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Abstract: Salt-affected soil is a prominent ecological and environmental problem in dry farming areas
throughout the world. China has nearly 9.9 million km2 of salt-affected land. The identification,
monitoring, and utilization of soil salinization have become important research topics for promoting
sustainable progress. In this paper, using field-measured spectral data and soil salinity parameter
data, through analysis and transformation of spectral data, five machine learning models, namely,
random forest regression (RFR), support vector regression (SVR), gradient-boosted regression tree
(GBRT), multilayer perceptron regression (MLPR), and least angle regression (Lars) are compared.
The following performance measures of each model were evaluated: the collinear problems, handling
data noise, stability, and the accuracy. In terms of these four aspects, the performance of each model
on estimating soil salinity is evaluated. The results demonstrate that among the five models, RFR
has the best performance in dealing with collinearity, RFR and MLPR have the best performance
in dealing with data noise, and the SVR model is the most stable. The Lars model has the highest
accuracy, with a determination coefficient (R2) of 0.87, ratio of performance to deviation (RPD) of 2.67,
root mean square error (RMSE) of 0.18, and mean absolute percentage error (MAPE) of 0.11. Then,
the comprehensive comparison and analysis of the five models are carried out, and it is found that
the comprehensive performance of RFR model is the best; hence, this method is most suitable for
estimating soil salinity using hyperspectral data. This study can provide a reference for the selection
of regression methods in subsequent studies on estimating soil salinity using hyperspectral data.
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1. Introduction

Salt-affected soil is a general term that refers to saline soil and alkaline soil. The content of
soluble salt substances in saline soil typically exceeds 2 g/kg, which affects the normal development of
crops. Alkaline soil is classified according to the alkalization degree and has a pH that exceeds 8 [1].
Typically, salt soil and alkaline soil are mixed; hence, they are collectively referred to as salt-affected
soil. Salt-affected soil is a prominent ecological and environmental problem in the world’s dry farming
areas [2–4]. The total area of the salt-affected soil resources in China is approximately 9.9 million km2,
which are mainly distributed in the northeast plain, the arid and semi-arid areas in the northwest, the
Huang-Huai-Hai plain, and the eastern coastal areas. Among them, the arid area in the northwest is
China’s largest salt-affected soil distribution area, with a total area of approximately 1.3 million km2,
which includes Qinghai, Xinjiang, western Inner Mongolia, Gansu Hexi Corridor, and northern Ningxia.
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The second-largest is a coastal salt-affected soil region with an area of approximately 0.8 million km2.
This region is mainly distributed along the coasts of the Yellow Sea, the Bohai Sea, and the East China
Sea [5]. The identification, monitoring, prevention, development, and utilization of soil salinization
have become important research topics for social and economic development and for promoting
sustainable progress. In recent years, with the development of technologies such as geographic
information systems, remote sensing technology and global positioning systems, increasingly many
remote sensing technologies have been applied to the research and application of monitoring and
measurement of salt-affected land [6]. Hyperspectral remote sensing plays an increasingly important
role in the identification and monitoring of salt-affected land because of its richer spectral information.

There are three main approaches for studying soil salinization with hyperspectral data: One is
to use hyperspectral image data to construct a distribution map of salt-affected land and to analyze
the changes and driving factors of salt-affected land [7–10]. The second is to study the growth of
crops under salt stress based on hyperspectral data and to infer the soil salt content from the crop
growth [11,12]. The third is to invert the degree of soil salinization by using hyperspectral data to
study the relationship between the field hyperspectral data and the measured parameters that are
related to the soil salinity [13–16]. Here, we focus on the use of spectral data to estimate or invert
the extent of soil salinization. The methods that are commonly used in this research include spectral
decomposition methods and regression analysis methods [17–21]. Spectral decomposition methods are
often used to estimate the degree of soil salinization using hyperspectral images. Typically, the pixels of
hyperspectral images are mixed pixels. It is necessary to obtain pure endmembers via spectral demixing
and other methods and to use the endmembers to estimate soil salinity [18,19]. Regression analysis
methods are commonly used to estimate soil salinity based on near-end measured spectra [13,21,22].

The regression methods that are used for soil salinity estimation are mainly divided into traditional
regression analysis methods and machine learning methods. Traditional regression analysis methods
include least squares regression and partial least squares regression (PLSR) [21,23]. The least squares
method identifies the best-matching function to the data by minimizing the sum of the squared
errors. However, this method is highly sensitive to outliers, especially when the soil salt content is
unevenly distributed and there is a maximum or minimum value [24,25]. The partial least squares
regression method can overcome the multicollinearity problem of independent variables in regression
analysis by combining principal component analysis and canonical correlation analysis on the basis of
ordinary multiple regression. This method shows satisfactory applicability in the face of hyperspectral
multidimensional spectral data [26–28]. Peng et al. (2019) used PLSR method in regression electrical
conductivity (EC) to estimate soil salinity, and the results showed that the accuracy and stability of the
model were good [29].

