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Abstract: Burned area algorithms from radar images are often based on temporal differences between
pre- and post-fire backscatter values. However, such differences may occur long past the fire event,
an effect known as temporal decorrelation. Improvements in radar-based burned areas monitoring
depend on a better understanding of the temporal decorrelation effects as well as its sources. This
paper analyses the temporal decorrelation of the Sentinel-1 C-band backscatter coefficient over
burned areas in Mediterranean ecosystems. Several environmental variables influenced the radar
scattering such as fire severity, post-fire vegetation recovery, water content, soil moisture, and local
slope and aspect were analyzed. The ensemble learning method random forests was employed
to estimate the importance of these variables to the decorrelation process by land cover classes.
Temporal decorrelation was observed for over 32% of the burned pixels located within the study area.
Fire severity, vegetation water content, and soil moisture were the main drivers behind temporal
decorrelation processes and are of the utmost importance for areas detected as burned immediately
after fire events. When burned areas were detected long after fire (decorrelated areas), due to reduced
backscatter coefficient variations between pre- to post-fire acquisitions, water content (soil and
vegetation) was the main driver behind the backscatter coefficient changes. Therefore, for efficient
synthetic aperture radar (SAR)-based monitoring of burned areas, detection, and mapping algorithms
need to account for the interaction between fire impact and soil and vegetation water content.
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1. Introduction

Fire has a key role in the global climatic balance modifying the greenhouse gases (GHGs) emission
fluxes and the presence of aerosols in the atmosphere [1–3]. The Global Climate Observing System
(GCOS) considers fire disturbance as an essential climatic variable (ECV) due to the close relationship
between fire regime and climate. According to Bojinski et al. [4], an ECV is a physical, chemical,
biological, or a group of linked variables that have a major influence on the climate system and are
key to predicting climate evolution. In 2010, the European Space Agency (ESA) started the Climate
Change Initiative (CCI), a program focused on deriving remote sensing-based information on different
ECVs to improve climate modeling efforts [5,6]. Given its importance for climate modeling [7,8],
fire disturbance was included in the CCI program (Fire CCI) since the beginning. The aim was to
produce long-term consistent time series of global burned area maps [9]. The most recent global
burned area products estimate that around 4 million km2 are burned every year [10,11]. However,
there is still a remarkable uncertainty about the worldwide burned area extent [12], since the currently
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available global products are limited by (i) the use of passive remoted sensing datasets, which is
associated with limitations in areas of persistent cloud cover (i.e., inter-equatorial latitudes), and (ii)
relatively coarse spatial resolutions (250 m), which makes the detection of small fires difficult [13,14].
A recent comparison between burned area products from Sentinel-2 and Moderate Resolution Imaging
Spectrometer (MODIS) for Africa indicated that the latter missed almost half of the total burned area,
mostly due to small fires omission (<100 ha) [15].

Synthetic aperture radar (SAR) data have been increasingly used for land cover mapping, given
their independence from cloud cover and solar illumination conditions [16,17]. Burned area mapping
algorithms have been developed from diverse SAR images, such as those acquired by the European
Remote Sensing (ERS) satellites (ERS-1 and ERS-2) [18–24], RADARSAT [17,25], and the Advanced
Land Observation Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) [26].
These SAR-based approaches were, however, limited by (i) the low temporal resolution of the satellites;
(ii) the reduced number of polarizations available; (iii) the steep viewing geometries, which were
less suitable for vegetation monitoring; and (iv) data access restrictions. With the launch of ESA’s
Sentinel-1 satellites these shortcomings were largely eliminated due to the significant improvement of
the revisit period (i.e., theoretical revisit period of three days for ascending and descending passes
combined), availability of dual-polarization datasets (vertical–vertical, VV, and vertical–horizontal,
VH polarizations), shallower incidence angle, and an open data access policy. Such advancements have
generated interest in developing regional [27,28] to global [29] burned area mapping algorithms and
products (i.e., FireCCIS1SA10 for the Amazon basin) based on Sentinel-1 SAR data. Most algorithms
use the amount of signal returned to the sensor (backscatter coefficient) without considering the phase
information (interferometry) as SAR data processing becomes more complex and the accuracy of the
burned area product is not improved when compared to algorithms based on backscatter coefficient
alone [30].

Burned area mapping approaches often use temporal differences between pre- and post-fire
datasets [27–29,31,32]. Generally, over vegetated areas, the post-fire backscatter coefficient decreases
when compared to unburned areas due to the reduction of the scattering elements (i.e., leaves and
branches) through combustion [33,34]. However, opposite trends may be observed, particularly when
rainfall occurs after a fire event, since the removal of vegetation allows for increased soil surface
scattering particularly for the co-polarized waves [22,25,35]. Furthermore, changes of the backscatter
coefficient in areas affected by fire may take place long past the fire event (up to several months),
an effect known as temporal decorrelation [29,36]. One should notice that temporal decorrelation
was observed not only over fire-disturbed areas and C-band data. Similar effects were observed for
L-band data over areas affected by logging [37]. Therefore, a better understanding of the temporal
decorrelation effects and its sources is needed to improve SAR-based burned area mapping algorithms.
Thus, the specific objective of this study was to evaluate the influence of different environmental
variables that may obscure fire combustion effect on the backscatter coefficient immediately after a fire.

