pass through the data values or not. Geostatistical interpolation methods quantify
the spatial autocorrelation among measured points and account for the spatial configuration of the
measured points around the prediction location [48]. The kriging and inverse distance weighting
(IDW) methods have been used in the interpolation of wind information and kriging methods were
widely used [47]. In this study, spatial interpolation methods included one deterministic interpolation
method (IDW) and two geostatistical interpolation methods (ordinary kriging (OK) and ordinary
co-kriging (OCK)).

Offshore wind information retrieved from satellite data in nearshore regions are not as accurate as
those at open sea due to land contamination, and satellite wind products usually mask wind information
near coastlines. Therefore, the accuracy of offshore wind resources estimation using satellite data might
also be affected [3,23,31,42]. The purpose of this work is to estimate the accuracy of offshore wind
resources assessment based on synergetic use of multiple satellite data and meteorological data from
coastal stations using spatial interpolation methods. The spatial variability of offshore wind energy
resources over the China Sea is assessed at heights of 10 m and 100 m (hub height of wind turbine).

2. Data

2.1. Satellite Data

This study relies on two types of satellite data from two scatterometers (QuikSCAT and ASCAT)
and one radiometer (WindSAT), namely the Ku-band (13.4 GHz) SeaWinds scatterometer onboard
QuikSCAT satellite, C-band (5.3 GHz) ASCAT scatterometer onboard Metop-A satellite, and WindSAT
fully polarimetric radiometer onboard Coriolis satellite. Wind products used in this study are the daily
gridded maps from Remote Sensing Systems [49]. They can provide sea surface wind information
over oceans with a spatial resolution of 0.25◦ × 0.25◦ at 10 m above sea level. There are at most two
observations from a single satellite sensor per day. The local ascending node time of a satellite is
maintained at about 18:00 (QuikSCAT and WindSAT) and 21:30 (ASCAT). The local descending node
time of a satellite is maintained at about 06:00 (QuikSCAT and WindSAT) and 09:30 (ASCAT) [39,49].
We removed rain effects from the satellite datasets using the rain flags. Further details about the three
satellite data can be found in previous studies [39].
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According to previous studies, with the synergetic use of multiple satellite observations,
the accuracy of wind resources estimation may improve due to the increasing number of
observations [24,39,43]. Figure 1 shows the number of overlapping samples from combining QuikSCAT
(1999–2009), WindSAT (2003–2017), and ASCAT (2007–2017) data for the China Sea. The number of
samples from all of the satellite data is greater than 8000 in order to maintain the accuracy of wind
resources estimation (shown in Figure 1). The number of satellite data from the offshore areas near the
coastline is much lower than that from the open sea because of the limitations in retrieving the wind
vectors from satellite observations near the coast. There are almost no satellite data in some offshore
areas (such as Hangzhou Bay). The total number of satellite data is about 8000–14,000 from 0◦ N to
27◦ N, and is about 8000–15,000 among all satellite data at 27–32◦ N. The total number of satellite data
is about 8000–17,000 at 32–41◦ N.
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(2003–2017), and ASCAT (2007–2017) data for the China Sea.

2.2. Meteorological Data

The China Meteorological Administration provides average hourly wind vector measurements,
which are the 10 min average wind vectors measured at the top of every hour, recorded at 8 buoys
over the China Sea and 480 meteorological stations within 10 km distance from the coastline along
the coastal areas of China (shown in Figure 2). The 8 buoy measurements were selected as validation
data and they provide one or two years of meteorological measurements at a height of 10 m above sea
level [50]. All buoys are equipped with propeller anemometers. Table 1 summarizes the information of
buoy measurements, including the number of buoy measurements. The number of buoy measurements
range from 7586 to 17,241. The distances from buoys to coastline are mainly less than 60 km, except for
buoy 59765, which is located up to 86 km from the coastline. The water depths of the buoys’ positions
range from 27 m to 55 m.
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The 480 meteorological stations were selected as interpolation data and they provide one or two
years of meteorological measurements at 10 m height for land located within 10 km distance from the
coastline from 2016 to 2017. The elevations of 480 meteorological stations are less than 50 m, and there
are no mountains along the coastal side of these selected stations. The number of measurements from
261 meteorological stations range from 7902 to 8779 over one year. The number of measurements from
219 meteorological stations range from 16,218 to 17,539 over two years.

