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Abstract: Spectral reflectance distortions caused by terrain and solar illumination seriously reduce
the accuracy of mapping forest carbon density, especially in mountainous regions. Many models
have been developed for mitigating or eliminating the terrain effects on the quality of remote sensing
images in hilly and mountainous areas. However, these models usually use global parameters,
which may lead to overcorrections for regions with poor illumination and steep slopes. In this
study, we present a local parameter estimation (LPE) method based on a pixel-moving window for
topographic correction (TC), which can be considered as a general optimization framework for most
semiempirical TC models. We set seven kernel sizes for the presented framework, which are 15 pixels,
25 pixels, 50 pixels, 100 pixels, 250 pixels, 500 pixels, and 1000 pixels, respectively. The proposed
method was then applied to four traditional TC models, Minnaert (MIN), C Correction (CC), Sun
Canopy Sensor + C (SCSC) and Statistical Empirical Correction (SEC), to form four new TC models.
These new models were used to estimate forest carbon density of a mountainous area in Southern
China using field plot data and a Landsat 8 image. Four evaluation methods, including correlation
analysis, the stability of land covers, comparison of reflectance between sunlit and shaded slopes,
and accuracy assessment of forest carbon density, were employed to evaluate the contributions
of moving window sizes, and assess the performance of the TC models for forest carbon density
estimation. The results show that the four TC models with LPE perform much better than the
traditional TC models in reducing the topographic effects and improving the estimation accuracy of
forest carbon density for the study area. Among the traditional TC models, SEC performs slightly
better than SCSC, CC, and MIN. Therefore, the SEC-based model with LPE, that is, LPE-SEC, gets
greater R2 and smaller relative RMSE values in estimating forest carbon density than other models.
Moreover, all the means of the predicted forest carbon density values fall in the confidence interval
of the validation data at a significant level of 0.05. Overall, this study implies that the proposed
method with LPE provides great potential to improve the performance of TC and forest carbon
density estimation for the study area. It is expected that the improved TC method can be applied to
other mountainous areas to improve the quality of remotely sensed images.
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1. Introduction

Forests play a crucial role in the biosphere, as they mitigate carbon concentration in the
atmosphere and control global warming [1–3]. Accurately mapping forest carbon density at different
scales is of great significance for reducing greenhouse effects [4] and maintaining environmental
sustainability [4,5]. Remote sensing technology has proved to be promising in estimating regional
forest carbon density [6–11]. With the advantages of free downloading, wide-spatial coverage,
and continuous archiving, Landsat satellite images have been widely applied in the research of
forest carbon density [12,13]. However, the quality of remote sensing images is vulnerable to solar
altitude, atmosphere conditions, and terrain-induced shadows, which lead to inaccuracies in spectral
reflectance [14,15]. Due to terrain variation, the geometric relationships among the earth’s surface,
sensors, and solar illumination are not stable, thus the solar radiation received at different locations
could be significantly different [16]. The areas with the same forest type and similar slopes but different
aspects may have different spectral reflectance. On the other hand, the areas with different forest types
may show similar gray values due to shadows. Therefore, topographic correction (TC) is essential for
improving the estimation accuracy of forest carbon density using remote sensing images, especially in
China, where the mountainous areas account for 69% of the total forested land [17–20].

Since the 1980s, various TC models have been developed [21], which can be categorized into physically
based models, empirical models, and semiempirical models [22]. Physically based models perform well in
topographic correction as they model the full process of the interaction between solar illumination and the
earth’s surface. However, these models are complex and require a large number of input parameters [23,24].
Empirical models are based on the statistical relationship between the reflectance of a location or pixel and
the cosine of the relative solar incident angle [25,26]. They can be implemented without using ancillary
data, but some models have parameters with no physical significance [27,28], such as statistical models.
Semiempirical models adopt a digital elevation model (DEM) to represent the variation of solar illumination
among different slopes [29]. To correct each spectral band, these models have to fit empirical parameters at
the global level for the entire image or individually for each land cover type. Semiempirical models gain a
good balance between the correction accuracy and computation efficiency, so they are widely used in the
correction of terrain effects [30].

Semiempirical models can be classified into Lambertian methods and non-Lambertian methods
in terms of radiation types. Lambertian models assume that the earth’s surface is a Lambertian sphere
that reflects solar energy evenly in all directions. However, this assumption is inconsistent with the
actual conditions and often leads to overcorrection for poor-illumination areas [20,31]. C-correction
is one of the most widely used Lambertian models. Non-Lambertian methods consider the spatial
optical relationship between the sun and sensor. For example, the Minnaert (MIN) model [25,32]
avoids overcorrection by introducing a constant, k. However, this model is only applicable to the areas
with slight terrain fluctuation, and gets low accuracy when it is applied to the areas with significant
terrain fluctuations [33,34].

Some improved models have been developed to reduce the topographic effects for the regions with
complex terrains, such as the sun-canopy-sensor + C (SCSC) model [30,35] and the rotation correction
model [36]. Although these models can achieve sound corrections, their performance relies very much
on the experimental parameters fitted by the pixel reflectance and the cosine of solar incident angles,
such as the factor c for C-Correction (CC) models, factor a for rotation correction models, and constant
k for MIN models. To select correction factors working well in the areas with rugged topography,
the slope matching model has been proposed [25,37,38], by which different correction coefficients can
be fitted according to the slope grading [39]. However, this method requires known slope grading.

