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Abstract: Lack of annotated data for training of deep learning systems is a challenge for many visual
recognition tasks. This is especially true for domain-specific applications, such as plant detection and
recognition, where the annotation process can be both time-consuming and error-prone. Generative
models can be used to alleviate this issue by producing artificial data that mimic properties of
real data. This work presents a semi-supervised generative adversarial network (GAN) model to
produce artificial samples of plant seedlings. By applying the semi-supervised approach, we are
able to produce visually distinct samples for nine unique plant species using a single GAN model,
while still maintaining a relatively high visual variance in the produced samples for each species.
Additionally, we are able to control the appearance of the generated samples with respect to rotation
and size through a set of latent variables, despite these not being annotated features in the training
data. The generated samples resemble the intended species with an average recognition accuracy of
~64.3%, evaluated using an external state-of-the-art plant seedling classification model. Additionally,
we explore the potential of using the GAN model’s discriminator as a quality assessment tool to
remove poor representations of plant seedlings from the artificial samples.

Keywords: generative model; generative adversarial networks; supervised learning; unsupervised
learning

1. Introduction

Machine learning, and in particular deep learning, have become increasingly popular in recent
years. However, deep learning algorithms are still primarily trained using supervised learning, which
requires a substantial amount of annotated training data. There exist many publicly available datasets
for training deep learning systems [1]; however, when it comes to domain-specific applications such as
plant detection and recognition, the availability of data is significantly reduced [2].

Alternatively, generative models can be used to extend the amount of available data by producing
artificial data samples that mimic properties of real data. Recently, a new type of generative models
called generative adversarial networks (GANs) were introduced by Goodfellow et al. [3]. While GAN
models can be used in many different generative applications, they are most often used for generating
artificial images. A strength of the GAN models is that they can be trained using an unsupervised
and/or supervised end-to-end learning approach [4-6]. Previous research has shown that artificial
GAN samples can be used as data augmentation to increase the performance of several visual
recognition tasks [7-10].
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GAN models have also been applied to the modeling of plants or plant seedlings. The primary
focus has been on increasing the amount of available training data for applications, such as leaf
counting [11,12] or species classification [13]. The aforementioned models all use a supervised learning
approach, conditioning the models based on leaf count, plant species, or full segmentation masks.
Besides this conditioning, the models provide little control over the appearance of the generated
samples. In other domains, unsupervised learning schemes have been used to adopt greater control of
over the appearance of the generated samples. For example, the infoGAN model by Chen et al. [4] has
shown that it is possible to adapt dominating modalities in the data by adding additional unsupervised
conditioning on the model.

In this work, we present an extension of the WacGAN model by [13], which is used to produce
artificial images of plant seedlings. We designate this extended model WacGAN-info. The extension
consists of adding an unsupervised learning branch to the GAN configuration, similar to infoGAN [4],
which enables control over the artificial samples’ visual appearance through an additional set of latent
input variables. The unsupervised learning branch also enables the WacGAN-info model to produce
samples that visually and quantitatively have a greater resemblance to real plant seedlings, compared
with those produced by the WacGAN model. Additionally, we show that the GAN disciminator
network can be used as a tool to prevalidate the quality of the artificial WacGAN-info samples.
This prevalidation enables us to remove samples with poor class representation from the artificial data
distribution, which leads to a further increase in resemblance to real samples.

Related Work

GANSs have been widely studied in recent years, and several improvements have been proposed
to accommodate issues such as poor convergence properties and mode collapse [5,14].

The WGAN model by Arjovsky et al. [15] proposed an alternative objective formulation based
on the Wasserstein distance to improve the convergence properties and sample quality of the GAN
model. The WGAN-GP model by Gulrajani et al. [16] further improved this objective formulation of
the Wasserstein objective by introducing a regularization term to avoid weight clipping of the model’s
network weights.