Among the 480 selected meteorological stations, we chose the meteorological stations that
were located on the coastline of China using the following rules: when the spatial distribution of
meteorological stations was relatively dense (there are more than 2 stations within 25 km along the
coastline), we chose the stations which are near the coastline (less than 1 km distance from the coastline).
When the spatial distribution of meteorological stations was relatively sparse, we chose the station
which is relatively closer to the coastline (less than 5 km distance from the coastline). The total number
of meteorological stations located along the coastline of China is 270 (shown in Figure 2).

The wind profile method (in Section 3.1) was used to extrapolate wind speeds to 100 m height for
interpolation of wind resources at the hub height of the wind turbines.
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Table 1. Information for buoy measurements.

Buoy Water Depth (m) Distance to Coastline (km) Time of Datasets Number of Measurements

54558 33 59 01.2011–12.2011 8440
54772 33 12 01.2016–12.2016 8680
58573 27 35 01.2011–12.2012 16,231
58767 35 52 12.2015–11.2016 7586
58768 32 40 01.2012–12.2012 8482
58951 55 45 01.2017–12.2017 8489
59334 40 55 01.2016–12.2017 17,241
59765 48 86 01.2016–12.2017 16,396
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2.3. Elevation and Bathymetric Data

Digital elevation model (DEM) data on land were obtained from the shuttle radar topography
mission (SRTM) project, with a spatial resolution of 3 arc-second. The DEM data were resampled
to 0.01◦ × 0.01◦ by pixel averaging. The bathymetric data over the China Sea were obtained from
the National Geophysical Data Center (NGDC), called the ETOPO1 1 arc-minute global relief model.
The ETOPO1 data were also resampled to 0.01◦ × 0.01◦ using the nearest neighbor method. The DEM
was used on land and bathymetric data over the China Sea as an auxiliary variable for the OCK spatial
interpolation method.

3. Methods

This study focuses on the spatial representation of offshore wind resources assessment (1999–2017).
We synergetically used multiple satellite data (QuikSCAT + WindSAT + ASCAT) and meteorological
data from coastal stations to obtain MWS, WPD, and Weibull parameters based on three spatial
interpolation methods (IDW, OK, OCK), with a spatial resolution of 0.01◦ × 0.01◦ at heights of 10 m and
100 m over the China Sea. In order to estimate the accuracy of offshore wind resources assessment, the
MWS, WPD, and Weibull parameters calculated from the in situ measurements from 8 buoys at a height
of 10 m were compared with those interpolated results derived from data from 480 meteorological
stations within 10 km in the coastal areas of China, data from 270 meteorological stations along the
coastline of China, and data from multiple satellites (QuikSCAT + WindSAT + ASCAT) and multiple
satellites + 480/270 meteorological stations, respectively.

The root mean square error (RMSE), mean absolute error (MAE), bias, and correlation coefficient
(Corr.) were used to compare interpolated MWS, WPD, and Weibull parameters with 8 buoy-derived
MWS, WPD, and Weibull parameters at a height of 10 m.

3.1. Extrapolating Wind Speed to Hub Height

In order to extrapolate wind speeds to turbine hub height (100 m), the wind speeds can be
calculated using a logarithmic profile method:

V(z) =
u∗
κ
[ln

(
z
z0

)
−ψm] (1)

z0 = αc
u2
∗

g
(2)

where V is the wind speed at a height of z (100 m), u∗ is the friction velocity, κ is the von Karman’s
constant (~0.4), and ψm is the factor of atmospheric stability correction, which is considered zero in
neutral stability conditions [39,51]; further details about the wind speed extrapolation impacted by ψm

can be found in previous studies [39]. Here, z0 is the roughness length, αc is Charnock’s parameter
(~0.0144) [51], and g is the gravitational acceleration of the Earth. When the wind speed at a single
level is known, Equations (1) and (2) can be combined and solved iteratively to estimate the u∗ [51].