2. Study Area and Datasets

The study was carried out in Portugal over fire-affected areas located in tile 29TNE of the Military
Grid Reference System (MGRS). The area was affected by large fires in 2017 (Figure 1).

Besides the large areas affected by fires, tile 29TNE was also selected since (i) Sentinel-1 A/B
acquisitions from ascending and descending passes were available at the nominal temporal frequency
of six days [38]; (ii) ancillary data on environmental variables at a detailed spatial resolution were
available from the Copernicus Land Monitoring Service program; and (iii) cloud cover was low (annual
mean cloud cover of 27.2% as computed from MODIS images) when compared to the mean cloud
cover over all Europe [39], which allowed using optical sensors indices as a proxy for a range of
environmental variables that informed the analysis.

https://edatos.consorciomadrono.es/dataset.xhtml?persistentId=doi:10.21950/VTDZ1L
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Figure 1. Location of the study area and fire scars.

The SAR dataset was formed by temporal series of dual-polarized (VV and VH polarizations)
C-band backscatter coefficient acquired by the Sentinel-1 A/B sensors. The ground range detected
(GRD) product acquired using the interferometric wide (IW) swath mode was downloaded from online
repositories. As ancillary datasets, optical images acquired by Sentinel-2 MultiSpectral Instrument
(MSI) were retrieved. The Sentinel-2 images were used to derive proxy spectral indices for a range of
environmental variables (e.g., vegetation water content, fire impact) that may affect C-band scattering
processes. Sentinel-1 and -2 images were retrieved from Copernicus Open Access Hub. In addition,
information on land cover and surface soil moisture (SSM) were extracted from operational products
available through the Copernicus Land Monitoring Service. The Corine Land Cover (CLC) 2018 Version
20b2 at 100 m pixel spacing was used to obtain information on land cover types. The Copernicus
Global SSM product, derived from Sentinel-1 data, was used to obtain information on soil moisture in
the top few centimetres at 1 km spacing [40]. Lastly, topographic information was derived using the
global digital elevation model (DEM) available from the Shuttle Radar Topography Mission (SRTM) at
30 m pixel spacing.

Reference fire perimeters were obtained from atmospherically corrected Landsat-8 optical images
retrieved from the United States Geological Survey repository (USGS). The fire perimeters were used
to differentiate between burned and unburned pixels during the analysis. Landsat-8 images were used
to maintain independence from the environmental variables estimated from Sentinel-2 [30].

3. Methods

3.1. Earth Observation Data

The Orfeo ToolBox (OTB), an image processing software developed by the National Centre for
Space Studies (CNES) [41], was used to pre-process the Sentinel-1 GRD images. The pre-processing
step includes SAR data clipping according to the specified MGRS tiles and radiometric normalization
to gamma nought (γ0) through the gamma nought lookup table provided with the product metadata.
The calibrated images were orthorectified to ground geometry using the topographic information
derived from the SRTM. Subsequently, the orthorectified images acquired from the same orbital path,
but provided within different slices, were mosaicked. Finally, a multi-temporal filtering was carried
out using images from the same orbital path [42]. The GRD data were processed to 20 m (Sentinel-1
nominal spatial resolution) and aggregated in post-processing to 40 m spacing, deemed more suitable
for burned area detection and mapping from the Sentinel-1 C-band backscatter coefficient due to the
reduced speckle [43]. The equivalent number of looks for the temporally filtered, spatially aggregated
images was on average 75.

https://scihub.copernicus.eu/
https://land.copernicus.eu/
https://www2.jpl.nasa.gov/srtm/
https://www.usgs.gov/
https://www.orfeo-toolbox.org/
https://cnes.fr/en
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Bottom of atmosphere (BOA) surface reflectance images were derived using the sen2cor (v.2.4.0)
atmospheric correction algorithm from Level-1C (L1C) Sentinel-2 MSI images. Besides atmospheric
corrections, sen2cor also allowed the ability to carry out topographic corrections based on the SRTM
DEM. The resolution selected during the execution of sen2cor was 20 m, with the processed images
being resampled (using a bi-cubic interpolation) to 40 m to match the spatial resolution of the processed
Sentinel-1 SAR images. The soil moisture product was also resampled to 40 m using the same
resampling method.

