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Abstract: Low cost and accurate 3D surface profiling can help in numerous industry applications
including inspection tasks, cleaning, minimizing bumps in navigation of non-uniform terrain,
aid navigation, and road /pavement condition analysis. However, most of the available systems are
costly or inaccessible for widespread use. This research presents investigation into the capability of
cheap and accessible sensors to capture the floor surface profile information. A differential drive
robotic platform has been developed to perform testing and conduct the research. 2D localization
methods are extrapolated into 3D for the floor capturing process. Two different types of sensors,
a 2D laser scanner and an RGB-D camera, are used for comparison of the floor profile capture ability.
The robotic system is able to successfully capture the floor surface profile of a number of different type
floors such as carpet, asphalt, and a coated floor. A key finding is that the surface itself is a significant
factor on the measured profile, i.e., dirt or other materials can cause false height measurements.
Overall, the methodology has proved a successful real time solution for creating a point cloud of the
floor surface.

Keywords: floor surface profile; surface map; laser scanner; RGB-D camera; point cloud; mobile robot;
robot operating system

1. Introduction

For a number of industry applications, a low cost yet accurate 3D surface profiling system is
required [1]. A 3D map can easily be achieved through the use of a 3D Terrestrial Laser Scanner
(TLS) [2—4], however, these can be costly, and therefore may not be practical for some applications.
In addition, these applications can often require large areas to be scanned and processed. This makes
using technology such as interferometry or lab based stylus systems not as practical despite the
incredible accuracy and resolution available. Effectively mapping a terrain, in particular, a floor for use
as prior knowledge is not widespread. Prior knowledge of a floor can help in navigation and decision
making in numerous applications. These include; inspection tasks, cleaning, minimizing bumps
in navigation of non-uniform terrain, aid navigation, and road/pavement condition analysis [5,6].
Mapping the floor, or surface profile mapping, has been achieved through similar means of creating
a 2D or 3D map. Optical Interferometry can provide high accuracy and high resolution surface
profiles. However, the process is often susceptible to errors due to vibration, temperature, or air
flow, and this often rules it out for a number of applications, such as larger floor areas. Gao et al. [7]
investigated two methods to minimize the errors due to vibration when using interferometry as a
method to map the surface of a shop floor. 3D Terrestrial Laser Scanners have been able to provide high
density point cloud surfaces, such as pavement and asphalt, that can then be processed into useful
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information [2—4]. These scanners are typically used as stationary measurement machines, however,
Chow et al. [8] investigated fusing an inertial Measurement Unit (IMU) with an RGB-D Camera for
assisting localization of a Stop and Go scanning solution. The Stop and Go style of mapping can
cause increased scanning time, and combined with an expensive 3D Terrestrial Laser Scanner, is not
practical for some applications. Moving an accurate yet cheaper 2D or ‘small measurement area’ sensor
over the target floor can be a feasible method of reducing both time and cost, and has potential for
low cost automation. Mobile Laser Scanning and Mapping systems have been of research interest
since the early 1990s [9] and can provide an autonomous and cheaper alternative to 3D mapping
solutions. Zlot et al. [10] investigated the use of replacing the expensive 3D laser scanners with a series
of 2D laser scanners mounted on a vehicle for mapping a mining tunnel. Three 2D laser scanners
were used, one mounted on a rotating platform performing 3D SLAM, and the other two mounted
vertically covering almost 360 degrees. The results were promising, showing the combination of SLAM
and surface mapping to create accurate 3D models. Banica et al. [11] used two sets of laser based
imaging systems spatially correlated through the use of proximity sensors, odometry, and geolocation.
Wen et al. [12] investigated using a single 2D laser scanner to provide localization, whilst a RGB-D
Sensor provided a 3D map of the environment. A common challenge for mobile mapping systems,
where Global Navigation Satellite information is not possible or reliable, is localization, and accurately
matching a measurement to a global frame. Wen et al. overcame this using their fused 2D LIDAR and
RGB-D Sensor using loop closure detection by particle weight as well as pose graph optimization by
minimizing nonlinear error functions, helping to minimize global inconsistencies. This paper describes
the development of a robotic research platform for testing the floor surface scanning and modeling
capability. The research platform is designed to be easily portable and enabling fast development
of control, as well as efficient testing of systems such as floor scanning. The development of the
platform is discussed in terms of the mechanical, electrical, and software systems used. The algorithm
for capturing the floor profile and for planning the coverage path is discussed. Initial tests of the
floor surface capture system provide insight into further development and challenges. A number
of the challenges are addressed and the methodology for testing as well as improving the system is
analyzed. Further improvements to the robotic platform after initial testing are discussed as well as
the methodology used to capture and measure the floor surface profile.

2. Robotic Platform Development

The floor surface capture system aims to utilize low-cost and accessible sensors. This can be
achieved through using one sensor to localize the robot and a second sensor to capture floor surface
data. The sensor can be moved through the environment and the resulting captured data stitched
into a 3D profile. In order to move a sensor through the environment to capture the required data,
a moving platform is required. This platform must be relatively robust, and capable of providing
an adequate support for the sensors to be mounted on it. Continuous scanning of an environment
also requires accurate localization of the robot. The robotic platform must therefore be capable of
localizing whilst capturing the floor surface profile data. A 3D surface profile of the floor must provide
enough accurate information for further application-specific analysis (such as flatness) to be performed.
The measurement process should also be easy to set up, autonomous, and be performed relatively
quickly. This was achieved through the use of a mobile robotic platform running Robot Operating
System (ROS). A 2D laser scanner was used to create a series of scan lines of the surface as the robot
moved. Each scan measured the distance to the floor along the scan. The scan lines were stitched
together using the robot’s position and orientation in space, creating a series of points that formed a
3D surface of the floor. Analysis of the accuracy of the resulting 3D point cloud can help identify key
application considerations and develop a low-cost surface profile mobile mapping system.
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2.1. System Requirements

The research platform is designed to be easily portable and enable fast development of control,
as well as efficient testing of systems such as floor scanning.