3.2. Wind Resources Assessment Method

The wind power density E (W/m2) is used to measure the theretical potential of wind resources at
a particular place [52], and can be estimated using the following method:

E =
1

2n

n∑
i=1

ρV3
i (3)

where n is the number of wind speed observations, ρ is the air density (~1.225 kg/m3) [34,36,38,39,53],
ρ is the property of the wind measurement environment (air pressure, air temperature, and relative
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humidity) [54], and the spatio-temporal variability of ρ is ignored due to the lack of relevant data using
standard sea-level air density [53,55]; Vi is the wind speed at point i.

The Weibull distribution is the most commonly used statistical distribution for describing wind
speed data at a fixed site [6]. There are several methods used to derive Weibull parameters [56]. In this
study, the scale parameter C (m/s) and shape parameter k (dimensionless) are determined by using
mean wind speed V (m/s) and standard deviation of wind speed σ [26,34,56], as follows:

k =
(
σ/V

)−1.086
(4)

C = V/Γ(1 +
1
k
) (5)

where Γ is the Gamma function.

4. Results

4.1. Validation of Interpolated MWS and WPD

Table 2 reveals that interpolated MWS derived from data from multiple satellites + 270
meteorological stations using OCK method have the best accuracy in terms of RMSE (0.17 m/s),
MAE (0.129 m/s), and Corr. (0.987). Interpolated MWS derived from meteorological station data
underestimated the buoy-derived MWS in terms of negtive biases. Interpolated MWS derived
from multiple satellite data overestimated the buoy-derived MWS in terms of small positive biases.
Interpolated MWS derived from multiple satellites + 270/480 meteorological stations show lower errors
than those from multiple satellite data or meteorological data only, in terms of lower RMSE and MAE
and higher correlations. Interpolated MWS derived from the same dataset using OCK method show
the best accuracy performance in most cases, followed by OK and IDW methods. The results of this
comparison show that combining multiple satellite data and coastal meteorological data may improve
the accuracy of interpolated MWS in the offshore areas.

Table 2. Statistics of the comparison between buoy-derived mean wind speeds (MWS) and interpolated
MWS at a height of 10 m.

Dataset for
Interpolation

Interpolation
Method RMSE (m/s) MAE (m/s) Bias (m/s) Corr.

480 meteorological data
IDW 2.456 2.347 −2.347 0.686
OK 2.078 1.919 −1.919 0.608

OCK 1.889 1.675 −1.675 0.551

270 meteorological data
IDW 2.121 1.924 −1.924 0.600
OK 1.749 1.593 −1.593 0.692

OCK 1.603 1.429 −1.415 0.678

Satellite data
IDW 0.235 0.199 0.049 0.976
OK 0.234 0.179 0.082 0.977

OCK 0.230 0.178 0.081 0.977

Satellite + 480
meteorological data

IDW 0.214 0.177 0.054 0.980
OK 0.188 0.153 0.002 0.988

OCK 0.202 0.160 −0.004 0.984

Satellite + 270
meteorological data

IDW 0.206 0.166 0.064 0.981
OK 0.177 0.132 0.076 0.987

OCK 0.170 0.129 0.065 0.987

Here, IDW = inverse distance weighting; OK = ordinary kriging; OCK = ordinary co-kriging; RMSE = root mean square error;
MAE = mean absolute error; Corr. = correlation coefficient.
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Table 3 indicates that interpolated WPD derived from multiple satellites + 270 meteorological
stations using OCK method have the best accuracy in terms of RMSE (23.38 W/m2) and MAE
(16.88 W/m2). Interpolated WPD underestimated the buoy-derived WPD in terms of negative biases.
Interpolated WPD derived from multiple satellites + 270/480 meteorological stations show lower errors
than those from multiple satellite data or meteorological data only in terms of lower RMSE and MAE.
Interpolated WPD derived from the same dataset using OCK method show the best performance
of accuracy in most cases, followed by OK and IDW methods. The result of this comparison shows
that combining multiple satellite data and coastal meteorological data may improve the accuracy of
interpolated WPD in the offshore areas.