3.2. Ancillary Data

Variables that may affect the C-band scattering process from vegetated areas were evaluated to
ascertain their relationship with the observed temporal decorrelation. Fire severity, vegetation growth,
and vegetation water content were studied through proxies (i.e., vegetation indices) estimated from
Sentinel-2 optical images. Soil surface moisture was retrieved from the Copernicus Global Land Service
while the SRTM digital elevation model was used to derive the topography-related variables (i.e., local
incidence angle and slope orientation).

3.2.1. Fire Severity

Fire severity is the degree of organic matter loss due to fire combustion and is strongly related to
fire intensity [44]. The SAR backscatter coefficient from burned areas is conditioned by fire severity
given the sensitivity to the amount of vegetation scattering elements [45,46]. To estimate fire impact on
vegetation, the relativized burn ratio (RBR) proposed by Parks et al. [47] (Equation (1)) was computed.
RBR was shown to accurately represent fire severity levels [48–50] and has a closer relationship with
the composite burn index [51], in situ measurement of fire impacts on vegetation when compared to
other spectral indices. The RBR was derived using the normalized burn ratio (NBR) [52] (Equation (2))
and its temporal difference between the pre- and post-fire images, the dNBR (Equation (3)).

RBR = (dNBR) /
(
NBRpre + 1.001

)
(1)

NBR = (NIR− SWIR2) / (NIR + SWIR2) (2)

dNBR = NBRpre− f ire −NBRpost− f ire (3)

where NIR and SWIR2 were derived from surface reflectivity of Sentinel-2 Bands 8A and 12,
respectively.

3.2.2. Water Content

The water content of vegetation and soil may alter dielectric proprieties and hence microwaves
scattering [53,54]. In this study both vegetation and soil water content were included as variables that
may induce temporal decorrelation. The normalized difference water index (NDWI, Equation (4)) was
shown to be related to the liquid water molecules in canopies [55] and was therefore used as a proxy to
evaluate general vegetation wetness. The Copernicus Global Surface Soil Moisture product, generated
at 1 km pixel spacing from Sentinel-1 data, was used as a source of soil water content information [40].

NDWI = (NIR− SWIR1) / (NIR + SWIR1) (4)

where SWIR1 is the surface reflectivity of Sentinel-2 band 11.

3.2.3. Vegetation Growth

The normalized difference vegetation index (NDVI, Equation (5)) [56,57] is the most extensively
used remote sensing index for vegetation monitoring [58]. This index offers information about general
vegetation greenness, which depends on chlorophyll content and is related to canopy structure [59].
NDVI was used as a proxy to evaluate short-term post-fire vegetation recovery, since the saturation of
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the index in Mediterranean ecosystems appears between 5–10 years after the fire event, depending on
the vegetation type [60,61].

NDVI = (NIR− RED) / (NIR + RED) (5)

where RED is the surface reflectivity of Sentinel-2 band 4.

3.2.4. Topography

Topography has a considerable influence on the C-band backscatter coefficient from burned areas
through both terrain slope and its orientation with respect to the sensor looking geometry [29,62].
The local incidence angle (LIA) has been frequently used to analyze topography effects on the
backscatter coefficient [25,63–66]. However, the wide swath (250 km) of the Sentinel-1 satellites
(IW mode) results in an incidence angle variation of approximately 17◦ from near (29◦) to far (46◦)
range. Thus, the resulting LAI values, which are conditioned by the local slope and the satellite
incidence angle, may not necessarily represent the same topographic conditions from near to far range.
Therefore, in this study, the local slope and the orientation angle were used to evaluate the effect of
topography. Both slope and orientation (aspect) were measured in degrees and derived from the SAR
looking geometry and SRTM DEM. The slope values were between 0◦ to 90◦, meanwhile, the aspect
values were between −180◦ and 180◦. Negative values indicate slopes oriented away from the sensor
while positive values indicate slopes oriented toward the sensor.

3.2.5. Land Cover

Information on land cover type was obtained from the Corine Land Cover (CLC) 2018
classification [67]. To reduce the amount of land cover classes, the CLC 2018 classification was
reduced to (i) not burnable, which included artificial surfaces, water bodies, wetlands, sands,
bare rocks, previous burned areas, and permanent snow and ice surfaces; (ii) crops, which included all
agricultural CLC classes; (iii) herbaceous, which included the natural grasslands, sparsely vegetated
areas, moors, and heathlands; (iv) shrubs, which included sclerophyllous vegetation and transitional
woodland-shrub; and (v) forests, which included broad-leaved, coniferous and mixed forest CLC
classes. The re-classified CLC map was resized to 40 m, through nearest-neighbor interpolation,
to match the pixel spacing of the SAR images.