2.2. Mechanical System

The robotic platform (Figure 1) is a differential drive robot with two drive motors at the rear.
The front of the platform is supported by a castor wheel. The robot has two levels: one providing
a base for a horizontal laser scanner for SLAM, and the other holding components for control and
communication and providing a mount for a second sensor to scan the floor. An adjustable sensor
mount was developed to provide the means for measuring a floor profile at various angles and with
different sensors. The mount was designed to be relatively universal and sufficiently strong to hold a
variety of floor scanners in position as the robot moves around the room. The mount was designed to
hold components weighing at least 6 kg and could easily be adjusted 180-degrees in pitch and then
locked in place. It was made out of 3 mm steel bent into shape. Figure 1 inset shows the adjustable
mount with an Intel RealSense RGB-D camera on the underside and an IMU on the top. The camera is
mounted on a second adjustable frame that can be manually tuned to ensure that the camera is level.
The motors are mounted directly into the supports of the frame using 4x M5 bolts. This mounting is
sufficient for the test platform, but it may need to be strengthened for the final robot due to additional
loading from the weight of the extra components.

Controller
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unit

Floor .
Laser Scanner

W Differential
' Drive

SLAM laser
scanner

Sick LMS291

Figure 1. Mobile robotic platform. (a) Platform with two laser scanners for SLAM and floor scanning.
(b) Platform with a SLAM laser scanner and a floor scanning RGB-D camera.

2.3. Electrical System

The electrical system consists of power distribution and communication connections. A power
distribution board was designed to provide power to each component, protected by fuses and
controlled through relays. The main power demands are 24 V, 12V, and 5 V. The 24 V system is
limited to a maximum of 50 A from the battery and is protected by fuses. Each 12 and 5 V component
has a fuse to restrict current, ranging from 0.5 A fuses to 5 A fuses. Additional ports were supplied
for future expansion. A schematic of the power distribution board was designed using Circuit Studio.
The board takes in 24 V and provides 12 V via a 24 V to 12 V converter. The 12 V is then converted to 5 V
to power a microcontroller board (Arduino Uno) for relay control. There are 6 relays on the distribution
board, 4 x 24 V and 2 x 12 V, which can be turned on and off from the Arduino. Each output port is
protected by a fuse to help keep components safe. For a commercialized product, more-reliable control
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would be desirable; this could be achieved by a dedicated USB-controlled relay board or a PLC relay
board. This component can easily be swapped out to achieve the required functionality at a later time.

2.4. Software System

The robot uses the Robotic Operating System (ROS) framework for internal communication
and control [13]. ROS is an open-source system that allows for the creation of many nodes that
can communicate efficiently through the use of topics and services. The ROS system begins with
a core, which provides the base communication framework. Nodes can be added to the system,
which can communicate through the roscore using topics and services. Any node can publish or
subscribe to any topic or service, providing a highly modular system. Due to the open-source nature
of ROS, a community has provided a number of existing solutions to common problems, such as
Adaptive Monte Carlo Localization (AMCL), Gmapping, and SLAM. This results in an efficient and
proven framework. ROS was selected as the software framework because of its open-source nature,
the modularity provided by nodes, and the ability to accelerate development using existing solutions.
The ROS system for the research platform requires a number of components; the general architecture
is shown in Figure 2.
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Figure 2. ROS system architecture.

2.5. Floor Profile Creation

A ROS package was developed to capture laser scans of a floor profile and assemble these into
a point cloud that could then be analysed and used as prior knowledge. First, the raw laser scan
data is filtered so that only the floor in front of the robot, spanning a 60-degree angle, is captured
(Figure 1a). These laser scans are transformed through the robot relative to the robot’s base_link
in the global space. As the robot moves through the environment, the base_link transform moves
through the global coordinate system. This in turn moves the location of the laser scan and thus the
laser scan data. Each laser scan provides a line scan of the floor profile at a point in the 3D global
coordinate system. Assembling many of these single scan lines together therefore forms a series of
lines and thus a surface of the floor profile. The assembled scans are captured by the laser_assembler
package. A keyboard-controlled node calls the laser_assembler services to start and stop collecting
data. Once the laser_assembler service is called to stop assembling, a point cloud of the assembled
scans is published to the assembled_floor_scan topic. This topic can then be saved to a .pcd file for
analysis. This is performed in real-time; however, the point cloud can only be viewed and analyzed
once the full scan process has been completed. Alternative profile creation algorithms will be required
for different scanning methods, such as RGB-D; and this will be discussed in Section 6.5.
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3. Localization and Floor Scanning Sensor Selection

3.1. Localization Sensor

A sensor must be used to help aid localization to overcome the inherent accumulation of
errors from wheel odometry. A number of different sensor technologies can be used, each offering
different advantages and disadvantages. A selection of these technologies has been described in the
literature review. Due to its affordability yet relatively good accuracy, range and resolution, a SICK
LMS291 was selected for localization of the robot. This scanner provides a 2D laser scan of the
environment, and can produce 50 mm accuracy up to 80 m or 35 mm accuracy up to 8 m [14]. The laser
scanner can easily be integrated into the ROS framework with an existing ROS package. The sensor
data can be used by Gmapping [15,16] to create a 2D map of the environment or by AMCL [17] to
localize the robot in an already created map. AMCL uses a probabilistic approach to match the laser
scans to likely positions in the map.