Many studies have evaluated the performance of these TC models [25,38–40] and concluded
that these models usually adopt one parameter for all pixels of one image [39], which works
well only for small study areas and often lead to overcorrections for poor-illumination areas.
Some stratification-based methods were proposed on the assumption that the relationship between
the pixel reflectance and the cosine of relative solar incident angle is affected by different terrains,
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illumination [41] and land cover conditions [42]. However, these methods are too complex to be used
for large and complex landscapes. Therefore, a simple and universal TC model should be developed
to restore the real spectral information of remote sensing imagery in mountainous regions. For this
purpose, Mo et al. [43] developed a site-specific algorithm, which has been proved to be simple, robust,
and practical. However, it applies only to the rotation correction model and ignores the effects of the
window sizes. Therefore, this study develops a general optimization framework that can be used to
optimize traditional TC models to improve the quality of remotely sensed images in most mountainous
regions. In the framework, different window sizes are used and evaluated by the correlation analysis,
stability of land covers, comparison of reflectance between sunlit and shaded slopes, and accuracy
assessment of forest carbon density. With the selected moving window, a local parameter estimation
method was then proposed and applied to traditional TC models to form new TC models. The model
with the highest correction accuracy is used to estimate the forest carbon density of the study area.

2. Data and Methods

In this study, we developed a general framework to improve the performance of TC models
and forest carbon density estimation in mountainous regions. The flowchart includes three parts
(Figure 1). First, field measured data, DEM and remote sensing images are preprocessed, and various
spectral variables are generated. Second, a general framework based on a pixel-moving window is
adopted to improve traditional TC models, in which four evaluation methods are employed to assess
the contribution of window sizes for different TC models. Third, the image generated by the most
accurate correction model is applied to map the forest carbon density in a mountainous region.

Figure 1. The flowchart of the proposed general framework, which is developed to improve both the
topographic correction and forest carbon density estimation in a mountainous region using traditional
topographic correction models, Landsat 8 images and field measured data.

2.1. Study Area

The study area is located in Youxian County, eastern Hunan of China (Figure 2), which is a typical
subtropical climate zone. There are steep slopes and rugged topography in this region [44], with the
elevation ranging between 68 m and 1439 m and the slopes varying from 0◦to 60◦.

According to the data obtained by visual interpretation of the 2.5 m spatial resolution SPOT5 images,
the forest coverage in this area is 86.24%, with coniferous forest 58.95%, broad-leaved forest 6.72%,
bamboo 15.14%, and shrub 5.43%. Chinese fir (Cunninghamia lanceolate), Pinus massoniana Lamb,
Cinnamomum camphora, Liriodendron Chinese, Cupressus funebris Endl, and Alnus cremastogyne Burk
are the dominant tree species. The rest area is covered by cropland, built area, bare soil, and water.
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The complex illumination conditions lead to the fact that similar forest types may have different
spectral reflectivity values.

Figure 2. (a) Location of the study area shown by a Landsat 8 false-color composite image acquired in
September 2013, consisting of RGB represented by Near-Infrared, Red, and Green; (b) the topography
of the study area. The area outlined by the yellow rectangle is selected for topographic correction
analysis in Figure 3.

2.2. Data

2.2.1. Field Measured Data

A total of 150 randomly sampled permanent plots with a size of 0.067 ha (25.82 m × 25.82 m)
were collected in the summer of 2013. For the sample plots in the forested land, forest stand variables
were observed by the angle gauge measurement, including the primary tree species, tree diameter at
breast height, tree height, crown density, basal area at breast height and crown width. For those in the
non-forested land, only the vegetation types were recorded.

To estimate the tree aboveground biomass (AGB) (trunk, branch, and leaf) by tree species in every
sample plot, we measured the tree height and diameter at breast height. The AGB of each tree was
obtained using the regression models by species [45]. The tree AGB was then converted to forest
carbon density by the biomass-to-carbon coefficients. The sum of the forest carbon density of all tree
species was the value of the sample plot. Using the models proposed in [46], we got the biomass of
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shrubs and herbs on the basis of their heights. Summing the biomass of each plant, we obtained the
total biomass of shrubs and herbs. Dividing the total biomass by the total area, we got the per unit
biomass. For the sample plots of mixed forests, the biomass values were obtained by multiplying
the total biomass by the percentage of tree species. Then, a coefficient of 0.5 was adopted to convert
the obtained AGB to forest carbon density. Figure 2 shows the spatial distribution of forest carbon
density for the sample plots. Because the forest carbon density values of the plots were associated with
uncertainties, they were considered as reference values.

2.2.2. Remote Sensing Data

In this study, we used a cloud-free (cloud cover less than 1%) Landsat 8 image acquired on
September 17, 2013. It has a spatial resolution of 30 m × 30 m, similar to the size of the sample plots.
Six bands of the image were selected for the analysis, which are blue (B), green (G), red (R), near-infrared
(NIR), short-wave infrared1 (SWIR1) and short-wave infrared2 (SWIR2). After orthorectification,
the data of the six bands were converted from digital values to top atmosphere radiance using the
software of ENVI 5.3. The solar angles at the image acquisition time (solar elevation = 58.01, solar
azimuth = 137.97) are typical of that of the late summer.

For enhancing the correlations between forest carbon density and spectral variables, we retrieved
200 spectral variables from the Landsat 8 image and its transformation images, including 6 original
bands, 6 band inversions, 30 two-band ratios, 60 three-band ratios, 30 difference vegetation indices,
14 simple vegetation indices, 6 principal component variables, and 48 texture variables from the gray
level co-occurrence matrix of the image bands [3].