Table 3. Statistics of the comparison between buoy-derived wind power densities (WPD) and
interpolated WPD at a height of 10 m.

Dataset for
Interpolation

Interpolation
Method RMSE (W/m2) MAE (W/m2) Bias (W/m2) Corr.

480 meteorological data
IDW 266.93 239.37 −239.37 0.689
OK 240.19 208.97 −208.97 0.705

OCK 237.01 205.82 −205.82 0.708

270 meteorological data
IDW 245.99 217.76 −217.76 0.710
OK 227.32 197.56 −196.45 0.730

OCK 223.10 195.25 −190.77 0.711

Satellite data
IDW 36.47 28.08 −15.96 0.992
OK 30.79 23.11 −10.61 0.992

OCK 30.63 23.00 −11.10 0.992

Satellite + 480
meteorological data

IDW 25.33 19.12 −13.09 0.995
OK 24.98 20.11 −14.98 0.996

OCK 25.28 21.18 −12.37 0.991

Satellite + 270
meteorological data

IDW 24.95 17.94 −11.10 0.996
OK 23.70 17.20 −8.42 0.995

OCK 23.38 16.88 −8.45 0.995

4.2. Validation of Interpolated Weibull Parameters

Table 4 reveals that interpolated Weibull C derived from multiple satellite data + 270 meteorological
stations using OK and OCK methods have the best accuracy in terms of RMSE (0.214 m/s) and Corr.
(0.985). Interpolated Weibull C derived from meteorological data underestimated the buoy-derived
Weibull C in terms of negtive biases. Interpolated Weibull C derived from multiple satellite data
overestimated the buoy-derived Weibull C in terms of small positive biases. Interpolated Weibull C
derived from multiple satellite data + 270/480 meteorological station data show lower errors than those
from multiple satellite data or meteorological data only in terms of lower RMSE, MAE and higher
correlations. Interpolated Weibull C derived from the same dataset using OCK method show the
best performance of accuracy in most cases, followed by OK and IDW methods. The results of this
comparison show that combining multiple satellite data and coastal meteorological data may improve
the accuracy of interpolated Weibull C in the offshore areas.

Table 5 indicates that interpolated Weibull k derived from multiple satellite data + 480
meteorological stations using OCK method has the best accuracy in terms of RMSE (0.156), MAE
(0.140), and Corr. (0.873). Interpolated Weibull k derived from meteorological data underestimated
the buoy-derived Weibull k in terms of negtive biases. Interpolated Weibull k derived from multiple
satellite data overestimated the buoy-derived Weibull k in terms of positive biases. Interpolated
Weibull k derived from multiple satellite data + 270/480 meteorological station data shows lower errors
than those from multiple satellite data or meteorological data only in terms of lower RMSE, MAE,
biases, and higher correlations. Interpolated Weibull k derived from the same dataset using OCK
method shows the best performance for accuracy in most cases, followed by OK and IDW method.
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The result of this comparison shows that combining multiple satellite data and coastal meteorological
data may improve the accuracy of interpolated Weibull k data in the offshore areas.

Table 4. Statistics of the comparison between buoy-derived Weibull scale parameter (C) data and
interpolated Weibull C data at a height of 10 m.

Dataset for
Interpolation

Interpolation
Method RMSE (m/s) MAE (m/s) Bias (m/s) Corr.

480 meteorological data
IDW 2.793 2.669 −2.669 0.689
OK 2.359 2.178 −2.178 0.607

OCK 2.146 1.901 −1.901 0.549

270 meteorological data
IDW 2.416 2.190 −2.190 0.596
OK 1.994 1.816 −1.816 0.690

OCK 1.824 1.629 −1.610 0.677

Satellite data
IDW 0.286 0.241 0.062 0.971
OK 0.289 0.221 0.101 0.972

OCK 0.285 0.219 0.098 0.972

Satellite + 480
meteorological data

IDW 0.263 0.217 0.067 0.976
OK 0.237 0.178 0.006 0.984

OCK 0.240 0.180 0.004 0.983

Satellite + 270
meteorological data

IDW 0.256 0.205 0.079 0.977
OK 0.214 0.160 0.082 0.985

OCK 0.214 0.161 0.080 0.985

Table 5. Statistics of the comparison between buoy-derived Weibull shape parameter (k) data and
interpolated Weibull k data at a height of 10 m.