3.2. Floor Scanning Sensor

A sensor is required to capture the floor surface profile information. A number of technologies
can be used for this task. Selected technologies are summarised in Table 1. A 2D laser scanner was
selected for initial floor scanning, this is once again due to both accessibility and affordability. While 3D
laser scanners have been used to perform accurate sensing of an environment, including the floor,
they are very expensive and thus make them not feasible for some applications. The 2D laser scanner
used for initial testing was a SICK LMS291 laser scanner, which is relatively cheap at around US$6000.
The SICK LMS291 has an aperture range of 180-degrees, with an angular resolution of 0.25-degrees.
At a range of up to 80 m the accuracy is 50 mm, reducing to 35 mm at a range of up to 8 m [14].
Additionally, a Hokuyo URG 2D laser scanner was used for further testing, due to its short-range
design. The Hokuyo laser scanner has a detectable range of 20 mm to 5600 mm, with a field of
view of 240-degrees at a resoltuion of 0.36-degrees [18]. However, despite having been designed for
short-range use, the accuracy of this laser scanner is only £30 mm. The cost of the Hokuyo laser
scanner is around US$1080, substantially less than the other sensors. An RGB-D camera was selected
as a secondary sensor for testing and comparison. The RGB-D camera used was a D435 Intel RealSense
camera, which uses active IR stereo to produce a depth image alongside the RGB data from a 2 MP
camera. [19]. Optical Interferometry can also provide detailed scans of a surface; however, often have
long scan times or requires a textured surface for good performance. For example, a multi-laser-based
scanner, the NextEngine 360 [20], performs very well with masonry. However, the sensor can take up
to 2 min to perform a scan, rendering it unsuitable for this application. This sensor provides incredible
accuracy, with up to +100 microns for a macro model and up to £300 micron for models with a wider
field of view.

Table 1. Sensor Specifications.

Sensor Range Accuracy Resolution Price
SICK LMS291 8 m or up to 80 m £35mm and 50 mm  0.25 degrees US$6000
Hokuyo URG 20 mm to 5600 mm  +30 mm 0.36 degrees US$1080
Intel D435 10 m not stated 640 x 480 pixels US$180
NextEngine 3D 200 mm 40.30 mm 3.50 US$2995

4. Initial Testing

The platform’s ability to capture a floor surface profile was initially tested using two 2D laser
scanners. One laser scanner (mounted vertically) was used to capture the floor profile, while the other
laser scanner (mounted horizontally) was used to localise the robot within the environment. The initial
testing methodology and results were presented in [21].
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4.1. Experiment Methodology

The scanning experiments were set in an area of 2 x 2 m? marked out with black electrical
tape (Figure 3a—c). This tape has low reflectivity and high absorbency, resulting in a poor laser scan
measurement that helps to identify the boundaries of the scanned area in the final assembled point
cloud. The robot was positioned outside the lower left-hand corner of the square and then followed
a coverage path (Figure 4). This path provided sufficient space for the robot to perform a turn and
record scans of the surface. The robot moved at a relatively slow velocity of 0.1 ms~!. At the beginning
of each test, all laser scans were recorded in a ROS bag file for later analysis if required, and the
real-time laser scan to point cloud conversion begun. This point cloud creation process involved
capturing every laser scan and associated transform and placing them in a 3D coordinate system.
The assembly of laser scans was then converted to a single point cloud of the floor, which was then
saved as a .pcd file for analysis. In each test it took around six minutes to complete the coverage path.
The robotic platform was used to map three different surfaces: carpet flooring (Figure 3a), outdoor
asphalt pavement (Figure 3b), and a coated asphalt floor (workshop floor) (Figure 3c). These surfaces
were chosen to provide a representative sample of various types of indoor flooring. The test surfaces
were expected to give insight into how well the laser scanning could identify areas of interest for the
different surfaces. Each surface was mapped three times and cross-analyzed to determine accuracy.
A contour plot from the resulting point cloud was created and used to identify high and low areas of
the floor.

(a) Carpeted floor (b) Asphalt floor (c) Coated asphalt floor

Figure 3. Test surfaces used for mapping.
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Target Scan Area
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Figure 4. Coverage path for scan area.

4.2. Measurement Methods

The captured point cloud of each floor surface was saved as a .pcd file. MATLAB was used for
processing, which involved clipping the scanned area to the target size of 2 m x 2 m. The “black
tape’ outliers were removed by applying a threshold to the point cloud data set, and a Gaussian
5 x 5 filter was then applied to the data to smooth the resulting surface and reduce noise. The point
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cloud was then presented as a contour plot, indicating high and low areas throughout the 2m x 2m
area. The surfaces were inspected by touch and visually for any deviations in flatness at key areas.
These areas were noted and compared to the resulting point cloud and contour plot.

4.3. Initial Floor Capture Results

The mobile robot system was able to successfully locate itself and use this information to create
a surface profile of each floor. The odometry information provided sufficient pose and orientation
estimation to capture the general surface profile of each floor. Odometry errors were observed
consistently in all tests. Additionally, systematic errors from the laser scanner were observed in all
tests, illustrated by a continuous low measurement near the center of the scan.

4.3.1. Carpeted Floor

The carpeted floor was successfully mapped (Figure 5) despite being anticipated to be a difficult
surface for consistent performance due to the fiber orientations of the carpet. The laser scan provided
a reasonably thick surface measurement of 0.1 m. The carpet was difficult to inspect visually and
appeared to be relatively flat. The contour plot (Figure 5c) shows a relatively flat area (with the
systematic center scan error) and a slight high area towards the bottom of the target area.

15
Y (m) 15 X (m)

(a) Carpet floor raw data (b) Clipped carpet floor scan showing
target area

-0.00

-0.01

-0.01

-0.02

. - . - . -0.02
15 2 25 3 35
(c) Contour plot of carpet floor

Figure 5. Results for carpeted surface.

4.3.2. Workshop Floor

The workshop floor is an example of an indoor surface covered with dust, cracks and pits.
This type of surface could be hard to map; however, from the results (Figure 6) it is clear that the
scanning system could successfully create a consistent point cloud of the coated asphalt (workshop)
floor. Despite the consistent low center measurement due to a systematic error, a high area was
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identified by the surface scanning system at the middle right of the target area (Figure 6¢). This area
was confirmed by visual inspection as a large step change in the floor. There are two-coin sized
dents (30 mm diameter) in the floor of the workshop that the mapping system was unable to detect.
However, the system did detect a general slope along the y axis.