Conditioning on the GAN model can be used to enable better control of the visual content in the
generated samples. Conditions can be applied supervised, unsupervised, or in a mixture of the two.
Additionally, conditioning also ensures better convergence of the GAN [5]; e.g., the infoGAN model by
Chen et al. [4] applies an unsupervised conditioning approach to adapt dominating modalities in the
training data. To achieve this, the infoGAN model is trained with an additional classification objective
that ensures information preservation throughout the model. This allows Chen et al. [4] to control
the content of the generated samples through a set of latent info variables. The ACGAN model by
Gulrajani et al. [16] applies a supervised conditioning approach to produces distinguishable samples of
all 1000 ImageNet classes [17]. The approach is similar to that of infoGAN [4]; however, in the ACGAN
model, the latent variables are directly linked to the class labels of the training data. There exist more
advanced conditioning schemes, e.g., conditioning on full images [18-20] or text encodings [21,22];
however, these conditioning schemes require a high level of detail in the annotations.

Valerio Giuffrida et al. [12] and Zhu et al. [11] both use supervised conditioning to train a
GAN model to produce artificial samples of arabidopsis plants. The artificial GAN samples were
in both cases used for data augmentation and thus increased the performance on leaf counting.
Valerio Giuffrida et al. [12] use conditioning based directly on the leaf count, whereas Zhu et al. [11]
use full segmentation masks for conditioning. However, both these models are limited to producing
samples from a single species. Madsen et al. [13] applied a single GAN model to generate artificial
image samples of multiple plant seedling species. This model combined results from WGAN-GP [16]
and ACGAN [6] to produce distinguishable samples for each species while maintaining relatively high
visual variance within each of these. Additionally, Madsen et al. [13] applied the artificial samples in a
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transfer-learning setup for plant seedling classification, where they provided a strong basis for further
fine-tuning.

2. Methods

GAN:Ss are a configuration of two neural network architectures: a generator network, G, and a
discriminator network, D. Both networks are trained using an adversarial learning scheme, where the
two networks are competing against each other. D is responsible for distinguishing between the
samples from the real and artificial data distributions, whereas G produces artificial samples that
mimic real samples in order to cheat D into making mistakes.

The GAN model presented in this work is an extension of the WacGAN model by
Madsen et al. [13]. The extension incorporates an additional unsupervised learning branch, as inspired
by the infoGAN model by Chen et al. [4]. We designate this configuration WacGAN-info. WacGAN-info
is a semi-supervised generative model that is capable of producing visually distinct samples for each
class while still maintaining a relatively high amount of variance within each of these. The model also
provides control of the visual content through a set of latent variables. This is achieved by adding a
noise variable to the generator input, which the discriminator output is forced to recreate from the
generated sample.

The configuration of WacGAN-info is visualized in Figure 1. The figure shows how G inputs three
vectors: z, ¥, and u, representing random noise, class encoding, and latent info encoding, respectively.
The output from G is an artificial data sample, . Additionally, D inputs either real data samples,
x, or artificial data samples, . The output of D are three parallel signals: Dgs, D¢, and Dj, which
correspond to the estimation of the data source distribution (real or artificial samples), the class, and the
latent info variable, respectively.

Dg Dy D¢
t f i
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?
| |
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| I
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Figure 1. WacGAN-info model configuration. D is the discriminator network, and G is the generator
network. z, y, and u are the generator inputs corresponding to noise vector, class vector, and latent info
vector, respectively. The signals x and ¥ are real and artificial data samples. Finally, Dg, D¢, and D are
the parallel discriminator outputs corresponding to the source distribution estimation (real or artificial
samples), the class estimation, and the info variable estimation.

2.1. Objective Function

The objective function is divided into three parts: a source loss, Lg, a class loss, Lc, and an info
loss, Lj.

The source loss, Lg, is responsible for distinguishing between the real and artificial data
distributions given the discriminator output, Ds. Lg is implemented as a Wasserstein loss with
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gradient penalty, which provides a high degree of diversity in the generated samples [16]. Lg is
given by

Ls= E [Ds(x)]— E [Ds(®]+A_E [(IVeDs(®), —1)], M
x~pr x~pg Xpz

where p; is the real data distribution and p, is the artificial data distribution implicitly defined by

% = G(z,,u),z ~ p(z),[16]. pz is a random sample distribution generated from random interpolation

between the real and artificial samples [16].

The class loss, L¢, is responsible for guiding the generator to produce samples, which are visually
distinguishable for each separate class. L¢ is implemented as the cross-entropy loss between the
one-hot encoded class label, y, and the output of the discriminator’s classification branch, D¢ (x) [4,23].
Lc is given by:

Le= E [~ ¥ wlogDe,(®)]+ E |- ¥ fixlogDe,(®)], @)
xpr keNc X~ pg keNc
where N¢ is the number of classes.