Machine learning methods use algorithms to parse data, to learn from data and to make decisions
and predictions about events in the real world. Unlike traditional methods for solving specified tasks,
machine learning uses a large amount of data to “train” and learns how to accomplish tasks from the
data via various algorithms [30,31]. Commonly used machine learning methods include decision trees,
support vector machines, multilayer perceptron, and regularization [30]. Random tree and support
vector machines show strong robustness when facing high dimensional data. The hidden layer in the
multilayer perceptron can reduce the dependence of the algorithm on the data. The regularization can
reduce the influence of collinearity by adding offset to the optimization function [30]. With the deep
research of machine learning methods, the results are uneven and many studies in which machine
learning methods are used to estimate soil salinity have been reported [4,21,24,32–34]. Jiang et al.
monitored soil salinity by integrating multiple biophysical indicators with support vector machine
(SVM) and artificial neural network (ANN) regression algorithms. The results demonstrate that the
SVM regression algorithm outperforms the ANN algorithm in monitoring soil salinity [4]. Farifteh
used the ANN algorithm and the PLSR algorithm to estimate the soil salinity. When using field data
for the estimation, the R2 value that was obtained by the ANN algorithm is 0.42 < R2 < 0.69 and the
R2 value that was obtained by the PLSR algorithm is 0.8. However, on the experimental data, the R2
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value that was obtained by the ANN algorithm exceeds 0.92 and the R2 value that was obtained by
PLSR is 0.81 [21]. Wang et al. used the PLSR algorithm and the random forest (RF) algorithm to
measure soil salinity. According to the validation accuracies, the RF models outperformed the PLSR
models [34]. These studies were conducted in different data and different environments, and the results
obtained cannot be put together for comprehensive evaluation of these models. It is also unable to
comprehensively judge the accuracy of each model and the applicable data of each model. Therefore,
it is necessary to analyze and compare the models from multiple perspectives with the same data. In
common machine models, random forest regression (RFR) and gradient-boosted regression tree (GBRT)
in random tree, support vector regression (SVR) in support vector machine, multilayer perceptron
regression (MLPR) in multilayer perceptron, and least angle regression (Lars) in regularization are
selected for comparison.

This paper makes a comparative analysis of machine learning model (random forest regression
(RFR), support vector regression (SVR), gradient-boosted regression tree (GBRT), multilayer perceptron
regression (MLPR), and least angle regression (Lars)) from four perspectives. The performance of
each model to deal with collinearity problem was compared by inputting different number of bands,
adding different degree of Gaussian white noise to compare the performance of each model to deal
with data noise, changing the number of training data of the model to compare the stability of
each model, and comparing the accuracy of each model by leave-one-out cross-validation method.
Then, the performance of each model to estimate soil salt content with hyperspectral data was
evaluated comprehensively.

2. Materials

2.1. Study Area

The data collection area is Shizuishan City in Ningxia hui autonomous region in northwestern
China. Shizuishan City is located between 105◦58′~106◦39′ east longitude and 38◦21′~39◦25′ north
latitude, in the upper reaches of the middle reaches of the Yellow River. Shizuishan City is approximately
88.8 km wide from east to west and 119.5 km long from north to south and at an altitude of 1090~3475.9 m
(Figure 1) [35]. This area has a typical temperate continental climate, with an average temperature of
8.4 to 9.9 ◦C and an average precipitation of 167.5–188.8 mm. The soil in this area is mainly viscous
soil. Because of the abundant sunshine throughout the year, concentrated rainfall, strong evaporation,
and high groundwater level, coupled with the irrigation with Yellow River water, the large amount of
cultivated land in this area exhibits various degrees of salinization [36].
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Figure 1. Study area. The left figure shows the geographical location of Shizuishan City. The figure
on the right shows the distribution of the field data sampling points in Shizuishan City. The color
corresponds to the degree of salinization according to the soil salt content at the sampling point.
Red indicates the highest degree of salinization and blue indicates that the soil is non-salt alkali soil.
The land use cover that are presented in the figure are derived from the land use survey in 2010.

2.2. Data Collection

From April 7 to April 10, 2018, we collected a total of 60 sets of data in Shizuishan. Each set
of data was acquired via a five-point sampling method. First, we used a Spectra Vista Corporation
(SVC) spectrometer to measure the spectral data without artificially disturbing the land. The related
parameter information of the SVC spectrometer is listed in Table 1. The spectral measurement time
was between 10 am and 2 pm. To reduce the error during measurement, a whiteboard was used for
calibration prior to each measurement. During measurement, the probe is vertically downward and
about 60 cm away from the ground. Then, a surface soil sample was collected at the place where the
spectrum was measured, placed in an aluminum cassette, returned to the laboratory for processing,
and sent to the Ningxia Agricultural Technology Extension Station and the Analytical Testing Center of
Beijing Normal University for measurement of the soil salt content and the main salt segregant content.
Finally, the latitude and longitude information of the data collection point was obtained by using a
handheld GPS instrument at the data collection location [37]. Figure 2 presents the processed field
spectra and photos of field sampling points.