-0.5

0

)5 0 -1
@y 04 Y (m) -05 -1.5

X (m)
(a) Coated asphalt floor raw data (b) Clipped coated asphalt floor scan
showing target area

-0.01

-0.01

-0.02

Y (m)

-0.02

-0.03

X (m)

(c) Contour plot of coated asphalt floor

Figure 6. Results for coated asphalt surface.

4.3.3. Asphalt

Asphalt is another example of a difficult surface to map, as the colour and texture may vary due
to weathering and wear and tear. This surface was also successfully mapped (Figure 7), demonstrating
the strength of the developed system. Even though the entire surface was on a gradual slope, and no
IMU data was available, the surface profile suggested a high point to the right and a low point to
the left of the start position. A ridge in the surface was detected similarly to the coated asphalt floor,
but upon inspection this high region was due to a rougher area of asphalt. The contour plot (Figure 7c)
illustrates the general slope of the surface, with some deviations of the slope due to surface roughness
and the systematic errors.
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Figure 7. Results for asphalt surface.
5. Initial Challenges

Although initial testing did prove to be successful, there are a number of improvements that can be
made and challenges that can be overcome. The initial development and testing identified challenges
that include: localization, sensor accuracy, and 2D limitations. These challenges are discussed in the
following sections.

5.1. Localization

A particular challenge for the robot platform was accurate localization. Based on research
conducted by Thrun et al. [17], the robot can use the horizontal laser scan for localization through the
Adaptive Monte Carlo Localization (AMCL) ROS node. This node provides a laser scan matching
and probabilistic approach for localizing the robot from the 2D laser scans. The probability of the
robot position in a number of locations is calculated from the combined laser scan matching and wheel
odometry information. The position with the highest probability is updated as the robot’s current
position in the map. This method works well, although due to odometry errors and drift, the robot
will jump to the calculated ‘correct’ position every time the AMCL node updates. These jumps are
small and manageable in some applications, but for this particular application they are not desirable
as this will result in a shift in the floor profile. The transformed laser scans will have gaps when the
position jump occurs, and this could result in inaccurate floor profile estimation. This challenge can
be overcome through a couple of different techniques. First, the jumping action can be minimized by
calibrating the odometry to minimize errors and therefore minimize the possible jump in position.
In practice this can be difficult due to a number of hard-to-control dynamic factors that can contribute
to odometry errors, such as uneven floor, varying tyre pressure over time, axle alignment, wheel point
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of contact, and tyre slip. However, a similar process to that of Borenstein et al. [22] can be used to
estimate the correct wheel radius and wheel separation parameters for odometry tuning. In addition,
this can help identify any alignment issues with the robot that can then be allowed for through the
wheel odometry calculation. An alternative solution for overcoming the jumping is to gather the
transforms as the robot moves, and once AMCL updates the robot’s position, realign the previous
positions to fit the known positions of the robot. This could be computationally expensive but could
provide a consistent method of scanning the floor.

5.2. 2D Limitations

The ROS system utilized is largely built around the assumption of a flat 2D surface; in particular,
the robot is set up to have the base_link attached to the 2D planar floor, and the laser scanners can only
capture data in 2D. However, the surface the robot moves along is 3D, and involves 6 dimensions of
robot pose and orientation (X, y, z, roll, pitch, yaw). This means that these 2D assumptions can result in
inaccurate readings of the floor profile. As seen from the results, the system is able to identify high and
low areas of a floor however, the heights and depths of these high and low areas cannot be accurately
quantified. This needs to be overcome for accurate analysis of floor profiles. A number of 3D solutions
to this problem exist, but these are often computationally expensive. In contrast, a computationally
inexpensive solution similar to that implemented by Wen et al. [12] could be utilized. In this approach,
a 2D sensor provides the location of the robot in the 2D plane, and this location is then extended into
3D using additional sensors such as an IMU.

6. Further Development

A number of improvements were identified from the initial floor mapping process and experiment
results. The following system and process changes aim to achieve these improvements.

6.1. Sensor Accuracy

The laser scanner suffered from systematic sensor errors which could be attributed to its
longer-range design. Therefore, a Hokuyo short-range sensor and an RGB-D camera will be tested with
an aim to overcome some of these accuracy and systematic error challenges. Comparison experiments
are to be performed using these additional sensors. The short-range laser scanner requires correction
to convert the raw laser scan data from polar coordinates to Cartesian coordinates. The system
methodology will have to be adjusted for the larger field of view of the RGB-D camera and will need
to accommodate a sensor calibration step.

6.2. Map Creation

Other software approaches for 3D mapping are to be trialled, in particular Google Cartographer
3D and 3D Octomapping. These approaches could help to create accurate point clouds from sensor
information that can then be manipulated and applied to terrain navigation applications. This will be
particularly important for managing the large point clouds created by the RGB-D RealSense camera,
as the raw point cloud data will quickly become inefficient to manage.

6.3. 2D to 3D Extrapolation

The current implementation utilizes 2D approaches for capturing a 3D floor profile. Whilst the
methodology gives insight into the general flow of the floor, it lacks the accuracy to be useful in
application. This accuracy can be improved by extending the 2D approaches into an adapted 3D
system. AMCL localization can provide accurate positioning through the use of a 2D laser scanner in a
2D plane, however, this localization does not consider changes in z height and the orientation of the
robot in terms of roll and pitch. These additional considerations are necessary for accurate mapping
of the 3D environment. Such mapping has typically been achieved through the use of expensive 3D
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sensors such as 3D laser scanners, but this is not feasible for this application. In addition, an IMU
is often utilized to provide 6 DOF information on robot pose and orientation [8,10,23]. The target
application surface can be considered as a relatively flat floor with simple-shaped obstacles (flat walls),
and so the use of a 2D laser scanner for information on x and y position is a relatively cheap and
effective solution. It is therefore proposed that the current 2D system be extended into 3D. This will be
implemented by utilizing an IMU for inertial information, AMCL for x and y position information,
and estimated changes in z based on filtered IMU data and odometry information (Equation (1),
below). A node was created to fuse IMU and odometry information into an updated odometry
frame. This was published as the Odom to base_link transform, which was then used by AMCL for
localization. AMCL does not take the z, roll, or pitch components of the frames into consideration,
and can therefore successfully update the x, y, and yaw position and orientation information, whilst
the roll, pitch, and global z height can be adjusted. This introduces modularity and can provide the
ability to create other methods for calculating the z and 6 DOF information, such as visual odometry
and point cloud registration.