3.3. Reference Fire Perimeters

The reference burned perimeters were obtained following an established framework [68–71].
Landsat-8 BOA reflectance images were classified in burned, unburned, and no data (i.e., clouds, cloud
shadows) using a random forests classifier trained with manually selected polygons. The polygons
were digitized over a false color composite (RGB: SWIR, NIR, R) that allowed for a clear differentiation
between burned and unburned patches. Polygon selection followed an iterative process (selection/
training/classification), which was repeated until the classification was deemed accurate according to
a visual inspection. Finally, the reference perimeters were visually revised again to correct possible
misclassifications [29]. A nearest-neighbor interpolation was utilized to resize the reference burned
area perimeters to 40 m.

3.4. Estimating Temporal Decorrelation

In this study, only VH data were used to estimate the temporal decorrelation since the cross-
polarized waves are more responsive to volumetric scattering from vegetation over Mediterranean
ecosystems and less affected by changes in soil surface properties (e.g., soil moisture, surface roughness)
when compared to the co-polarized (VV polarization) channel [36,72–74]. The different sensitivity
between co- and cross-polarized waves when deriving burned area maps were previously noted by
Belenguer-Plomer et al. [29].
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To separate burned pixels affected by temporal decorrelation, a potential burned area detection
framework was developed to determine if the temporal (pre- and post-fire) and contextual (burned
and unburned) variations of VH backscatter were significant to label a pixel as burned. The potential
detection framework was based on the analysis of the statistical properties of the VH backscatter
coefficient (dB) within and outside the reference fire perimeters at different dates before and after the
fire event date (Figure 2). The detection framework was established to ascertain the post-fire date at
which a pixel may be labeled as burned using the SAR time series. The backscatter analysis was carried
out for all burned pixels (determined from Landsat imagery) as well as unburned pixels located within
500 m of the fire scars. The data was first stratified by land cover class, local incidence angle [64] and
slope orientation with respect to the sensor looking geometry (i.e., forward and backward-looking
slopes, respectively). A pixel was labeled as burned when (i) post-fire VH backscatter was greater than
the maximum or lower than the minimum backscatter values recorded for the month before the fire
date (t0), and (ii) the difference between the backscatter coefficient of the pixel and the mean of the
unburned reference pixels (within the corresponding land cover class) was greater than the maximum
recorded during the month preceding the fire. When pre- to post-fire backscatter variations were small
immediately after fire event (i.e., first post-fire SAR image, t+1) but sufficiently high to label a pixel as
burnt sometime after the fire and t+1, the pixel was considered temporally decorrelated. The lack of
temporal decorrelation is exemplified in Figure 2a, as the pixel may be labeled as burned immediately
after the fire (t+1). On the contrary, the presence of temporal decorrelation is shown in Figure 2b, since
the pixel may be labeled as burned (according to the two criteria above) some time after the fire date
and t+1, in t+i, being i > 1.

pre-fire post-fire

Fire

a)

pre-fire post-fire

Fire

b)

Figure 2. Graphical representation of potential burned area detection at pixel level for (a) absence of
temporal decorrelation and (b) presence of temporal decorrelation. Th1 and Th2 are the maximum and
the minimum backscatter coefficient, respectively, recorded within one month before the fire time (t0)
of a given burned pixel (b), Md(b, u)pre is the maximum difference of backscatter coefficient between b
and the mean of the unburned reference pixels (u) one month before t0, and d(b, u)t+1 and d(b, u)t+i

represent the difference of backscatter coefficient between b and u for different post-fire images.

3.5. Variables Analysis

The importance of the variables which affect the C-band backscattering process in burned areas
(see Section 3.2) and thus on the perceived temporal decorrelation was analyzed by using an ensemble
learning algorithm, the random forests [75]. Random forests is frequently used in classification
problems and consists in a group of decision trees {h (x′, Θz) , z = 1, ...}, where x′ is the input vector of
a pixel (x), and Θz are a sampled vectors independently bootstrapped with replacement in each decision
tree (z). A unique class for x is provided from each tree, with class most often voted being finally
assigned to x [75]. During the classification process, random forests computes importance measures
for each independent variable [75,76]. One may use the random forest importance, whose physical
meaning is based on the degree with which each variable influences the classification process [77],
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as information to assess the variable significance over a specific study area. Indeed, in recent years an
increasing number of studies used random forests to such ends [62,78–81].

Here, the importance of the selected environmental variables was estimated by building random
forest models. Such models were customized through the number of trees and training samples
used. The number of trees is a key part of the random forests adjustment as it is known that the use
of more trees generates a convergence of the generalization error and reduce over-fitting [75,76,82].
However, the use of more trees requires more computational resources. A preliminary empirical
analysis concluded that 200 trees provided the best balance between speed and accuracy as statistically
significant differences (t-test, 95% confidence interval) between variable importance scores obtained
from models of 100 and 200 trees, respectively, were not observed (p-value of 0.91). The number of
variables taken into account for trees growing in each split was computed as the square root of the total
number of variables since this reduces the correlation of trees [76,83]. Finally, for inter-comparability
purposes, the variable importance values were converted to percentages (Equation (6)) to evaluate
differences between land cover classes as in previous studies [62].