Finally, the info loss, L, ensures information preservation throughout the network, thus allowing
the content of the generated samples to be controlled through a set of latent variables, u, as inspired by
Chen et al. [4]. L} is implemented as the mean square loss between the intended info variables u and
the predicted info variables of the discriminator Dj(x) and is given by

Li= E [ ¥ (D), ®)
*~Pg “ieNy
where Nj is the number of latent variables.

The discriminator is trained to minimize —Lg + wcLc + wrLj, whereas the generator is trained to
minimize Lg + wcLc + wiL;. we and w; are weight terms used to regulate the relative importance
between the source loss, the class loss, and the info loss. The values of the w¢ and w; are determined
empirically through experiments.

2.2. Network Design

The network architectures of the WacGAN-info model are inspired by the ACGAN model by [6].
As WacGAN-info is an extension of previous work [13], we apply the same modifications of the
original ACGAN architecture. Additionally, the networks have been modified to accommodate for
the additional information branch by adding a set of latent variables, u, as input to the generator and
an additional output, Dy, to the discriminator to reproduce u. u are drawn from a random uniform
distribution p(u) ~ U(—1,1). u are concatenated with the categorical class encoding y and the noise
vector z. The Dj is implemented as a fully connected layer in parallel with the source discriminator, Dg,
and the class discriminator, D¢, (Figure 1). The full implementation is summarized in Appendix A.1.

2.3. Evaluation

The artificial samples were evaluated qualitatively and quantitatively to assess their quality. In the
qualitative evaluation, we performed a visual inspection of the artificial samples to provide a subjective
assessment of the sample’s quality. The visual inspection was primarily used to assess the realism of
the artificial samples (Does the sample look as a realistic plant?), as to our knowledge, there does not
exist a quantitative metric to measure the realism of images.

In the quantitative evaluation, the class discriminability (How well does the artificial sample
represent the intended species?) was evaluated by processing each sample using an external
state-of-the-art classifier trained for plant species classification. Previously, the inception score [24] has
been widely adopted as a metric for measuring the class discriminability in GAN research [5,6,16,21].
Madsen et al. [13] apply a similar approach where the external classifier is instead based on the
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ResNet-101 architecture [25], which is fine-tuned for plant seedling classification. To be able to directly
compare the results, we applied the same external classifier as in [13]. The configuration of the
external ResNet-101 classifier is summarized in Appendix A.2. The class discriminability is reported
as the recognition accuracy, which indicates how often the artificial samples are correctly classified
as the intended species by the external classifier [13]. Perfectly generated artificial samples will be
indistinguishable from the real samples in terms of classification accuracy by the ResNet-101 classifier.

We applied the same leave-p-out cross validation scheme as Madsen et al. [13] to avoid
data leakage in the quantitative results [26] and to be able to directly compare our results to
Madsen et al. [13]. By splitting the real data into four parts and using a p of 50%, we get six
combinations of training and test sets. For each combination, the external ResNet-101 classifier was
trained on the associated training set and the WacGAN-info model was trained on the corresponding
test set. Thus, the WacGAN-info model could be used to generate an additional test-set of artificial
samples for the class discriminability test on the ResNet-101 classifier.

3. Results

Both the WacGAN-info model and the external ResNet-101 classifier were trained on the
segmented plant seedling dataset (sPSD) by Giselsson et al. [27]. This dataset consists of segmented
RBG images of plant seedlings from twelve different species. However, in this work, we have ignored
all grass species as these are not properly instance segmented. This left nine species (Nc = 9)
remaining in the dataset. The plant species are identified by their European and Mediterranean Plant
Protection Organization (EPPO) codes [28] throughput the paper. Due to the network’s architecture,
the WacGAN-info model only supports input images with a resolution of 128 x 128 pixels. To maintain
a relatively low resizing factor, all images with a resolution of >400 pixels in either dimension are
excluded from the dataset. This results in a resizing factor of 400/128 = 3.125. The remaining species
and number of samples for each of these are summarized in Table 1.

Table 1. Overview of data in sPSD after removing grass species and images with a resolution larger
than 400 pixels in either dimension.