(Spos = \/(xi - xi—1)2 + (yi - %-1)2

r =4/ (x0)*+ (20)?

Az = tan (pitch)  Spos )

z =rx*cos (pitch+ /2 +6p) + Az
x = rx*sin (pitch+ /2 + 6p)

An extreme situation was tested to verify this approach, involving capture of the floor profile of
a slope in the form of a 10-degree ramp down from a relatively flat floor (Figure 8a). Limitations of
the previous system resulted in the floor profile being incorrectly captured, particularly due to the
measurement performed being the distance from the sensor to the floor. As seen in Figure 9, when
the robot is on a constant slope the measured distance to the ground is the same as when measuring
on a flat floor. This, combined with 2D localization assumptions and no consideration of changes in
global z height, results in the system incorrectly capturing a flat floor. To overcome this, the pitch of
the robot and the global z height must be considered. To capture the floor, the robot drove forwards
at a speed of 0.1 ms~! and recorded the resulting point cloud information. The captured point cloud
using the improved capture system is shown in Figure 8c; for comparison, Figure 8b shows the point
cloud captured with no z compensation or consideration of slope. There is significant improvement in
the floor capture capability, with the slope of the ramp continuing to be captured even when the robot
is fully on the ramp. This suggests that the z height compensation helps to extrapolate the 2D system
into a full 3D capture.
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Figure 9. Diagram of robot floor measurement on a slope.

6.4. RealSense Camera Testing

The Intel RealSense D435 camera is an RGB-D camera and thus provides both a colour image and
a depth image of the environment. This information can be used to create a 3D map/model, which can
be used to extract surface floor profile information. The camera can be used in two ways: it can be
mounted to view the environment from a horizontal position and the floor profile can be extracted
through processing, or it can be mounted to view only the ground, potentially increasing accuracy and
reducing occlusion errors. Occlusion errors are common when objects are hidden due to the angle of
the sensor scan line. The beam sent out by a sensor cannot bend around a corner, so the view is limited
to the unobstructed line of sight. In addition, RGB-D cameras can be sensitive to lighting and so must
be calibrated.
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6.5. Floor Profile Creation with RGB-D Camera

The floor profile creation program used for the laser scanner cannot be applied to the RGB-D
camera information due to the different methods of storing information. The RGB-D camera provides
a point cloud of the depth cloud captured. The point cloud resolution is 640 x 480 points and therefore
contains 307,200 points. Thus, to store every point and assemble them correctly requires expensive
computation and is inefficient. Further, the camera provides a new point cloud approximately every
0.1 s, resulting in around 3,000,000 points per second to process. A common solution to this problem
is to use the Octomap Octotree point cloud storage system [24]. In this system, raw point cloud
data are down-sampled into 3D voxel grids that are then stored in a tree structure, providing an
efficient method for accessing and processing the information. The Octomap attempts to match the
new point cloud to previous scans based on the 3D voxel grid. This creates a 3D map stored in an
efficient graph-based tree called an Octotree. This has been used by other researchers to create full 3D
maps [24,25], but in this application will be used to produce only a 3D profile of the floor surface. Due
to computational limitations, the real-time processing of the point cloud stream into an Octomap is
restricted to voxel grid sizes of around 8 mm. This eliminates some information about the floor profile,
which needs to be considered for real-time applications. For testing, the point cloud data is recorded
into a bag file and can be processed at a later time. The processing of the recorded point cloud data
results in less computational limitations and the resulting achievable voxel grid size can be as small as
2 mm; Octomap point clouds based on this voxel grid size were used during testing. The raw point
cloud bag file from a 6 min test can be as large as 30-40 GB; for comparison, a saved point cloud from
an Octomap with a 2 mm voxel grid size is only 20-30 MB, highlighting the substantial reduction in
the amount of data to process.

7. Improved Experiment Methodology

The experiment methodology for the test comparing the RGB-D camera and the Hokuyo
short-range laser scanner is similar to that of the initial tests, described in Section 4. In addition
to the process outlined in Section 4, a calibration step was included prior to testing to improve floor
sensor accuracy and to calibrate the odometry scalar variables. Black tape was used to outline the
2m X 2 m target area due to its different level of reflection giving rise to laser scanner measurements
that successfully highlight the edges of the zone. Although the tape does not show up well on
the RGB-D point cloud, the two point clouds and target areas can be accurately compared due to
localization in the global coordinate system.

7.1. Sensor Calibration

In addition to calibration of the odometry and AMCL, the floor sensor itself must be calibrated
prior to testing. The RealSense camera is highly susceptible to infrared light, particularly differences
in lighting conditions. This can introduce errors or even result in no measurement. Figure 10a,b
highlight the difference between no auto-exposure and an auto-exposed (calibrated) depth cloud.
The performance of the RGB-D camera is greatly improved with auto-exposure, capturing a greater
region of the view and containing fewer artefacts (missed measurement areas). Errors due to changes
in lighting conditions can result in a patterned floor result or even parts of the floor unmeasured
(Figure 10a). These errors are overcome through calibrating the RealSense camera (Figure 10b) using
the auto-exposure function for 2-5 s.
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(a) Screenshot of uncalibrated RealSense (b) Screenshot of calibrated RealSense
camera camera

Figure 10. RealSense lighting calibration.

The Hokuyo short range laser scanner produces a laser scan result at angles spanning 270-degrees.
The raw laser scan data must be converted from polar coordinates to Cartesian coordinates to accurately
capture the floor profile. If this conversion is not performed, the laser scan has an obvious skew, which
can be visualized when looking at a flat floor (Figure 11). The uncorrected laser scan of the flat floor has
a bent shape (bottom curve of Figure 11), due in particular to the mapping of coordinates and changes
in angle of incidence. This can be corrected through remapping the laser scan data points to the correct
position relative to the angle of the scan (Equation (2)). In Figure 11, the z height is indicated by colour,
with purple corresponding to the highest z value and red to the lowest. This results in a significantly
improved measurement of the floor, although the scan still contains noise and measurement errors.