2.2.3. Digital Elevation Model (DEM)

The Shuttle Radar Terrain Mission (SRTM) DEM downloaded from the USGS Earth Explore
platform was selected to produce the maps of slope, aspect and illumination conditions (IC). SRTM DEM
has a spatial resolution of approximate 27.6 m × 27.6 m, so it was resampled to that of the Landsat
8 image using the nearest neighborhood transformation [47]. There is no negative bias in the SRTM
DEM data [48]. The study area has mountains, hills, and plains, and the mountains are mainly
distributed in the northern and eastern parts.

2.3. Traditional Topographic Correction (TC) Methods

Many semiempirical methods have been developed for TC in mountainous regions, and four
widely used methods were adopted in the proposed framework, which are the CC model [26,31],
SCSC model [30,49], MIN model [39] and Statistical Empirical Correction (SEC) model [50,51]. The CC
model takes into account the differences among the bands in diffuse radiation. The SCSC model was
developed from the Sun Canopy Sensor (SCS) algorithm, and it has the advantages of both CC and
SCS, which shows an excellent performance in rugged mountainous areas. The MIN correction was
derived from the CC model by adding a band-specific constant k [39] and has been widely applied in
the forested areas located in the mountains [31,39]. The SEC model is a statistical information-based
model, which assumes that the means of the tilted and horizontal surfaces are equal. It also has been
widely applied and has provided satisfactory performance [31,50,51]. According to the assumption
that the terrain is horizontal [52], these models correct the rough terrain and obtain the reflectance
LH(λ). The TC models are as follows:

MIN : ln(LH(λ)) = ln(LI(λ)) + k ln(
IC

cos Z
) (1)

CC : LH(λ) = LI(λ)
cos Z + c(λ)

IC + c(λ)
(2)
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SCSC : LH(λ) = LI(λ)
cos Z cos S + c(λ)

IC + c(λ)
(3)

SEC : LH(λ) = LI(λ) − (b·IC + a) + LI(λ) (4)

where λ represents a specific band; LH(λ) is the corrected reflectance; LI(λ) is the observed reflectance;
Z represents the solar zenith angle; c(λ) = b/a, with a and b denoting the intercept and slope of the linear
regression for LI(λ) = b(λ)·IC + a(λ), respectively; IC denotes the cosine of the incidence angle; S
represents the slope angle of each pixel (0 = horizontal); LI(λ) represents the mean value of the original
reflectance; and k is a constant of Minnaert.

2.4. Topographic Correction Considering Local Parameter Estimation

For simplicity, the four TC models with local parameters are named by adding the local parameter
estimation (LPE) as a prefix, such as LPE-CC, LPE-SCSC, LPE-MIN, LPE-SEC, and LPE-TC. The whole
optimization process contains four steps:

Step 1: IC calculation

The IC value is calculated for each pixel by the following equation [43]:

IC = cos(Z) cos(S) + sin(Z) sin(S) cos(ϕZ −ϕS) (5)

where the solar zenith angle Z and the azimuth angle ϕZ are known. Both the slope angle S and aspect
angle ϕS are derived from the DEM.

Step 2: Local parameter estimation

The moving-window-based method is adopted to estimate the model parameters for each pixel
by the linear regression relationship between the obtained LI(λ) and IC at the location of [i-k, i+k], [j-k,
j+k] as follows [43]:

L(λ)[i−k,i+k],[ j−k, j+k] = a(λ)i, j ∗ IC[i−k,i+k],[ j−k, j+k] + b(λ)i, j (6)

where (i, j) is the center of the moving window; k is the kernel size of the window of (2*k+1)2. a(λ)i, j is
calculated for each pixel, which differs from the traditional estimation methods that use one parameter
for the whole image.

Step 3: Window size determination

The efficacy of TC models is closely related to the kernel size of the moving window. Thus, we set
seven kernel sizes for each of the four TC models, which are 15 pixels, 25 pixels, 50 pixels, 100 pixels,
250 pixels, 500 pixels, and 1000 pixels. The contributions of each kernel size were assessed by the
correlation analysis, stability of land covers, comparison of reflectance between sunlit and shaded
slopes, and accuracy assessment of forest carbon density. As one of the most popular quantitative
validation methods, correlation analysis uses the correlation of the pixel reflectance against the cosine
of solar incident angles, which can be measured by the reduction of the correlation coefficient in the
linear regression [40,42]. Usually, the lower the correlation, the better the TC model. The stability
of land cover can be measured by the relative difference of median radiance (RDMR). We classified
the study area into nine land cover types and compared the RDMR for each land cover before and
after TC [38,53]. Then, the area-weighted RDMR was computed for each spectral band (Equation (8)).
To assess the estimation accuracy of forest carbon density, the spectral variables for the images after TC
were used as the independent variables and the forest carbon density of the measured sample plots
was utilized as the dependent variable [3,12,13]. Support vector regression (SVR) was then adopted for
modeling, and R2 and RMSE were employed to evaluate the effects of the moving window sizes on the
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estimation of forest carbon density. Theoretically, the larger the value of R2 and the smaller the values
of RMSE, the better the window size.

RDMR =
(Rcorr,λ −Rλ) × 100

Rλ
(7)

where Rcorr,λ and Rλ are the topographically corrected and uncorrected median reflectance of each
band, respectively. Finally, the corrected images are obtained by Equations (1), (2), (3) and (4).