Common Name Latin Name EPPO Code N Samples
Charlock Sinapis arvensis SINAR 297
Cleavers Galium aparine GALAP 270
Common chickweed Stellaria media STEME 591
Fat hen Chenopodium album CHEAL 447
Maize Zea mays ZEAMX 149
Scentless mayweed Matricaria perforata MATIN 498
Shepherd’s purse Capsella bursa-pastoris CAPBP 225
Small-flowered cranesbill ~ Geranium pusillum GERPU 429
Sugar beets Beta vulgaris var. altissima ~ BEAVA 191

To train the WacGAN-info model, all of the images were preprocessed by: zero-padding to
achieve a resolution of 470 x 470 pixels, random rotation of the image, central crop of 400 x 400 pixels,
and finally, resizing to 128 x 128 pixels using bilinear interpolation. This data augmentation approach
is also used for training of the external ResNet-101 classifiers.

The regularization weights, wc and wy, are set to 7.5 and 15, respectively. As mentioned, these
values are determined empirically and provide a good trade-off between intra- and inter-class diversity
in the artificial samples, while allowing the latent variables to adapt dominating modalities in the data.
The length of the noise vector, z, is set to 128, as inspired by previous work [13]. The following results
are produced using two latent variables (N; = 2). A full summary of the hyperparameters can be
found in Appendix A.1.
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3.1. Visual Image Quality Assessment

Table 2 show examples of artificial plant seedlings generated using the WacGAN-info model.
The table also includes examples of real plant seedlings and artificial samples from the WacGAN model
to provide references for the visual evaluation. The 16 WacGAN-info samples for each species were
generated using the same fixed random noise vectors—only the class encoding changes. This shows
that the WacGAN-info model is capable of producing visually distinct samples for each of the different
species present in the sPSD, as the appearance of the samples changes for each column.

Table 2. Examples of plant seedlings from sPSD [27], WacGAN [13], and WacGAN-info. The 16 samples
for each species were generated using the same fixed random noise vectors, with only the class encoding
changing. The background for all samples has been changed from black to white to increase the contrast.

sPSD [27] WacGAN [13] WacGAN-Info (Ours)

“l’" :%.:g‘

'R

&
s

+®

TRl 3:):’.”-?"’"
%."‘p“i‘ bR N S d”:’t‘
WE w2 2T SeP ot
T TS S e Y
S e e® e S0 ?‘4'-';‘* “e 3% 7 % .
35.,«...,?: *® —~ -~ ~~ ‘.l"l
:.+"d‘ ,.4',,:.. O"O'O”
....!, ,,,‘,.,:,- ¢ N 4 -
= *fe o /7 ! - N
AT LR
Y I AN
-~ \ > | - ’g } 7 / \ ’c -
R S R VWA
S = - ) -,*.; ~ - g g
/- "-, W R \ - ) ‘l




7 of 16

Remote Sens. 2019, 11, 2671

Table 2. Cont.
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The artificial samples themselves are composed of a number of leaves that are distributed around
the image/plant center. Compared to the samples produced in Madsen et al. [13], the WacGAN-info
model is capable of generating more detailed shape and textural features; e.g., the WacGAN-info model
has become better at generating thin features such as stems or small leaves. The texture across a single
leaf can also assume different gradients of green, whereas previously, the texture mainly consisted of a
single green color. Additionally, the borders between the plant and background are more smooth for
the WacGAN:-info sample, whereas the WacGAN samples [13] are more rough around the edges.

At closer inspection of the generated samples, some image artefacts can be observed. The artefacts
can be described as pixel errors, which mainly occur along the border of the artificial samples or in a
systematic grid in the texture. Figure 2 shows a severe example of these errors.

Figure 2. Example of image artefacts in an artificially generated SINAR sample.
3.1.1. Disentangled Information Space

Figure 3 shows how the appearance of the artificial samples depends on the values of the two
latent variables, u; and u;. Although a few outliers are observed, the latent variables can, in this
example, be used to control the rotation and the size of the artificial plant samples; e.g., the samples
in the left-hand side of the plot are larger compared to those in the right-hand side, indicating that
the size of the artificial samples is inversely related to the value of u;. Additionally, the samples in
the bottom of the plot are primarily oriented vertically with respect to the primary axis of the plant,
whereas samples in the top are oriented horizontally, indicating that u; models the rotation of the
samples.