%VIik =
VIik × 100
∑n

i=1 VIk
(6)

where VI is the variable importance of a given variable i and a land cover class k, and n is the total
number of variables considered in k.

4. Results

4.1. Temporal Decorrelated Pixels over Burned Areas

Over the entire study area, the frequency of pixels not affected by the temporal decorrelation
(not-decorrelated pixels) was higher when compared to pixels mapped as burned at some point after
the fire (Figure 3). Also, it was evident that pixels affected by temporal decorrelation were concentrated
over specific areas.

Not-decorrelated

Decorrelated

Figure 3. Not-decorrelated and decorrelated burned pixels.

Not-decorrelated pixels represented the majority (68%) of all burned pixels over all land cover
classes, with decorrelated pixels representing the remaining 32% of the burned area. Over all land
cover classes, most of the decorrelated pixels (86.88%) were detected within the first post-fire month
(Table 1). Similar trends were observed for each land cover class. An ANOVA analysis showed no
significant difference (p-value > 0.05) between the percentage of decorrelated pixels over different
detection periods in each land cover class.
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Table 1. Burned area distribution (km2) as a function of temporal decorrelation by land cover classes.
PD stands for potential detection month, after post-fire date.

TD Crops Herbaceous Shrubs Forests All Land Cover Classes

ND 68.26 68.71 380.9 466.77 984.64
PD 1st 37.30 21.76 148.36 187.03 394.45
PD 2nd 6.06 3.01 15.07 17.86 42
PD 3rd 1.34 0.65 2.64 3.15 7.78
PD 4th 0.88 0.44 1.8 1.82 4.94
PD 5th 0.38 0.57 1.63 1.01 3.59
PD 6th 0.13 0.27 0.56 0.29 1.25
Total 114.35 95.41 550.96 677.93 1438.65

4.2. Decorrelation Analysis

For the first post-fire SAR acquisition, the backscatter coefficient (γ0
post− f ire − γ0

pre− f ire) for
not-decorrelated burned pixels decreased for all land cover classes (Figure 4, class NdA). Conversely,
for pixels affected by temporal decorrelation, the backscatter coefficient was largely stable for the
first post-fire SAR acquisition (Figure 4, class DeA). For temporally decorrelated burned pixels,
the backscatter variations were considerable (Figure 4, class DeB), when considering later SAR
acquisitions (γ0

dec−date − γ0
pre− f ire, where dec-date was the post-fire SAR acquisition when burned

area detection criteria were met, see Section 3.4). However, the backscatter coefficient showed variable
trends (i.e., decrease and increase) when compared to the pre-fire backscatter values.

Figure 4. Temporal backscatter coefficient variations (∆γ0 dB) for vertical–horizontal (VH) polarization
for not-decorrelated (Nd) and decorrelated pixels (De). Boxplots show post-fire minus pre-fire values
(A) as well as detection date (dec-date) minus pre-fire (B) values as a function of land cover class.

4.3. Variable Importance on Post-Fire Backscatter Coefficient

Fire severity (RBR) was evidenced as the most important variable when separating (i.e., classifying)
decorrelated from not-decorrelated pixels over all land cover classes except for the Herbaceous class
(Figure 5). Over Crops and Forests classes, the fire severity importance was considerably higher
(around 30%) when compared to the remaining variables. For the Shrubs class, fire severity was the
most important although it was closely followed by Slope and variations in the vegetation water
content between post- and pre-fire images as estimated through the dNDWI. Variable importance by
land cover classes was related to the mean topographic slope (Table 2). Aspect and Slope showed
high importance over Herbaceous and Shrubs classes which covered higher topographic slopes when
compared to the Crops and Forests classes (Table 2). The reduced importance of Aspect and Slope on
the decorrelation process for the Crops class was explained by its location on low lying terrain when
compared to the remaining land cover classes (Figure 6).
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Figure 5. Relativized variable importance (VI) over temporal decorrelation process of burned areas by
land cover classes. The temporal differences of the normalized difference vegetation index (NDVI),
normalized difference water index (NDWI), and soil moisture (SSM) were computed as post-fire minus
pre-fire (d).

Table 2. Mean topographic slope (◦) and confidence interval (95%) as derived from the Shuttle Radar
Topography Mission (SRTM) by land cover classes.

Crops Herbaceous Shrubs Forests

6.3 ± 1.06 15.92 ± 1.01 11.51 ± 1.09 9 ± 1.02

Crops
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Figure 6. VH polarization backscatter coefficient (γ0 dB) by aspect (◦) and land cover classes at post-fire
date. Positive and negative aspect angles correspond to slopes oriented towards and away from the
sensor, respectively. Data density is shown as a percentage.