Step 4: Performance assessment

Besides the four evaluate methods mentioned above (correlation analysis, stability of land
covers, comparison of reflectance between sunlit and shaded slopes, and accuracy assessment
of forest carbon density), visual analysis was also conducted to quantify the performance of TC
models [30,38]. Visual analysis is a subjective method because its results usually depend on the
observer’s experience [30,54,55], so it should be used together with quantitative procedures.

Forest carbon density was used as the interest variable to evaluate the performances of TC models
with LPE, because it is strongly related to the characteristics of forest canopies, including tree species,
percentage canopy cover, the number of canopy layers and vertical structures [38,40,56]. The reflectivity
of the forest canopy characteristics varies greatly over the topographic features. Theoretically, the forest
carbon density estimated from the topographically corrected images should have higher accuracy than
those from the original images. Thus both R2 and RMSE were applied to evaluate the contributions of
the LPE-TC models on the improvement of forest carbon density estimation.

2.5. Estimation of Forest Carbon Density

In this study, the SVR algorithm was used to estimate forest carbon density. It constructs linear
regression in a high-dimensional feature space and is trained based on the principle of structural risk
minimization (SRM) [57–60]. The training dataset of SVR is mapped into the high-dimensional feature
space using a nonlinear transformation, which is calculated by kernel functions such as the radial
basis function (RBF), Gaussian, and polynomial functions [61,62]. SVR was realized by the software
matlab2014a through the fitrsvm function [63].

The 150 sample plots were randomly divided into two groups: 100 for modeling and 50 for
validation. In addition to RMSE and R2, other methods utilized to quantify the accuracy of forest
carbon density include the residual mean, slope value of the relationship between the reference and
predicted values, and the relative RMSE (RRMSE = RMSE×100/sample mean).

3. Results

3.1. Comparison of TC Models Considering LPE with Different Window Sizes

In this study, we set seven kernel sizes for each of the four TC models, which are 15 pixels,
25 pixels, 50 pixels, 100 pixels, 250 pixels, 500 pixels, and 1000 pixels. The contributions of each kernel
size were assessed by correlation analysis, stability of land covers, comparison of reflectance between
sunlit and shaded slopes, and accuracy assessment of forest carbon density.

3.1.1. Correlation Analysis

Table 1 shows the contributions of different kernel sizes for LPE-TC models in terms of the
coefficients of determination (R2), which implies the linear relationships between IC and the reflectance
of Red and NIR bands. The closer the values of R2 to zero, the less correlated the reflectance and
IC, and the better the kernel sizes. In Table 1, the values of R2 change with the variation of kernel
sizes, indicating that the window size has an impact on the performance of LPE-TC models. With the
increase of kernel size, the R2 values increase first and then decrease. The trends are consistent for all
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models. When the kernel sizes increase to 100, 50, 50, 100 pixels for the models of LPE-MIN, LPE-CC,
LPE-SCSC, LPE-SEC, respectively, the values of R2 reach to the minimum, respectively.

Table 1. The determination coefficients values (R2) of the linear relationship between IC and the
reflectance for the local parameter estimation-topographic correction (LPE-TC) methods with the kernel
sizes ranging from 15 pixels to 1000 pixels.

Kernel Size (Pixels)
Methods LPE-MIN LPE-CC LPE-SCSC LPE-SEC

Red NIR Red NIR Red NIR Red NIR
15 0.0046 0.0015 0.0021 0.0042 0.0015 0.0011 0.0012 0.0006
25 0.0035 0.0010 0.0015 0.0025 0.0012 0.0005 0.0008 0.0004
50 0.0021 0.0005 0.0010 0.0017 0.0001 0.0002 0.0001 0.0002
100 0.0020 0.0003 0.0013 0.0029 0.0005 0.0003 0.0000 0.0001
250 0.0089 0.0021 0.0089 0.0043 0.0026 0.0009 0.0015 0.0008
500 0.0154 0.0065 0.0189 0.0054 0.0068 0.0016 0.0026 0.0010

1000 0.0268 0.0118 0.0341 0.0065 0.0092 0.0028 0.0048 0.0012

3.1.2. Stability of Land Covers

The values of RDMR calculated by Equation (8) can reflect the stability of land covers. The smaller
the RDMR, the better the kernel size. Table 2 compares the results of different kernel sizes of LPE-TC
models based on the Red and NIR bands. With the increase of kernel size, the values of RDMR decrease
first and then increase. The trends are consistent for all models. The kernel sizes between 50 and
100 pixels have relatively small values of RDMR, which implies that the kernel sizes of this range are
more accurate for the LPE-TC models. These results confirm the results of correlation analysis.

Table 2. The relative difference of median radiance (RDMR) of the improved LPE-TC models with the
kernel sizes ranging from 15 pixels to 1000 pixels.