Figure 3 only show the results from a single species, but a similar trend is observed across the
other species as well. It should be noted that this specific trend is not unanimous across the six different
models as they are trained on different parts of sPSD.

3.2. Class Discriminability

To assess the class discriminability of the artificial samples, 10,000 samples from each class
ere generated from each of the six WacGAN-info generators and subsequently evaluated on the
corresponding external ResNet101 classifiers along with the corresponding real data test sets (Table 3).
The artificial data achieves 64.63% average recognition accuracy when analyzed on the external
classifiers. The average accuracy for recognizing real data samples is of course better compared to
the artificial. However, the best-performing class on the artificial data (STEME) performs better than
the worst-performing class on the real data (CAPBP). The average recognition accuracy for each class
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shows a strong positive linear correlation to the number of real samples for each class in both the real
data (p = 0.70) and the artificial data (p = 0.85).
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Figure 3. Visualization of the information space using two uniformly distributed continuous variables.
The visualization shows that specific combinations of #; and u; can be used to control the rotation
and size of the generated plant seedlings. All samples presented in the plot are supposed to
represent STEME.

From the confusion matrix (Figure 4), it is clear that there is a good correspondence between
the true labels and the predicted labels on the artificially generated data. The misclassifications (the
off-diagonal entries in the confusion matrix) are generally fairly uniformly distributed among the other
species; however, a few notable misclassifications do appear, which are significantly larger than the
other misclassifications. These can be grouped into two groups: (1) one-way misclassifications and
(2) two-way misclassifications. The two-way misclassifications are misclassifications between two
species, which are both significantly larger than the other misclassifications (CHEAL = BEAVA,
and MATIN &= CAPBP). The misclassifications between CHEAL and BEAVA occur in samples
mimicking the early growth stages, where both species are highly similar with respect to visual
appearance. A large portion of the mislcassifications from BEAVA to CHEAL also includes examples
of large broad leafs mixed with more elongated leafs, traits that occur in the real examples of
CHEAL but not BEAVA. In the one-way misclassifications, there is only a significant misclassification
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from one species to the other, but not the other way around (CAPBP — {STEME, GERPU,
CHEAL}, ZEAMX — {STEME, MATIN, SINAR}, GALAP — SINAR, and BEAVA — MATIN). These
misclassifications generally happen from species with relatively few samples to species with relatively
many classes in the real dataset. A notable exception to this is the misclassification of GALAP as SINAR,
which contain approximately the same number of samples in the real dataset. These misclassifications
consists of two medium-sized round leafs connected by a small stem. Although the GALAP real data
does contain samples with these leafs, the trait occurs much more frequently in the SINAR real data.

Table 3. The accuracy of recognizing the intended species of the artificial samples from WacGAN-info,
when analyzed using an external ResNet101 classifier trained solely on real data samples from sPSD.
The recognition accuracies are reported as the mean and standard deviation over the six combinations
in the cross-validation scheme.

Species Test Set
Real Data Artificial Data

N Samples  Accuracy N Samples Accuracy

SINAR 149 9434+ 1.1% 10,000 61.7 +21.8%
GALAP 135 93.5+2.3% 10,000 63.6 + 10.4%
STEME 296 96.3 +0.7% 10,000 89.0 +5.4%
CHEAL 224 95.3+1.7% 10,000 63.4 +14.2%
ZEAMX 75 90.5+ 3.1% 10,000 472 +16.6%
MATIN 249 943 4+ 1.6% 10,000 67.0+17.3%
CAPBP 113 84.0+3.1% 10,000 47.4 + 8.4%
GERPU 215 95.8 + 1.5% 10,000 80.7 + 6.5%
BEAVA 96 90.6 +4.8% 10,000 59.0 +12.0%
Total 1549 92.7 +1.0% 90,000 64.3 +4.4%
SINAR N 0.04 0.06 0.06 0.03 0.06 0.05 0.02
0.8
GALAP 4 0.17 0.01 0.07 0.00 0.06 0.03 0.01 0.02
0.7
STEME 4 0.00 0.00 0.01 0.02 0.03 0.03 0.02 0.00
0.6
CHEAL 4 0.03 0.02 0.05 0.02 0.07 0.01 0.02 0.16
g 0.5
< ZEAMX {010 005 012 0.01 0.12 0.05 0.06 0.03
2 - 0.4
" maTin {001 001 005 0.06 0.13 0.01 0.1
- 0.3
CAPBP 4 0.04 0.01 0.17 0.09 0.01 0.09
L 0.2
GERPU 4 0.05 0.01 0.05 0.02 0.01 0.01
- 0.1
BEAVA 4 0.02 0.05 0.02 0.18 0.00 0.13 0.00 0.01 [oEE]