Histograms for post- to pre-fire backscatter coefficient change by land cover class and variable
(Figure 7) show that increased fire severity translates in a high frequency of not-decorrelated pixels,
except in the Herbaceous class, where no significant differences were found. The frequency of
decorrelated and not-decorrelated pixels was marginally affected by changes in vegetation growth
(i.e., dNDVI) and vegetation water content (i.e., dNDWI), with largely similar frequencies observed
along the post-to pre-fire variables change gradient. The influence of Slope was analyzed as a function
of Aspect (positive-slope oriented towards the sensor and negative-slopes oriented away from the
sensor) since both variables affect the distance between canopy top and ground surface [84]. Lower
distances are observed for steep slopes oriented towards the sensor when compared to flat areas and
slopes oriented away from the sensor (Figure 8). Over flat areas (slope below 5◦) the proportion of
decorrelated and not-decorrelated pixels was similar over all land cover classes. However, over sloped
areas (slopes > 5◦), decorrelated and not-decorrelated pixels proportions differed. For decorrelated
burned pixels, post-fire soil moisture was higher when compared to not-decorrelated areas, especially
when only pixels from patch size greater or equal than 1 km2 were considered (the spatial resolution
of the soil moisture product used is 1 km).
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Figure 7. Relativized frequency (% of pixels) for decorrelated (De) and not-decorrelated (Nd) pixels by
land cover classes (C—crops, H—herbaceous, S—shrubs, and F—forests) for each variable of interest.
The temporal differences (d) were computed as post-fire minus pre-fire values. Blue and red lines
represent not-decorrelated and decorrelated pixels, respectively, from patches greater or equal than
1 km2.
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a) b) c)

Figure 8. Illustration for the distance travelled by radar microwaves through the forest canopy for (a)
slopes oriented towards the sensor, (b) flat areas, and (c) slopes oriented away from the sensor.

4.4. Variables Analysis over Decorrelated Pixels

As temporally decorrelated pixels are not detected immediately after the fire, it implies that some
of the variables affecting the scattering process suffered variations between the post-fire date and the
detection date (dec-date). The importance of each variable, except for Slope and Aspect which are not
affected by temporal variations, for burned pixels detection was computed through random forests
after differentiating between decorrelated pixels where the backscatter coefficient decreased (Figure 9a)
and pixels where the backscatter coefficient increased (Figure 9b) with respect to the pre-fire values.

Crops Herbaceous Shrubs Forests
0

20

40
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80
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I 
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Crops Herbaceous Shrubs Forests
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20

40

60

80
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Figure 9. Relativized importance of the variables (VI) which changed between dec-date and post-fire
and made possible meeting the burned area potential detection criteria after post-fire. Decorrelated
burned pixels where the backscatter coefficient decreased (a) and increased (b) between dec-date and
pre-fire were analyzed separately. Land cover classes were considered. The temporal differences of the
variables (d...′) were computed as dec-date minus post-fire.

When the backscatter coefficient decreases at some point after the fire, the most important variables
for burned area detection were temporal changes in soil moisture followed by vegetation growth
(dSSM′ and dNDVI′, respectively, in Figure 9a) over all land cover classes except Herbaceous for which
all variables were equally important. Fire severity (RBR) importance was higher when the backscatter
coefficient decreased at dec-date when compared to areas where the backscatter coefficient increased
(Figure 9). Conversely, when the backscatter coefficient increased, the most important variable for
burned area detection was, by a large margin, the soil moisture (dSSM′ in Figure 9b), although for the
Herbaceous class the importance of the time differences of the soil moisture was lower when compared
to the remaining land cover classes.

A backscatter coefficient reduction or increment at the dec-date, when compared to pre-fire values,
for decorrelated burned pixels was mainly related to a reduction or respectively increment in soil
moisture (Figure 10a). The importance of the dNDVI′, particularly over Forests, when the backscatter
coefficient decreased was explained by a reduction in vegetation greenness (Figure 10b,c). Decorrelated
areas with backscatter decreasing between pre-fire and dec-date were affected by slightly higher fire
severity when compared to areas where the backscatter increased between the two dates, particularly
over the Forests class (Figure 10d).
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a) b)

c) d)

Figure 10. Temporal differences of soil moisture (SSM) (a), NDVI (b), and NDWI (c) between the
dec-date and the post-fire date (d...′), and relativized burn ratio (RBR) (d) computed between pre- and
post-fire date. The analysis was carried out by land cover classes (C—crops, H—herbaceous, S—shrubs,
and F—forests) for temporally decorrelated pixels that showed backscatter coefficient reduction (r) and
increments (i) at dec-date when compared to the pre-fire datasets.

5. Discussions

The existence of spatial patterns for decorrelated and not-decorrelated burned pixels suggested
relationships between the temporal decorrelation and the environmental variables, removing the
possibility that SAR speckle or detection uncertainty may induce this process randomly. Further,
the radiometric uncertainty of the Sentinel-1 sensor, 0.36–0.38 dB [85], did not influence the results
as most (99.7%) not-decorrelated pixels showed post- to pre-fire temporal differences above this
radiometric uncertainty.