Dataset for
Interpolation

Interpolation
Method RMSE MAE Bias Corr.

480 meteorological data
IDW 0.335 0.292 −0.253 0.375
OK 0.322 0.279 −0.223 0.211

OCK 0.298 0.252 −0.195 0.302

270 meteorological data
IDW 0.325 0.281 −0.238 0.367
OK 0.323 0.283 −0.223 0.201

OCK 0.286 0.238 −0.201 0.556

Satellite data
IDW 0.174 0.160 0.115 0.852
OK 0.178 0.160 0.112 0.832

OCK 0.181 0.166 0.122 0.843

Satellite + 480
meteorological data

IDW 0.163 0.149 0.104 0.866
OK 0.157 0.142 0.098 0.873

OCK 0.156 0.140 0.097 0.873

Satellite + 270
meteorological data

IDW 0.165 0.151 0.106 0.861
OK 0.164 0.149 0.105 0.862

OCK 0.163 0.148 0.104 0.861

4.3. Spatial Variability of Interpolated Offshore Wind Resources over the China Sea

The MWS, WPD, and Weibull C at heights of 10 m and 100 m were calculated from multiple
satellite data during 1999–2017 over the China Sea and from data from 270 meteorological stations.
The Weibull k at heights of 10 m and 100 m were calculated from multiple satellite data during
1999–2017 over China Sea and from data from 480 meteorological stations. OCK method was used
to acquire the MWS, WPD, and Weibull C and k with a spatial resolution of 0.01◦ × 0.01◦ over the
China Sea.
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The geographic distribution of interpolated MWS, WPD, and Weibull parameters at 10 m height
above sea level with a spatial resolution of 0.01◦ × 0.01◦ over the China Sea is shown in Figure 3.
It can be observed that the MWS and WPD in most areas of the China Sea are higher than 5 m/s and
200 W/m2, respectively. Figure 3a,b shows that the highest MWS and WPD are mainly found in the
Taiwan Strait and offshore regions in Fujian province. This result is consistent with those of existing
studies [3,52,57,58]. The MWS and WPD in most areas of the Taiwan Strait are higher than 8 m/s
and 500 W/m2, respectively. The offshore areas in the East China Sea and the South China Sea have
higher MWS and WPD than those areas in the Bohai Sea and the Yellow Sea. The MWS and WPD
are mainly 5–10 m/s and 200–950 W/m2 within 50 m depth off the coast of Fujian province. The MWS
and WPD within 50 m depth in the offshore areas of Guangdong province are mainly 4–8.5 m/s and
150–650 W/m2, respectively. The MWS and WPD within 50 m depth in the offshore areas of Zhejiang
province are mainly 4–8 m/s and 150–500 W/m2, respectively. The MWS and WPD in the Bohai Sea and
the Yellow Sea are 4–6.5 m/s and 150–300 W/m2, and 4–7.5 m/s and 150–450 W/m2, respectively.

The spatial variability of interpolated Weibull C at 10 m height above sea level over the China
Sea is similar with that of MWS at 10 m height, and the absolute values of Weibull C are slightly
higher than that of MWS at 10 m height. The Weibull C parameters in most regions of the China Sea
are mainly 6–11 m/s. The Weibull C parameters in most regions of the Taiwan Strait are 9–11 m/s.
The Weibull C parameters are mainly 5.5–11 m/s within 50 m depth off the coast of the Fujian province.
The Weibull C parameters within 50 m depth in the offshore areas of Guangdong province are mainly
5–9.5 m/s. The Weibull C parameters within 50 m depth in the offshore areas of Zhejiang province are
mainly 5–9 m/s. The values of Weibull C in the Bohai Sea and the Yellow Sea are mainly 5–7 m/s and
5–8.5 m/s, respectively.