Kernel Size (Pixels)
Methods LPE-MIN (%) LPE-CC (%) LPE-SCSC (%) LPE-SEC (%)

Red NIR Red NIR Red NIR Red NIR
15 10.204 8.426 5.039 3.438 2.918 2.330 0.769 0.473
25 8.245 7.144 3.986 2.908 2.517 1.680 0.158 0.121
50 7.360 6.374 3.081 2.774 1.779 1.039 0.043 0.031
100 7.045 6.142 3.341 2.939 2.019 1.251 0.016 0.010
250 9.634 8.050 4.634 3.650 3.421 2.981 0.262 0.385
500 11.569 9.682 5.667 4.210 3.857 3.374 1.364 0.877

1000 14.857 10.989 6.394 4.837 4.438 3.733 2.033 1.481

3.1.3. Comparison of Reflectance between Sunlit and Shaded Slopes

With the kernel sizes of the moving window increasing from 15 pixels to 1000 pixels, the reflectance
difference of the coniferous forests between the sunlit and the shaded slopes decreases first and then
increases (Table 3). The trends are consistent for all models. Similar to the stability analysis of land
covers, the ideal kernel sizes are between 50 and 100 pixels. And the models of LPE-MIN, LPE-CC,
LPE-SCSC, LPE-SEC with the kernel sizes of 100, 50, 50, 100 pixels, respectively, have the smallest
positive values. In addition, there is a sign of overcorrection for all the models in Red band, which
reduces the difference between sunlit and shaded slopes too much and leads to negative values.
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Table 3. The reflectance difference of the coniferous forests on sunlit-shaded slopes using the LPE-TC
models with the kernel sizes ranging from 15 pixels to 1000 pixels.

Kernel Size (Pixels)
Methods LPE-MIN (%) LPE-CC (%) LPE-SCSC (%) LPE-SEC (%)

Red NIR Red NIR Red NIR Red NIR
15 −10.694 23.360 −8.518 17.539 −5.060 15.283 −4.761 13.346
25 −8.766 20.029 −5.405 14.956 −3.096 11.367 −3.060 9.097
50 −8.287 18.715 −3.628 11.758 2.351 8.153 −2.114 8.004
100 −7.430 17.816 −4.548 12.496 −2.892 9.623 1.796 6.368
250 −9.657 21.494 −6.657 15.494 −4.179 13.416 −3.388 11.441
500 −11.582 25.518 −9.567 19.760 −6.759 17.590 −5.026 16.574

1000 −13.745 27.403 −11.499 22.648 −8.125 20.353 −6.487 18.368

3.1.4. Accuracy Assessment of Forest Carbon Density

The primary step of LPE-TC models is to determine the kernel size of the moving window.
Table 4 shows the trends of R2 and RMSE varying with the kernel sizes. The accuracy of forest carbon
density estimation changes with the kernel sizes, indicating that the window size has an impact on the
estimation accuracy of forest carbon density. With the increase of kernel size, the R2 values increase
first and then decrease, while the values of RMSE has an opposite trend. The trends are consistent for
all models. Similar to the previous analysis, the ideal kernel sizes for forest carbon density estimation
are between 50 pixels to 100 pixels. The models of LPE-MIN, LPE-CC, LPE-SCSC, LPE-SEC with
the kernel sizes of 100, 50, 50, 100 pixels, respectively, have their maximum R2 and minimum RMSE.
Therefore, the most suitable kernel sizes for the four TC models to improve the estimation accuracy of
forest carbon density are 100, 50, 50, 100 pixels, respectively.

Table 4. The coefficient of determination (R2) and root mean square error (RMSE) of the forest carbon
density predicted by the support vector regression (SVR) algorithm using the 30 m resolution Landsat
8 image corrected by TC models considering LPE with the kernel sizes ranging from 15 pixels to
1000 pixels.

Kernel Size (Pixels)
Methods LPE-MIN LPE-CC LPE-SCSC LPE-SEC

R2 RMSE (Mg/ha) R2 RMSE (Mg/ha) R2 RMSE (Mg/ha) R2 RMSE (Mg/ha)
15 0.640 8.371 0.658 8.319 0.672 8.219 0.710 7.632
25 0.649 8.302 0.670 8.232 0.686 8.118 0.723 7.434
50 0.654 8.253 0.689 8.094 0.705 7.978 0.729 7.319

100 0.662 8.204 0.686 8.115 0.697 8.037 0.740 7.153
250 0.646 8.335 0.667 8.247 0.678 8.173 0.718 7.586
500 0.638 8.396 0.654 8.342 0.667 8.259 0.703 7.723
1000 0.635 8.414 0.652 8.363 0.665 8.276 0.696 7.846

3.2. Comparison between Traditional TC Models and LPE-TC Models

After obtaining the most suitable window size, the proposed framework considering LPE was used
together with four traditional TC models, which are Minnaert, C-Correction, SCSC, and SEC, to form
new models for topographic correction. Similar to the determination of window sizes, the performances
of these new models were assessed by visual analysis, correlation analysis, the stability of land covers,
comparison of reflectance between sunlit and shaded slopes, and accuracy assessment of forest
carbon density.

3.2.1. Visual Analysis

Visual analysis was adopted to compare the correction performance of the traditional TC models
and LPE-TC models (Figure 3). Both the uncorrected and corrected images were compared in the
false-color composites. As Figures 3a and 3b show, Region B is a flat area, in which the terrain effects
are very slight, so that the differences between the results are not obvious (Figure 3c to Figure 3f vs.
Figure 3g to Figure 3j). Region A has strong topographic effects and shadows. All the traditional TC
methods have reduced most shadow effects (Figure 3c to Figure 3f), but there are serious overcorrections
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in some areas, especially for the results using MIN method (Figure 3c). The LPE-TC models have
removed almost all shadows in region A, including the areas without direct irradiance, and have
kept most essential information (Figure 3g to Figure 3j). This indicates that the spectral heterogeneity
caused by terrain has been reduced after correction, especially for the areas with the same land cover.