SCAN filtered-ranges|i] = scan fijpereq-ranges(i] + 0.03 * exp(— fabs(sin (angle))) (2)

Figure 11. Corrected laser scan (above) shown with raw laser scan (below).

7.2. Measurement Methods

The final surface point clouds were saved as a .pcd file, which was then imported into MATLAB
for analysis. The point clouds were converted into a mesh grid and then smoothed using a Gaussian
filter. This helps to reduce noise from erroneous measurements and provides better insight into the
surface trends. The resulting point clouds of the surface were compared visually through the aid of
a contour plot. The resulting surfaces were checked for deviations and any significant deviations
in the floor were inspected manually by visual inspection, touch, and the straight edge approach.
This helps identify if the system is correctly detecting high and low areas and not just capturing noise
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from the sensors. Areas of interest identified by the floor capture process were investigated manually
using the straight edge approach.

8. Testing of Improved Floor Surface Capture System

8.1. Experiment Methodology

The improved system was tested using two sensors for comparison. One sensor was the D435
RealSense RGB-D camera, and the other the Hokuyo URG short-range laser scanner. These sensors
were compared to identify limitations and the appropriate sensor for testing. The test was set up
similar to those in Section 3: first, a 2 m by 2 m area was marked out using black electrical tape. A 2D
map of the area was created using Gmapping. A coverage path for the target area was devised and
the robot platform then followed this coverage path, capturing the floor surface profile. The laser
scans were assembled using the laser_assembler package and then saved as a .pcd file. The RGB-D
camera point cloud data was recorded in a bag file and assembled into an Octomap; the result was
also saved as a .pcd file. The test was completed on two different surfaces: carpet and coated asphalt
(workshop). AMCL was used to assist localization throughout the test, and an IMU was used to
assist with estimation of the global z height. The point cloud surfaces were processed using MATLAB,
and contour plots of the results were used to identify high and low areas. Any identified areas of
deviation were investigated visually, by touch, and with a straight edge.

8.2. Improved Floor Capture Results

The results of the improved floor capture of the two target surfaces are shown in the Figures
below. The floor profiles captured from the laser scan and the RGB-D camera are compared for both
the carpet floor and the coated asphalt workshop floor. It can be seen that the laser scan seems to
contain a higher level of noise, giving a floor thickness of around 0.02 m. In addition, the laser scan
contains consistent high and low measurements regardless of the floor area measured, and are thus
systematic errors. The laser scanner fails to detect a number of features indicated by the RGB-D camera,
and subsequent inspection reveals that the RGB-D sensor seems to be accurate in its relative floor
profile estimation. The changes in height registered by the RGB-D camera are not yet validated and do
not seem to correlate with measured deviations via the straight edge. This could be due to the voxel
grid size used in the testing.

8.2.1. Capture of Carpeted Floor

The carpeted floor was successfully mapped by both the laser scanner (Figure 12) and the RGB-D
camera (Figure 13); however, the laser scanner appears to not have captured some features of the floor
as well as introduced systematic errors. The laser scan of this floor (Figure 12b) shows a relatively
flat floor with high areas down the middle of each pass. These high areas are consistent with robot
position, suggesting systematic error rather than measured deviations. In contrast, the floor captured
by the RGB-D camera system (Figure 13b) shows again a relatively flat floor, but with small deviations
in certain areas. Visually, the floor looks flat with no obvious deviations in flatness across the measured
floor area. Upon closer inspection of the floor using a straight edge, the high areas captured by the
RGB-D camera were confirmed.
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Figure 12. Laser scan results for carpet floor.

8.2.2. Capture of Workshop Floor

The workshop floor was captured more successfully by both systems (Figures 14 and 15). The laser
scan continued to show the systematic high area in the middle of the scan (Figure 14b) that was
observed in the carpet tests. Some deviations from flatness were detected, in particular at the sides
of the target area. The RGB-D camera successfully captured (Figure 15b) a number of high areas that
were confirmed both visually and with a straight edge. The accuracy of the size of the high areas is
not known.
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Figure 13. RGB-D capture results for carpet floor.
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Figure 14. Laser scan results for workshop floor.
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Figure 15. RGB-D capture results for workshop floor.

9. Discussion

9.1. Floor Surface Reflectivity

All three surface types are successfully captured by the robot platform, with varying degrees
of success. The workshop floor is successfully mapped, with the ability to identify a previously
unidentified high spot of the floor. The mapping of the carpet produces consistent point clouds,
however, these are thicker than the two other types of floor, and this could be due to the reflectivity
and deflection of the material. Interestingly, the black tape shows up as a high point on both the
workshop covered asphalt floor and carpet, however, the tape shows up as a low point on the asphalt
floor. This highlights the effect of the material reflectivity on the measured value. This system could be
used for identifying points of interest in a large area, such as high points or low points. The scanning
method does not provide sufficient accuracy for applications that require micro or millimeter resolution,
however, this method could provide a fast scan for a large area, where a second high resolution scan
could then be applied to key areas. Further, the profile mapping system can autonomously provide
a quick means to provide an overview of a large area. There is an observed source of error in the
workshop floor test due to the varying reflectivity of the floor. This floor within the 2 m test area is
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clean, however, outside of this it has some areas of dirt. As observed in Figure 6a, these dirty areas are
detected by the mapping system as being higher than the rest of the floor, by 0.01 m. This suggests that
the different reflectivity of the dirt area results in the inaccurate measurement of the profile. This would
have to be accounted for in application, as it could lead towards false high or low areas.