T RO o e R P W
¥ N N R R A
S & LY ESSE

Predicted label

Figure 4. Average confusion matrix when evaluating the artificial samples from the WacGAN-info
model using the external classifier trained solely on real samples. Each row is normalized with respect
to the number of true labels of that class.
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Using the GAN Descriminator to Prevalidate Sample Quality

The recognition accuracies reported in Table 3 are based on all samples generated by the
WacGAN-info model. However, the classification branch of the discriminator, D¢ (x), can be used
to perform a prevalidation of the artificial samples. Due to the softmax activation, D¢ (x) outputs
a confidence of how well a sample represents each class. Thus, by examining the discriminator’s
confidence in the intended class for each artificial sample, we can assure better class representations.
Figure 5 shows the average recognition accuracy (Figure 5a) and the sample distribution (Figure 5b) as
a function of the discriminator’s confidence in the samples representing the intended class. The figure
shows that the artificial samples generally get recognized as the intended class more often by the
external classifier, if the discriminator also has high confidence in the samples belonging to the intended
class. Thus, it is possible to remove samples with poor class representations by applying a threshold on
the discriminator’s confidence in each sample. Additionally, Figure 5b shows that the WacGAN-info
discriminator has high confidence in the majority of the artificial samples, so if we threshold on the
discriminator confidence, we only remove a small part of the data; e.g., by including only samples with
a discriminator confidence greater than 0.95, the average recognition accuracy across the six models
increases from 64.3% to 65.3%, while still including the 86% of the artificial samples.
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° —— WacGAN-info6 3
0.0 -1 T T T T T -
00 02 04 06 08 1.0 00 02 04 06 0.8 10
Discriminator confidence in intended class Discriminator confidence in intended class
(a) (b)

Figure 5. (a) Classifier recognition accuracy as a function of the WacGAN-info discriminator confidence
in the samples belonging to the intended class, D¢. The artificial GAN samples are divided into 20 bins
corresponding to the discriminator confidence in each. The bins are uniformly spaced in the interval
[0;1]. From the samples in each bin, the average class recognition accuracy is evaluated using the
external classifier. Each color represents one of the six models trained for cross-validation, and the
markers represent the bin centers. (b) The histogram showing the sample distribution as a function of
the WacGAN-info discriminator confidence in the samples belonging to the intended class, D.

4. Discussion

The results show that the WacGAN-info model is capable of producing artificial samples that
resemble real plant seedlings. Furthermore, it seems that the model is capable of reproducing samples
that are relatively distinguishable across the nine different plant species while simultaneously ensuring
a relatively high degree of variability in the samples for each class.

Although the WacGAN-info samples visually resemble real plant seedlings, there are still some
obvious errors in the artificial samples. The errors are mainly related to unrealistic or inaccurate
reproductions of the plant leaves, where multiple leaves have merged into one or one has been split
into two or more; e.g., inspecting the samples of ZEAMX, some of these resemble dicots although
ZEAMX is a monocot species (see the first and last samples in Table 2). These visual errors may be
reduced by increasing the class loss weight, w¢, which seems to provide better inter-class diversity but
comes at the cost of reducing the intra-class diversity.

The observed pixel errors in the samples are probably related to the applied generator architecture
as the border errors could be related to the relatively large output kernel ([8 x 8]) and the grid pattern
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matches with strides of 2 used for the up-sampling. Similar errors were observed in the original
ACGAN [6] paper and in the previous work by Madsen et al. [13]; however, based on visual inspection,
the issue seems to have been reduced for the WacGAN-info model.