Over most land cover classes, the utmost important factor controlling the temporal decorrelation
process was fire severity for which higher values were observed over not-decorrelated areas when
compared to the decorrelated ones. Such a trend was explained by the higher loss of scattering elements
in areas affected by high fire severity [45,46], which translates into a greater backscatter change with
respect to unburned vegetation and increased the potential for detecting the affected area immediately
after the fire (no temporal decorrelation). As expected, over densely vegetated areas (Forests), fire
severity was the most important factor affecting the temporal decorrelation process, which aligns with
previous findings related to the sensitivity of the C-band backscatter coefficient to fire impacts in the
Mediterranean forests [45]. For the Herbaceous class, fire severity was the second most important
factor affecting temporal decorrelation after terrain orientation with respect to the sensor looking
geometry (i.e., Aspect). This may be related to the mean topographic slope of the Herbaceous class,
which was higher when compared to remaining land cover classes. Besides, the divergent results of
the Herbaceous may be partly explained by the reduced C-band sensitivity to fire effects over burned
herbaceous or grassland areas [86] as radar waves interact more with the soil surface. For this class,
Aspect had higher importance when compared to Slope as the low vegetation height and the lack
of woody stems result in low C-band scattering which is further reduced after the dry season [86].
Thus, in areas covered by Herbaceous vegetation, the C-band microwaves mostly interact directly with
the ground, with scattering being highly conditioned by orientation with respect to the SAR sensor
(i.e., Aspect).

Water content variations had considerable importance for the decorrelation process over most
land cover classes. Higher post-fire soil moisture was observed for decorrelated burned pixels when
compared to not-decorrelated ones. This resulted in a higher dielectric constant and consequently a
higher backscatter coefficient, which may mask out scattering decreases due to the combustion of the
vegetated scattering elements since soil influence on the scattering process increases as vegetation
is removed through combustion [64]. However, the perceived importance of soil moisture on the
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temporal decorrelation process was reduced when compared to temporal variations of vegetation water
content (dNDWI) since (i) the random forests models were constructed considering all burned pixels,
regardless of burned patch size. Thus, approximately half of the pixels used for training the random
forests models (44.15% of decorrelated and 62.5% of not-decorrelated classes) were extracted from
patches below 1 km2, the spacing of the soil moisture product. This may have affected the soil moisture
estimation accuracy, since when only pixels from patches above 1 km2 were analyzed, a clearer effect
of soil moisture over the decorrelation process was observed; (ii) for 40% of the decorrelated pixels and
38% of the not-decorrelated ones the pre- to post-fire temporal variations in soil moisture were lower
than 0.088 m3/m3, the error of the soil moisture product [40]; and (iii) the dNDWI was derived from
atmospherically corrected Sentinel-2 data at the same pixel spacing as the radar images (40 m), which
thus having less uncertainty when compared to the SAR based soil moisture product [87]. Sentinel-1
based soil moisture estimation may be affected by the groundwater content, intercepted rain, and SAR
radiometric uncertainty [88]. These reasons may explain the difference in the observed importance on
the decorrelation process between dNDWI and dSSM. However, this importance contrasts with the
low differences of dNDWI between decorrelated and not-decorrelated pixels. It should be noted that
random forests models allow for non-linearities and interactions between all variables considered [89].
Thus, it was evidenced that temporal decorrelation over burned areas is a complex process with several
variables having a concurrent influence.

Decorrelated pixels tended to have a higher concentration over steep slopes oriented towards
the sensor, especially for Herbaceous and Shrubs classes. Conversely, not-decorrelated pixels had a
higher presence over shallower slopes and both, positive and negative aspects. This result supports
previous findings suggesting increased C-band sensitivity to fire over sloped terrain oriented towards
the radar sensor [29,64]. According to the soil moisture product, over sloped areas (>10◦) soil moisture
increased on average for the post-fire images in both Shrubs and Herbaceous classes. As explained
above, soil moisture increment may have masked backscatter coefficient changes due to vegetation
removal and consequently influenced the decorrelation process. Furthermore, the vegetation effect on
the backscatter coefficient over steep slopes oriented towards the sensor (i.e., where the presence of
decorrelated pixels was high) is reduced while the ground effects increased since the distance between
canopy top and the ground surface is lower when compared to flat areas and slopes oriented away
from the sensor [84]. Such topographic effects are reduced over Forests due to denser canopy, which
reduces ground interaction of C-band microwaves and over Crops due to its predominant location
over flat areas. The larger scattering elements found in Forest and Shrubs vegetation coupled with
the reduced slope allowed for increased C-band scattering from vegetation. Conversely, scattering
from ground was reduced, which in turn reduced the importance of the Aspect in Forest and Shrubs
classes. The root mean square error of the STRM product over Portugal was estimated as 4 to 6 meters
depending on land cover and terrain slope [90]. However, SRTM errors may have not affected the
results of this study as most elevation errors were found over (i) abrupt slopes, covered by unburnable
land cover classes; and (ii) forested areas, mainly located over flat areas and smooth slopes, with low
topography related effects on radar scattering.