9.2. Sources of Error

There are some sources of error that are identified through analysis of the results and the robotic
system. A key source of error is the laser scanner, providing noisy measurements with a resolution
of 0.5 degrees. In addition, upon analysis of the results, across all surfaces, there is a consistent "low
point” measurement near the center of the laser scan. This low measurement is observed in each
pass and does not correlate with any visual deviations of the floor. Another source of error is robot
localization. Encoder information is used for tracking the movement of the mobile laser scanning,
and so the platform deviates due to inherent errors in odometry. This can be observed in each result
by the shift of the middle downward pass of the robot when compared to the two upward passes
(Figures 5a, 6a and 7a). It is clear that there is odometry drift when performing the turn at the end of
the first pass, which is corrected when performing the opposing turn at the end of the middle pass.
This drift could be accounted for using reliable SLAM or through filtering during the processing of the
laser scans and point cloud.

9.3. Surface Thickness

In an ideal world with ideal sensors, the measured surface profile would have a thickness of a
single measured point. However, it has been observed that the thickness of the point cloud surface
varies among floor types, with carpet producing the worst thickness. This point cloud thickness is due
to the accuracy of the laser scanner (1 mm) and the reflectance and diffraction of light by the surface.
However, this thickness is not an impediment and it is still possible to identify areas of interest in
the floor.

9.4. System Improvements

The mobile profiling system can be improved by addressing the systematic sources of error such
as accurate localization and laser scanner. A laser scanner designed for close range measurements
could be used to provide a more reliable analysis of the surface floor, likely with less point cloud
thickness. Filters or a calibration method could be developed to help minimize center point error
and change in surface reflectivity. Accurate localization can be a challenge. SLAM solutions such
as gmapping can provide reliable localization, however, unless the gmapping and odometry drift
are balanced, this can result in ‘jumping’ of the robot pose and orientation, resulting in momentary
inaccurate localization. For a floor profile scan, this could result in a sudden shift in the 3D map
of the floor. Other SLAM solutions such as hector mapping remove this dependency on odometry
information, however, without consistent and accurate laser scans, the scan matching algorithm
can result in small shifts of robot pose and orientation. These small shifts could result in similar
inaccuracies observed with gmapping. Identifying a reliable and robust solution for locating the robot
whilst performing the floor scan remains a challenge. The floor profile creation system was successful.
The methodology was able to capture areas of interest in the target zone and provide an overview of
the mapped floor. The RGB-D camera provides a larger field of view and this gives greater insight
into the floor features; in particular, it is able to better capture both local and global areas of interest.
The laser scanner has limitations surrounding the level of noise present in the measurements as well as
material surface reflectivity and deflection errors. The laser scanner is sensitive to a change in material,
which could introduce errors in some applications. The RGB-D camera also has some limitations;
in particular, it must use auto-exposure in dynamic lighting conditions. If the camera is incorrectly
exposed, the resulting point cloud and depth images can be poor. In contrast to the laser scanner,
the RGB-D camera is less sensitive to different materials. This system can be used for identifying
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points of interest in a large area, such as high points or low points. The scanning method does not
provide sufficient accuracy for applications that require micrometer or millimeter resolution; however,
it can produce a fast scan for a large area, and a second, high-resolution scan could then be applied to
key areas. Further, the profile mapping system can autonomously provide a quick means of producing
an overview of a large area. The floor capture method is able to identify areas of interest, although,
the accuracy of the estimated deviation from flatness is not yet validated.

9.5. Sensor Comparison

Overall, the RGB-D sensor captured more features of the floor and suffered from less systematic
errors. Some errors due to camera alignment were observed. This is because the camera is required to
be initially perfectly level for the system to accurately create the floor profile. In addition, the RGB-D
camera was able to detect and highlight high and low areas, however, the scale of these high and
low areas is yet to be validated. The short-range laser scanner continued to detect the black tape as a
higher section of the floor, particularly in the workshop test. While the RGB-D camera did not detect
the black tape to the same extent, the tape could be visually detected at some points throughout the
test. The laser scanner measured consistent high areas that did not change with floor profile and robot
position, and therefore can be considered to be systematic errors of the laser scanner itself. These could
be overcome through a thorough calibration process. Due to Octomap point cloud stitching, this error
as well as the surface thickness error is greatly reduced in the RGB-D sensor tests. The laser scanner
produced a surface thickness of around 0.02 m when scanning the workshop floor. Due to the voxel
grid approach, the RGB-D sensor produced a floor thickness of one voxel, 0.01 m.

9.6. Floor Capture Capability

The RGB-D camera was able to highlight areas of interest, particularly high and low areas of the
floor. While some errors were observed, the overall floor deviations appear to have been estimated.
In the carpet 2 m X 2 m test, the sensor detected a high area in the middle of the first pass (Figure 16).
This area was analysed after the test using a straight edge and was confirmed to have a deviation from
flatness of around 2 mm over 200 mm of floor (Figure 17).
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Figure 16. Captured high point in carpet floor.

Figure 17. Investigation of corresponding high point in carpet floor using straight edge.
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Similar performance was observed in the workshop floor experiments. Areas in the floor that
had visually detectable deviations were successfully detected by the RGB-D sensor capture process.
There was a significant bump in the workshop floor marked in Figure 18 that was also successfully
detected during the floor capture process (Figure 19). A second area of interest was investigated using
a straight edge and was also confirmed to be a deviation from flatness (Figure 20). The accuracy of
these detected high areas is yet to be validated.

Identified High Area

Figure 18. Workshop floor with significant bump highlighted.

1.5

Y (m) -5 X (m)

Figure 19. Capture of workshop floor high point.