Section 3.1.1 shows that it is possible to control the appearance of the generated samples through
the latent information variables. As expected, the information variables capture dominating modalities
in the data, such as the size and rotation of the samples. Although the two latent variables control
similar properties in all six WacGAN-info models, it should be noted that the specific trend observed
in Figure 3 is not representative of all models. This is an effect of the models being trained on different
dataset splits and due to the unsupervised learning scheme applied in the information learning branch,
which causes the models to adopt slightly different trends. In this work, we only present results
using two uniformly distributed information variables (N} = 2); the setup can easily be extended to
facilitate more, but adding more latent variables quickly increases the complexity of interpreting their
underlying representation.

The class discriminability test (Section 3.2) also shows that the artificial samples resemble the
intended species to a relatively high degree. The reported average recognition accuracy is 64.3%
(see Table 3), which is well above uniformly distributed random guessing, which would yield 11.1%.
Compared to Madsen et al. [13], this result shows a 5.4% point increase in the overall recognition
accuracy and a 4.4% point decrease in the standard deviation thereof. As this work is an extension of
Madsen et al. [13], the GAN setup is relatively similar. tThe main difference is that the WacGAN-info
model includes the additional latent information variables u and information discriminator Dj(x).
This shows that the addition of the latent information variables not only helps control the appearance
of the generated samples but also helps to increase the discriminability of the species.

The observed errors in the class discriminability test appear to mainly stem from class imbalance
in the real training data, as artificial samples from species with more training samples generally achieve
higher recognition accuracies. This issue might be reduced by balancing the distribution between the
classes in the training. Additionally, the observed errors are also related to species, which are visually
similar at the early growth stages. This is probably a result of the models incapability of reproducing
small textural and shape details. Through visual inspection of the errors, it is also observed that some
samples include attributes that are not present in the “true” species, but only in the “misclassified”
samples. This shows attribute leakage between the species examples produced by the generator and
that the generator has not fully learned what constitutes each species and what separates them. This
leakage mainly occurs in the generated samples of larger plants. Many plant species develop their
visual characteristics as they grow larger. However, in this work, we have removed many of the
larger samples (>400 pixels in either dimension) to maintain a relatively small resizing factor in the
preprocessing of the images. By including these larger images in the training, it might be possible to
learn more about the individual species characteristics and avoid some of the above-mentioned errors.
However, to include these larger images, we would need larger network architectures for the generator
and the discriminator, which would make the training more unstable [6]. A potential solution could
be to apply a more advanced conditioning scheme [21,22] or a progressive growing GAN training
approach [29].

Section 3.2 showed that it is possible to remove samples with poor class representation from
the artificial data distribution by evaluating the discriminator’s confidence in each artificial sample.
This enables us to only select samples that have a relatively higher resemblance to real plant seedlings,
which is relevant if the samples are used for data augmentation purposes or in transfer learning,
as previously shown in [13]. However, the selection process may remove some variability from the
artificial samples, but probably not anything too severe since 86% of the samples remain even with a
D¢ confidence threshold of >0.95.
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5. Conclusions

In this paper, we have shown that the WacGAN-info model is capable of producing artificial
samples from nine different species. The artificial samples resemble the intended species with an
average recognition accuracy of 64.3% evaluated using an external state-of-the-art classification model,
which is an improvement of 5.4% points compared to previous work. The observed errors are mostly
related to class imbalances in the training data or to the applied network models, which are incapable
pf reproducing small textural and shape details in the samples. We have also shown that it is possible
to apply an unsupervised conditioning scheme in the training of WacGAN-info, which enables control
over the visual appearance of the samples through a set of latent variables. Specifically, we show that
it is possible to control the orientation and size of the samples through two latent variables. Finally,
we have shown that it is possible to apply the discriminator as a quality assessment tool, which can be
used to remove samples with poor class representation from the artificial data distribution, further
increasing the recognition accuracy to 65.3%.
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Abbreviations

The following abbreviations are used in this manuscript:

GAN Generative adversarial network

WGAN Wasserstein GAN

WGAN-GP  Wasserstein GAN w. gradient penalty

infoGAN Information maximizing GAN

ACGAN Auxiliary classifier GAN

D Discriminator network

G Generator network

EPPO European and Mediterranean Plant Protection Organization
sPSD Segmented plant seedling dataset

MDPI Multidisciplinary Digital Publishing Institute

Appendix A. Implementation Details

Appendix A.1. WacGAN-Info Model

Tables A1l and A2 provide implementation details on the discriminator and generator network
architectures, respectively. The discriminator described in Table A1 is implemented as a convolutional
neural network that inputs 128 x 128 RGB images and outputs three vectors: an estimate of the source
distribution (fs-s), an estimate of the class (fc-c), and an estimate of the latent info variable (fs-i).
The generator described in Table A2 is implemented as a transpose convolutional neural network that
maps a vector to a 128 x 128 RGB image.