Over the not-decorrelated burned pixels the backscatter coefficient decreased after the fire in all
land cover classes due to the reduction of vegetation scattering elements through fire-combustion,
an effect particularly important for the cross-polarized waves [72–74]. However, over the decorrelated
burned pixels both reductions and increments of the backscatter coefficient were observed, which
indicates that at dec-date, a much wider range of environmental changes generated the backscatter
coefficient variations needed to detect the burned area.

Backscatter coefficient reduction at dec-date, when compared to previous records, was mainly
attributed to reduced soil moisture since burned areas have reduced albedo as well as increased sun
exposure as a result of biomass loss. These effects may generate a higher temperature regime after
the fire event, which may increase soil moisture loss [91] and result in reduced dielectric constant and
consequently reduced radar scattering from the ground. Also, the vegetation combustion, which is
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related to the fire severity, results in a reduced number of scattering elements, which enhances the
importance of soil surface scattering (and thus soil moisture) when compared to unburned areas [64,66].
Alternatively, decreasing water content and vegetation greenness after the fire may occur when trees
are damaged by fire but not completely burned. Such trees maintain some scattering elements (e.g.,
leaves) immediately after the fire, thus sustaining higher levels of radar scattering. However, as a
consequence of fire damage, such trees may not recover and die shortly after the fire, which results in
reduced backscatter coefficient as dry vegetation has a lower dielectric constant when compared to
healthy vegetation [92].

On the other hand, the backscatter coefficient increment at dec-date was mainly related to
increased soil moisture. Post-fire vegetation recovery (dNDVI′) and canopy water content variations
(dNDWI′) resulted in an increased backscatter coefficient at dec-date over burned areas. However,
dNDVI′ and dNDWI′ values per se have a low influence when distinguishing burned from unburned
pixels since unburned areas showed similar or greater changes. Hence, the increase of the NDVI
and NDWI values at dec-date when compared to post-fire date was most likely related to vegetation
phenology which was an underlying change that incremented the backscatter coefficient over both
burned and unburned areas. Short-term post-fire vegetation recovery in the Mediterranean basin is
dominated by (i) regeneration of fire-damaged stems, stumps, and roots (depending on the species);
(ii) seeding from serotinous and semi-serotinous cones; and (iii) growth of understory species [93].
Since this study considered data acquired less than one year after the fire event, the NDVI increment
due to such recovery processes has little influence on the backscatter coefficient increment, as few
months are insufficient to substantially change scattering processes in slow-growing Mediterranean
vegetation. Therefore, it seems most of backscatter increases at dec-date were related to increased soil
and vegetation water content.

6. Conclusions

This study analyzed C-band temporal decorrelation processes over burned areas in a
Mediterranean environment. The main factors influencing post-fire radar scattering were analyzed as
a function of four land cover classes: Crops, Herbaceous, Shrubs, and Forests. Over the studied area, a
third of the burned pixels were affected by temporal decorrelation. For most of these pixels (86.9%)
the detection was possible during the first month after the fire although not on the first post-fire SAR
acquisition. Fire severity and water availability (in soil or vegetation) were the most important factors
affecting the temporal decorrelation over all land cover classes except Herbaceous. The differences
observed for the Herbaceous class were most likely related to the reduced sensitivity of C-band to
monitor such vegetation types as well as the location in areas of higher topographic slopes.

Generally, the backscatter coefficient decreased in burned areas not affected by temporal
decorrelation. The decrease was attributed to the reduction of vegetation scattering elements (i.e., leaves
and branches) through fire combustion. Over burned areas affected by temporal decorrelation,
the backscatter coefficient showed diverging trends, e.g., an increase or decrease. Decreasing
backscatter coefficient some time after the fire was attributed to (i) reduced soil moisture, and (ii)
delayed vegetation death, which reduced post-fire scattering. For decorrelated pixels where the
backscatter coefficient increased after the fire, the main factor affecting burned area detection was
rainfall and the subsequent increase in soil moisture. In such areas, the backscatter coefficient increased
more when compared to unburned areas as reduced vegetation cover increased the proportion of
scattering from the wet soil surface.

The main limiting factor of the analysis was the reduced spatial resolution of the Copernicus soil
moisture product (1 km) and its availability (Europe alone). Future work shall focus on analyzing
the decorrelation process in more ecosystems to confirm these findings once ancillary products of
sufficient spatial resolution become available worldwide.
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