Figure 3. The topographic correction results of the yellow rectangle region shown in Figure 2 obtained
by the traditional TC methods and the TC methods considering LPE. (a) The original image, (b) DEM,
and the results obtained by (c) MIN, (d) CC, (e) SCSC, (f) SEC, (g) LPE-MIN, (h) LPE-CC, (i) LPE-SCSC,
and (j) LPE-SEC.

3.2.2. Correlation Analysis

As shown in Table 5, the LPE-TC models outperform the traditional TC models for each band.
Moreover, among the four LPE-TC models, LPE-SEC has the smallest R2, followed by LPE-SCSC
and LPE-CC, and LPE-MIN has the poorest performance. The results confirm the results of visual
analysis and are consistent with the findings in other studies [26,31]. Therefore, the LPE-TC models
are applicable to the images of mountainous area.
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Table 5. The determination coefficients values (R2) of the linear relationship between IC and the
reflectance for the original bands and the corrected bands obtained by traditional TC methods and
LPE-TC methods.

Methods
Bands

Blue Green Red NIR SWIR1 SWIR2

Original 0.0561 0.0917 0.0507 0.2270 0.1709 0.0825
MIN 0.0719 0.0609 0.0404 0.0138 0.0233 0.0383

LPE-MIN 0.0140 0.0090 0.0020 0.0003 0.0005 0.0061
CC 0.0494 0.0383 0.0404 0.0071 0.0078 0.0335

LPE-CC 0.0009 0.0015 0.0010 0.0017 0.0003 0.0015
SCSC 0.0219 0.0173 0.0149 0.0035 0.0051 0.0163

LPE-SCSC 0.0000 0.0000 0.0001 0.0002 0.0001 0.0000
SEC 0.0103 0.0062 0.0062 0.0013 0.0019 0.0051

LPE-SEC 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

3.2.3. Stability of Land Covers

Figure 4 compares the RDMR of the traditional TC methods and the LPE-TC methods based on the
Red and NIR bands. The reflectance variations are positive for all the TC methods, and smaller RDMR
values mean higher correction accuracy. Compared with the traditional TC methods, the LPE-TC
models have much smaller reflectance variations for both Red and NIR bands, with RDMR values
smaller than 7% in most cases. As expected, the results of traditional TC models are worse, with the
RDMR even close to 20% for the Red band. Overall, LPE-SEC alters the reflectance the least, with
RDMR values close to zero for the two bands, followed by LPE-SCSC and SEC.

Figure 4. The comparison of RDMR between the traditional TC models and the TC models with LPE.

3.2.4. Comparison of Reflectance between Sunlit and Shaded Slopes

In the original image, the reflectance difference of the coniferous forests between the sunlit and
the shaded slopes is significant, and the NIR band even has the reflectance difference up to 33.70%
(Figure 5). Compared with the original Red and NIR bands, the images corrected by traditional
TC models have much smaller differences. The LPE-TC models further decrease the differences.
The greatest difference reduction is achieved by LPE-SEC, then by LPE-SCSC, LPE-CC and LPE-MIN.
However, all the traditional TC methods and two methods with LPE (LPE-CC and LPE-MIN) reduce
this difference too much and result in negative values in the Red band, which is a sign of overcorrection.
The results of the LPE-SEC model have the smallest positive value, implying that the LPE-SEC method
is better than other methods. This finding is consistent with that of the stability analysis of land cover.
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Figure 5. The reflectance difference of the coniferous forests on sunlit-shaded slopes (wm−2sr−1µm−1)
between the traditional TC models and the LPE-TC models. The smaller the difference, the better the
correction result.

3.2.5. Accuracy Assessment of Forest Carbon Density

In order to evaluate the contribution of LPE on the estimation of forest carbon density, we compared
the forest carbon density predicted by SVR using the original image, the images corrected by traditional
TC models and the images corrected by LPE-TC models. Figure 6 shows that the results of the
original image have the smallest R2 value and largest RMSE value. Compared with the original image,
the results of corrected images have larger R2 and smaller RMSE. The LPE-TC models further increase
R2 and reduce RMSE. Among the LPE-TC models, LPE-SEC has the highest accuracy with the largest
R2 and the smallest RMSE, followed by LPE-SCSC, LPE-CC, and LPE-MIN. This indicates that all
TC models can improve the estimation accuracy of forest carbon density, but the LPE-TC models
outperform traditional TC models, and the LPE-SEC model leads to the highest estimation accuracy of
forest carbon density.

Figure 6. The R2, and root mean square error (RMSE) of the forest carbon density predicted by SVR
using the original image, the images corrected by traditional TC models and the images corrected by
LPE-TC models.
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3.3. Estimation of Forest Carbon Density

3.3.1. Statistics of Sample Plots

The statistical results of forest carbon density are listed in Table 6, which were calculated from
the sample plots of the study area. All the plots have a sample mean of 28.42 Mg/ha, with standard
deviation and coefficient of variation being 13.46 Mg/ha and 47.37%, respectively. The modeling
dataset has a slightly smaller mean and larger standard deviation and coefficient of variation than the
validation dataset and whole dataset. At the significant level of 0.05, there are no significant differences
among the mean values of three datasets. The confidence intervals are (26.27, 30.57), (24.75, 30.07),
(26.71, 34.07) (Mg/ha) for the whole dataset, modeling dataset and validation dataset, respectively.