Figure 20. Investigation of high point in workshop floor using straight edge.
9.7. Surface Thickness

In an ideal world with ideal sensors, the measured surface profile would have a thickness of a
single measured point. However, it has been observed that the thickness of the point cloud surface
varies between floor types, with carpet producing the worst thickness. Such point cloud thickness is
due to the accuracy of the laser scanner (&1 mm) and the reflectance and diffraction of light by the
surface. However, this thickness is not an impediment and it is still possible to identify areas of interest
in the floor.
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9.8. Sources of Error

Some sources of error have been identified through analysis of the results and the robotic
system. A key source of error is the floor sensor itself producing significant noise in measurements.
The noise was observed in both of the sensors used, the laser scanner and the RGB-D camera.
Octomap stitching of the point cloud data helps to reduce the effect of noise through collecting
many frames of data. The frames of data are stitched together and the ray tracing method removes any
erroneous measurements from previous frames. Due to the high frequency of frames (between 10 and
30 frames per second, depending on CPU load), and the slow movement of the scanning platform,
this process successfully reduces the noise in the created floor profile. The IMU is subject to erroneous
measurements and drift over time. This can result in a slow change in the z height over time, or,
as observed in some tests, in incorrect readings when stopping or starting suddenly. In the testing, this
was overcome through careful control and slow acceleration/deceleration of the robot, but remains
a source of error that must be considered and mitigated. Any errors in height estimation can lead
directly to errors in the captured floor profile. In future work, this error will need to be overcome to
produce an improved system.

9.9. Sensor Selection and Limitations

Although the captured floor profile aligns with manual inspection with using a straight edge,
the floor profile capture system and methodology have not yet been validated. Validation could be
achieved by using a 3D TLS and comparing the captured floor surface of the two systems. This is out
of scope for this project due to resource limitations, and remains as future work to be done.

9.9.1. Material Reflection and Laser Scanner

According to the literature surrounding the use of laser scanners, the reflectivity of the material
being measured by a laser scanner is a highly important variable [26]. Tests performed throughout
the research demonstrated this effect. During the initial floor capturing tests, the black tape used to
mark the boundary of the target zones was found to be measured as significantly higher (for the carpet
and coated asphalt tests) and significantly lower (for the asphalt tests), due to the reflectivity of the
black tape compared with these three materials. In addition, the surface thickness captured for the
carpet surface was significantly thicker than for the other surfaces, suggesting a greater amount of
noise. This could be due to the fibers in the carpet causing measurement errors and changes in the
deflection of the laser.

9.9.2. Light Interference and RGB-D Sensor

A limitation of a RGB-D camera is its sensitivity to light. Due to the projection and capture
of infrared light, natural light can interfere with the readings. This can be calibrated and adjusted
for through camera settings for indoor and outdoor applications (Section 7). However, this issue
persists in applications where the camera is exposed to both indoor and outdoor lighting in a dynamic
environment. The camera can continuously auto-expose; however, this can introduce other errors and
takes time to complete. Auto-exposure can thus result in erroneous readings. This limitation will have
to be considered during application.

9.10. Justification for Improvements

Throughout the development and testing of the research platform, a number of system
improvements were made. Many of these were implemented after initial testing revealed limitations
in the application and through the literature. Two key decisions are justified in the following sections.
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9.10.1. 2D Extrapolation Limitations

AMCL localization using a horizontal 2D laser scanner can provide a relatively accurate method
for global localization; however, this only operates in 2D. In order to create an accurate 3D map of a
surface, the full 3D orientation and position of the robot is required. This is often achieved by using
expensive 3D sensors such as 3D Terrestrial Laser Scanners, but this research aims to utilize cheaper
sensors to achieve similar results. In order to extrapolate the 2D location into the 3D environment,
the 6 DOF data from the IMU is fused with odometry and AMCL data. This gives the robot location
on a 2D map together with the full orientation (roll, pitch, and yaw). However, it does not address the
z height of the robot. The z height must be taken into consideration in order for an accurate surface to
be created. There are limitations to the methodology applied, in that the IMU is often subject to drifting,
and therefore exposes the robot’s 3D location to additional noise. Location noise combined with noise
from measurements could result in significantly inaccurate measurements. These limitations remain a
challenge and this remains an area for further research improvements. A potential solution is to apply
a point cloud registration matching algorithm for z adjustments. This algorithm could utilize common
methods of ICP to identify the best-fit point cloud when adjusting only the global z value of the point
cloud. This solution works best with a large number of features, whilst a floor typically has minimal
features. This challenge therefore remains to be overcome.

9.10.2. Localisation

Global localization was significantly improved throughout the development. Tuning of odometry
parameters and utilization of the AMCL node helped increase localization reliability and reduce
jumping in x and y position estimation. The localization method used was an adapted 2D approach,
where 2D solutions such as finding the x and y global position through AMCL was applied and then
extended through the use of an IMU and position estimates. This proved to be an acceptable solution
that was capable of successfully mapping a ramp, although the accuracy of the 3D extrapolation could
be improved as part of the further development of the robot system. In particular, the use of the IMU
makes the system prone to drift and resulting errors. This could be overcome using additional visual
sensors, such as a camera for orientation estimation, or through an improved IMU.

10. Conclusions

Capture of the floor surface profile was demonstrated using a prototype robotic research platform
with two sensors: a horizontal 2D laser scanner for SLAM, and a second, swappable, sensor to
capture the floor data. The experimental results showed that the system was able to capture some
features of the floor, but its full capability is yet to be verified. The RGB-D camera performed better
than the laser scanner, providing greater insight into the high and low areas of the floor, which
were confirmed using a straight edge. The developed system utilizes cheap, accessible sensors to
create a 3D floor surface map of the environment that can be used as prior knowledge. This can
provide advantage in a number of areas, notably polishing, grinding, cleaning, navigation, inspection,
and terrain traversability. There are opportunities to further investigate how a mobile robotic platform
can provide reliable and accurate surface profiles of the floor for improved navigation with prior
knowledge of the surface. The challenges identified include accurate and consistent localization of the
robot and surface reflectivity. Sources of error due to odometry drift and laser scanner accuracy would
need to be overcome before the system can be applied in the field. A key finding is that the surface
itself is a significant factor on the measured profile, in such that dirt or differing materials could cause
false height measurements. Overall the methodology has proved a successful real time solution for
creating a point cloud of the floor surface. A number of areas of further research have been identified.
Validation of the accuracy of the scanning process remains a requirement for further development.
In addition, robust methods of estimating the z height for 3D extrapolation can be explored.
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