As shown in the Figure 3d, the values of interpolated Weibull k over the China Sea at 10 m above
sea level are mainly 1.6–2.8. The values of Weibull k in the Bohai Sea and the Yellow Sea are mainly
1.6–2 and 1.6–2.4, respectively. The values of Weibull k in the East China Sea and the South China Sea
are mainly 1.8–2.8 and 1.8–2.6, respectively.

The geographic distribution of interpolated MWS, WPD, and Weibull parameters at 100 m above
sea level with a spatial resolution of 0.01◦ × 0.01◦ over the China Sea is shown in Figure 4. The spatial
variability of interpolated MWS, WPD, and Weibull C at 100 m height are similar with those at 10 m
height, but the absolute values are higher at 100 m than at 10 m. It can be observed that the MWS and
WPD in most regions of the China Sea are higher than 6 m/s and 300 W/m2, respectively. The Taiwan
Strait have the highest wind resources in terms of the MWS and WPD, which are mainly 9–12 m/s and
700–1900 W/m2, respectively. The MWS and WPD are mainly 6–12 m/s and 400–1800 W/m2 within
50 m depth off the coast of Fujian province. The offshore MWS and WPD within 50 m depth across
Guangdong province are mainly 6–10.5 m/s and 300–1200 W/m2, respectively, a result similar to that
found by Chang et al. [23], based on ENVISAT ASAR and ASCAT data from weather research and
forecasting (WRF) model simulations, and by Hasager et al. [42], who used SSM/I data and WRF.
The offshore MWS and WPD within 50 m depth across the Zhejiang province are mainly 6–9.5 m/s
and 300–900 W/m2, respectively. The MWS and WPD in the Bohai Sea and the Yellow Sea are mainly
6–7.5 m/s and 300–600 W/m2, and 6–9 m/s and 300–800 W/m2, respectively. The MWS are similar and
WPD are slightly higher than the results obtained by Li et al. [59] based on the COSMO-CLM regional
climate model in the Bohai Sea and the Yellow Sea.

The spatial variability of interpolated Weibull C at 100 m above sea level over the China Sea is
similar with that of MWS at 100 m height, and the absolute values of Weibull C are slightly higher
than that of MWS at 100 m height. The Weibull C parameters in most regions of the China Sea are
mainly 7–13.5 m/s. The Weibull C parameters in most regions of the Taiwan Strait are 10–13.5 m/s.
The Weibull C parameters are mainly 7–13.5 m/s within 50 m depth off the coast of Fujian province.
The Weibull C parameters within 50 m depth in the offshore areas of Guangdong province are mainly
7–12 m/s. The Weibull C parameters within 50 m depth in the offshore areas of Zhejiang province are
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mainly 7–11 m/s. The values of Weibull C in the Bohai Sea and the Yellow Sea are mainly 7–9 m/s and
7–10 m/s, respectively.

As shown in Figure 4d, the values of interpolated Weibull k over the China Sea at 100 m above sea
level are mainly 1.6–2.6. The values of Weibull k in the Bohai Sea and the Yellow Sea are mainly 1.6–2
and 1.6–2.2, respectively. The values of Weibull k in the East China Sea and the South China Sea are
mainly 1.8–2.6 and 1.8–2.6, respectively.
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5. Discussion