Table 6. Statistical results of the forest carbon density calculated from the sample plots. SD and CV
indicate the standard deviation and coefficient of variation, respectively.

Datasets
Sample Statistical Parameters

N. of Plots Minimum (Mg/ha) Maximum (Mg/ha) Mean (Mg/ha) SD (Mg/ha) CV (%)

Whole dataset 150 0.00 63.34 28.42 13.46 47.37
Modeling dataset 100 0.00 61.69 27.41 13.59 49.59
Validation dataset 50 4.91 63.34 30.44 13.10 43.04

3.3.2. Correlation Analysis

The correlation coefficients between the spectral variables and the measured forest carbon density
range from −0.508 to 0.617, −0.533 to 0.635, and −0.551 to 0.650 for the original image, the image
corrected by SEC and the image corrected by LPE-SEC, respectively. For these three kinds of images,
there are 48, 54, and 65 spectral variables significantly correlated with the measured forest carbon
density at a significant level of 0.05, respectively. For simplicity, Table 7 only presents the five most
correlated variables. The variable NIR/SWIR2 from all the three kinds of images is the most correlated
with the plot forest carbon density. Interestingly, almost all listed spectral variables are relevant to NIR
and Red bands, and their band ratios reduce the slope effect in the rugged mountainous areas.

Table 7. Correlation coefficients between the measured forest carbon density and spectral variables
from the original images and the images corrected by the traditional SEC model and the LPE-SEC
model, respectively.

Images
Order

1 2 3 4 5

Original image Variables NIR/SWIR2 NIR/SWIR1 (NIR+SWIR1)/SWIR2 (NIR+R)/SWIR1 (G+B)/SWIR2
Correlation 0.658** 0.645** 0.641** 0.637** 0.629**

Image corrected by
SEC

Variables NIR/SWIR2 NIR/SWIR1 (NIR+SWIR1)/SWIR2 (G+B)/SWIR2 R-SWIR2
Correlation 0.663** 0.656** 0.650** 0.648** 0.634**

Image corrected by
LPE-SEC

Variables NIR/SWIR2 NIR/SWIR1 (NIR+SWIR1)/SWIR2 (G+B)/SWIR2 (NIR+R)/SWIR1
Correlation 0.716** 0.707** 0.701** 0.658** 0.645**

Note: ** indicates a correlation at the significance level of 0.01; B, G, R, NIR, SWIR1, SWIR2 are the bands of blue,
green, red, near infrared, short wavelength infrared 1, short wavelength infrared 2, respectively.

3.3.3. Accuracy Assessment

We estimated the forest carbon density by combining the sample plot data with the original image,
the image corrected by SEC and the image corrected by LPE-SEC, separately. The estimation accuracies
are assessed based on the validation data (Table 8). At the significant level of 0.05, all the means of the
predicted forest carbon density values fall within the confidence intervals of the validation dataset.
However, all the mean values are slightly over-estimated, especially the results from the original image.
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Table 8. Estimation accuracy of the forest carbon density by combining the sample plot data with
the original image and the images corrected by the traditional SEC and LPE-SEC, respectively. R2:
determination coefficient. RMSE: root mean square error. At the significance level of 0.05, the confidence
interval of the validation data is (26.71, 34.07) (Mg/ha).

Images
Predicted

Mean
(Mg/ha)

Residual
Mean

(Mg/ha)

Relationship
Between

Referenced and
Predicted Values

R2 RMSE
(Mg/ha)

Relative
RMSE (%)

Original image 33.11 −2.67 y=0.56x+16.18 0.63 8.45 27.75
Image corrected by SEC 32.86 −2.42 y=0.51x+17.17 0.68 8.08 26.54

Image corrected by LPE-SEC 31.66 −1.22 y=0.57x+14.22 0.74 7.15 23.50

Moreover, the coefficient of determination (R2) between the reference value and the estimated
value increases significantly. For the R2 value resulted from the LPE-SEC corrected image, more than
74% changes of the reference values can be accounted for by the predicted values. The RMSE and
RRMSE from all the images are similar, but they are smaller for the TC corrected images, especially
the image corrected by LPE-SEC. However, there are statistically significant differences for RMSE and
RRMSE between the original image and the image corrected by the traditional TC model. The LPE-SEC
method performs significantly better than traditional methods in improving the estimation precision
of the forest carbon density in mountainous regions.

3.3.4. Spatial Analysis

By combining the sample plot data with the LPE-SEC corrected image, we got the maps of forest
carbon density and its variance using SVR (Figure 7). The spatial distribution of the predicted forest
carbon density values is similar to those of the sample plots and the Landsat 8 image. The high values
of forest carbon density concentrate in the east-central, southeast, and northeast areas, where the
corresponding variances are also significant.

Figure 7. The maps of (a) forest carbon density and (b) its variances predicted by support vector
regression (SVR) using the sample plot data combined with the LPE-SEC corrected image.
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4. Discussion

In this study, a general framework considering local parameter estimation (LPE) based on a
pixel-moving window was proposed for topographic correction. The comparison between the four
traditional TC models and those considering LPE indicates that the proposed framework is simple
and effective, and could be used as a general optimization framework for most current semiempirical
TC models. The results also show that the proposed framework can significantly improve the
performance of traditional TC models, thus increase the estimation accuracy of forest carbon density in
the mountainous area.