Table A3 provides a summary of the hyperparameters and other training settings used in the
implementation of the GAN model.
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Table A1l. Discriminator network architecture details.

Discriminator D(x)

Layer Kernel Size  Stride Output Shape Activation Function = Batch Normalization Dropout Padding Scheme
input - - batch x 128 x 128 x 3 - - - -
convl [3x3] [2x2]  batch x 64 x 64 x 16 Leaky ReLU No 0.5 Same
conv2 [Bx3] [1x1]  batch x 62 x 62 x 32 Leaky ReLU No 0.5 Valid
conv3 3% 3] [2x2]  batch x 31 x 31 x 64 Leaky ReLU No 0.5 Same
conv4 B x3] [1x1] batch x29 x29 x 128 Leaky ReLU No 0.5 Valid
convs [3x3] [2x2]  batch x 15 x 15 x 256 Leaky ReLU No 0.5 Same
convé B x3] [1x1] batch x 13 x 13 x 512 Leaky ReLU No 0.5 Valid
reshape - - batch x 86528 - - - -
fc-s [86528 x 1] - batch x 1 None No 0.0 -
fe-c [86528 x N¢]| - batch X N¢ Softmax No 0.0 -
fe-i [86528 x Nj] - batch x N None No 0.0 -

Table A2. Generator network architecture details.

Generator G(z,c)

Layer Kernel Size Stride Output Shape Activation Function  Batch Normalization Padding Scheme
input - - batch x (128 + N¢ + Np) - - -

fc [137 x 768] - batch x 768 None No -
reshape - - batch x 1 x 1 x 768 - - -

tconvl [5x 5] 2x2] batch x 5 x 5 x 384 ReLU Yes Valid
tconv2 [5x 5] 2x2] batch x 13 x 13 x 256 ReLU Yes Valid
tconv3 [5x 5] 2x2] batch x 29 x 29 x 192 ReLU Yes Valid
tconv4 (5% 5] 2x2] batch x 61 x 61 x 64 ReLU Yes Valid
tconvs (8 x 8] 2x2] batch x 128 x 128 x 3 Tanh No Valid

Table A3. WacGAN-info hyperparameters and training settings.

Parameter Value

Unstructured noise dimension 128

Batch size 64

Class scaling (w¢) 7.5

Information scaling (wy) 15

Training ratio (D : G) 5:1

Gradient penalty coefficient (1) 10

Leaky ReLU slope 0.2

Optimizer (Discriminator) Adam (Ir = 0.0002, 81 = 0.5, B2 = 0.9)
Optimizer (Generator) Adam (Ir = 0.0010, 81 = 05,8, = 0.9)
Weight, bias initialization xavier, constant(0)

Training iterations 12,000 epochs

Appendix A.2. External ResNet-101 Classifier

TensorFlow-Slim [30] implementation of ResNet-101 [25] was used as the base network for the
external classifiers. A ResNet-101 model pretrained on ImageNet [17] provided by TensorFlow-Slim
was used for initialization of all the network weights. The hyperparameters used for training the
network are summarized in Table A4. Training images were augmented in four steps. First, they were
zero-padded to 566 x 566 pixels, a random rotation was applied, they were cropped to 400 x 400 pixels,
and finally, they were resized to 128 x 128 pixels to match the input size of the WacGAN-info models.
During evaluation, the images were subject to the same augmentation, except for the random rotation.

Table A4. ResNet101 hyperparameters and training settings

Parameter Value

Batch size 24

Optimizer Stochastic gradient descent (Ir = 0.001)
Weight, bias initialization Pre-trained model on ImageNet

Training iterations 500 epochs
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