Previous studies pointed out that the mean wind speed on land is lower than offshore due to the
higher surface roughness of land; in other words, MWS and WPD will be increased by increasing
the offshore distance to the coastline, and there is a relatively steep wind gradient along the
coastline [24,42,60]. Therefore, the bias of wind speeds along the coastline compared with wind
speeds in offshore areas is larger than those in the open sea. In our study, satellite data dominates the
wind resources in the open sea and meteorological data dominates those in coastal areas; interpolated
MWS, WPD, and Weibull parameters derived from multiple satellite data show lower errors than those
from meteorological data. Interpolated MWS, WPD, and Weibull parameters derived from multiple
satellite data + 270/480 meteorological data demonstrate lower errors than those from multiple satellite
data or meteorological data only. These results are consistent with the previous studies.
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In this study, 270 meteorological masts (along the coastline of China) provide a better estimation
of the MWS, WPD, and Weibull-C parameters than the use of 480 meteorological masts (within 10 km
distance from the coastline). This result may be due to higher surface roughness of land than ocean, as
the wind speeds on land decrease by increasing the land distance from the coastline. The conclusion
could be made that the accuracy of wind resources assessment may also be improved by using less
meteorological stations that are only located on the coastline of China. This will make the interpolation
methods more operable and practical in consideration of the difficulty in acquiring the meteorological
data from meteorological departments.

The spatial variability of interpolated MWS and WPD demonstrated that the offshore wind
resources are abundant over the East and South China Sea, especially in the Taiwan Strait. This result is
consistent with those of previous studies [3,52,57,58,61]. The spatial distribution of interpolated MWS
and WPD in the offshore areas of the South China Sea at 10 m and 100 m height are similar to that
in the study by Chang et al. [23] based on ENVISAT ASAR and ASCAT data from WRF simulations.
The MWS are similar and WPD are slightly higher than those from Li et al. [59] based on the regional
climate model COSMO-CLM in the Bohai Sea and the Yellow Sea at 100 m height. These minor
differences may be impacted by the wind speed extrapolation method and simulation methods.

The effect of atmospheric stability is ignored in this study due to the lack of relevant data.
However, atmospheric stability also affects the accuracy of wind speed extrapolation and wind
resources assessment at the hub height of wind turbines. In future research, the application of
atmospheric stability information is encouraged.

The spatio-temporal variability of air density is ignored due to the lack of relevant data using
standard sea-level air density. Previous studies pointed out that the relevant deviations of air density
(from −10% to 10% during the different seasons at a global scale) are mainly in the middle-high
latitudes [55], and the relevant deviations in air density are smaller over ocean than on land, so the
fixed air density is not completely accurate for WPD estimation over the China Sea. In future research,
the information of air pressure, air temperature, and moisture are considered to evaluate WPD using
meteorological data, mesoscale models, satellite data, or reanalysis [55].

In future studies, we can estimate the actual potential of wind energy over the China Sea by
considering the types of reference wind turbines, wind farm wake effects, meteorological phenomena
(including boundary layer height, atmospheric stability, and air density), environmental factors
(including terrain effect near the coast, the effect of breaking waves), hard targets and human activity
at sea (including low-level jets, shipping routes, fish farms, birds path, submarine cables, oil and gas
platforms, and conservation areas) for choosing suitable regions for offshore wind farm construction .

6. Conclusions

Offshore wind data retrieved from satellite observations might be affected by land contamination
along the coastline, and therefore the accuracy of offshore wind resources assessment using satellite
data might also be affected. In this study, three spatial interpolation methods were applied to
interpolate MWS, WPD, and Weibull parameters over the China Sea using multiple satellite date
(QuikSCAT + WindSAT + ASCAT) and meteorological data from coastal stations. Then, 8 Chinese buoy
measurements were used to evaluate the accuracy of offshore wind resources assessment. The results
of buoy validation show that interpolated MWS, WPD, and Weibull parameters derived from multiple
satellite data + 480/270 meteorological satellite data show lower errors than those from multiple satellite
data or meteorological data only. Interpolated MWS, WPD, and Weibull parameters derived from the
same dataset using the OCK method show the best performance for accuracy in most cases, followed
by OK and IDW methods. The results of these comparisons show that combining multiple satellite
data and coastal meteorological data may improve the accuracy of offshore wind resources assessment
compared to using satellite data or meteorological data only.
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The spatial distribution of MWS, WPD, and Weibull parameters over the China Sea is assessed at
heights of 10 m and 100 m, interpolated by multiple satellite data and meteorological data. The results
show that the most wind resources are mainly found in the Taiwan Strait and offshore regions of
Fujian province.
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