4.1. Comparison of TC Models Considering LPE with Different Kernel Sizes

In this study, the optimal kernel size of the moving window was finally determined by correlation
analysis, stability of land covers, comparison of reflectance between sunlit and shaded slopes,
and accuracy assessment of forest carbon density. Results show that the optimal kernel sizes vary from
50 pixels to 100 pixels over different TC models, which implies different window sizes have different
effects on the accuracy of forest carbon density estimation. Noting the estimation of forest carbon
density is also affected by factors such as forest type, site quality, sample data and image quality [3].
For simplicity, these factors were assumed to be the same in our study. Thus the window size should
be the only factor affecting the estimation accuracy of forest carbon density. Although such assumption
makes it easy to analyze the contributions of window sizes, some uncertainties may result. If the
framework is applied to map forest carbon density of complicated rainforests, these factors should
be taken into account to optimize the procedure of window size selection [32,38,64]. In addition,
the results may be further improved by matching the topographic relief with the sizes of moving
windows. Further efforts should be made to eliminate the side effects of various moving windows.

4.2. Comparison between Traditional TC Models and TC Models Considering LPE

According to the correlation analysis, the LPE-TC models perform better than the traditional TC
models in reducing the dependence of spectral reflectance on IC, which is consistent with the results of
visual analysis. Other assessments also illustrate the superiority of the framework considering LPE.
Robustness and stability tests show that the framework considering LPE can improve the quality of
remote sensing images by reducing the topographic effects.

Among the LPE-TC models, LPE-SEC performs better than the other methods in reducing the
topographic effect, followed by LPE-CC, LPE-SCSC, and LPE-MIN. This is because the study area
is dominated by coniferous forests that have homogeneous canopy structures. The LPE-SEC model,
as a statistical method based on mean approximation, can generate more accurate results than the
other models [28]. The LPE-MIN method has the poorest correction accuracy, which is consistent
with the findings of [28] that claimed larger solar elevation angles might bring better performances.
However, some researchers suggested that the poor results from the solar elevation angle smaller
than 25◦ [28] should be attributed to the different image acquisition times (such as in August and
December). For example, Sola et al. [32] obtained poor results using the image from December with a
solar elevation angle of 21◦.

In this study, all the LPE-TC models have higher estimation accuracy of forest carbon density than
traditional TC models, which confirms the great potential of using LPE to improve the forest carbon
density estimation in mountainous regions. The reason may be that the local parameter estimation not
only successfully reduces the influence of local terrain, but also captures the detailed information of the
pixels and suppresses the image noise effectively. Compared with the methods mentioned in [39,41,42],
the proposed method is more generalized and can be integrated with most semiempirical TC models,
which leads to a general framework for optimizing topographic correction of images. Moreover, this
framework can be used for the estimation of forest carbon density in large scale and complex landscapes,
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but it requires intensive computation. With the development of computer technology, the limitation
will become less serious.

4.3. Estimation of Forest Carbon Density

The images corrected by LPE-SEC and SEC were applied to estimate the forest carbon density
using the SVR [65–67] algorithm and led to the relative RMSE values of 23.50% and 26.54%, respectively.
The estimation accuracy of the LPE-SEC corrected image is much higher than that of the original image
and those of [3,68] at the same plot scale, due to the reduction of terrain effects and consideration of
local parameter estimation. It implies that the framework considering LPE provides the potential of
increasing the estimation accuracy of forest carbon density in the mountainous area.

Although SVR has certain advantages over traditional regression methods, the selection of kernel
functions and the determination of parameters may influence the accuracy of the prediction model.
This study focuses on proposing a universal optimization framework adaptive to traditional TC
methods in mountainous regions, thus which estimation method should be used to estimate forest
carbon density would not influence the conclusions of this research [3]. However, the improvement and
optimization of SVR need study, especially the kernel function selection and parameter determination.

4.4. Computation Load for the Framework Considering LPE

In the proposed framework, each step involved in the local parameter estimation was carried
out for each pixel, so the computation load is huge if there are many pixels in an image. In this
study, the computation was done by a computer with an Intel Core i7-3470 CPU (3.20 GHz), 12G
RAM, and 64-bit Windows 7 operating system and cost 53.188 s per band for the image with a size of
1000 pixels × 1000 pixels. Parallel computing may greatly reduce the computation load. Also, a more
adaptive local parameter estimation method could improve the computation efficiency.

5. Conclusions

In this study, a methodology considering LPE was proposed to improve topography correction
and forest carbon density estimation in the mountainous regions using traditional TC models, Landsat
8 images and field measured data. This methodology was considered as a general optimization
framework that can be jointly used with most semiempirical TC models for the topographic correction
of most mountainous regions. The method can correct the reflectance distortions caused by local
topographic effects. As expected, the experiment results suggest that all the TC models considering
LPE perform significantly better than the traditional TC models in reducing topographic effects and
improving the estimation accuracy of forest carbon density for the mountainous area. Among the
traditional TC models, SEC performs slightly better than SCSC, CC, and MIN. Therefore, LPE-SEC
results in larger R2 and smaller relative RMSE than the other LPE-TC models and all traditional TC
models for forest carbon density estimation. Moreover, the estimation accuracies of forest carbon
density using the image corrected by both the traditional and improved TC methods are higher than
that from the original image. In addition, all the means of the predicted forest carbon density values
fall in the confidence interval of the validation data at a significant level of 0.05. Overall, this study
implies that the proposed methodology considering LPE has great potential in improving topographic
correction and forest carbon density estimation for mountainous areas. However, future research is
necessary to confirm the robustness of this framework.
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