Several obvious absorption zones can be seen in Figure 2, among which the water absorption zone
is near 1400 nm and 1900 nm, and the clay mineral absorption zone is near 2200 nm [12]. Soil moisture
is often a major interfering factor in the inversion of soil substances by using hyperspectral. Numerous
studies have shown that the absorption zone of moisture is around 1450 nm and 1940 nm [38–40].
Therefore, in the subsequent analysis, the two absorption bands of water will be removed.
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Table 1. Main performance parameters of the instrument.

Attributes SVC HR-1024i

Spectral range 350 nm–2500 nm

Spectral resolution
Silicon array ≤ 3.5 nm
InGaAs array ≤ 9.5 nm

Extended InGaAs array ≤ 6.5 nm
Number of bands 1024

Field of view 25◦

Figure 2. (a) shows the field-measured spectra after pretreatment and (b) shows photos of field
sampling points. The spectra in a correspond one to one with the photos in (b). (b) shows the surface
characteristics as soil salt content increases.

2.3. Soil Parameters

The pH, soil salinity, and sodium, potassium, magnesium, calcium, chloride, nitrate, sulfate,
carbonate, and bicarbonate contents of the soil samples that were collected in the field were measured in
the laboratory. The minimum, maximum, and average values (Table 2) of these quantities for 60 samples
were calculated and a data distribution histogram and a normal probability map (Figure 3a,b) was
plotted. The pH value of the sampled soil was at least 7.53; hence, all samples were alkaline. The salt
content ranged from 2919.76 to 290857.70 mg/kg. The contents of sodium ion, chloride ion, and sulfate
ion in the soil salt were high, which are the main constituent ions of the soil salt. According to
Figure 3a,b, the soil salt content distribution in the collected samples is not a normal distribution.
In most samples, the soil salt content is low and only a small part of the sample has a very high soil
salt content. Such sample data may produce high R2 values; however, the RMSE values could be
proportionally high. To avoid this scenario, we transformed the soil salt content data and calculated
the base 10 logarithm so that the converted soil salt content data follows a normal positive distribution
(Figure 3c,d).

Table 2. Soil parameters and related conditions.

PH Salt
Content Na+ K+ Mg2+ Ca2+ Cl− NO−3 SO2−

4 CO2−
3 HCO−3

Unit 1 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

Min 7.53 2919.76 327.71 28.40 43.75 187.15 178.39 22.94 14.64 0.00 145.69
Max 9.98 290857.70 87551.62 370.24 7508.08 9416.35 89678.66 2701.86 98199.80 3133.70 891.37

Mean 8.56 43827.40 12840.01 101.25 1263.77 3291.60 12103.64 502.78 13715.98 63.81 321.44
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Figure 3. (a) presents a histogram of the soil salt content. (b) shows the normal probability distributions
of the soil salt content. (c) presents a histogram of the logarithm of the soil salt content. (d) shows
the normal probability distributions of the logarithm of the soil salt content. The solid blue line in
(a) and (c) is the distribution curve that is fitted according to the data. The blue line in (b) and (d) is
the reference line, where the data obey a normal distribution, and the yellow line is the reference line
for the upper and lower limits of the case in which the data obey a normal distribution. The red dot
indicates the distribution of the current data.

3. Methods

The overall technical approach of this paper is divided into three main parts (Figure 4): The first
part is data acquisition and preprocessing, which mainly involves the collection of field spectral data,
spectral data de-noising, resampling and smoothing, and field soil sample collection processing and
parameter measurement. The de-noising and resampling of spectral data are carried out by using the
software (SVC HR-1024i, Version 1.17.14) provided by the measuring instrument. Without affecting the
overall variation trend of spectral curve, the noise of the data is removed and the data is interpolated
into more than 2000 bands. The smoothing of spectral data is carried out by using the five-point
method. The second part is the data analysis stage, which mainly transforms the spectral data and
analyses the correlations between various forms of spectral data and soil parameter data. The third
part is the core part of this paper, namely, the comparative analysis of the model. First, according
to the characteristics of the parameters of each model and the data characteristics, after repeated
testing, the optimal parameters of each model are determined. Then, 60 groups of sample data were
divided into training group data and test group data. Specifically, 50 groups of samples were used
for training and the remaining 10 groups of samples were used for testing. In the model comparison,
50 sets of trained data were used for modeling, and the remaining 10 sets of data were tested and
compared. Finally, five models are comprehensively compared and analyzed from the four aspects:
performance in dealing with collinear problems, performance in dealing with noisy problems, stability
and model accuracy.
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Figure 4. Technical flow chart. (a) represents the data collection and pre-processing process;
(b) represents the data analysis process; and (c) represents the model comparison analysis process.

3.1. Data Preprocessing Method

The spectral data that were measured in the field were subjected to a series of denoising and
smoothing operations, which were conducted using the software that comes with the instrument.
Then, since the sampling method uses a five-point sampling method, the five spectral curves that
are measured at five points are averaged to obtain the field spectral data of each sampling point.
Finally, the raw spectral (RS) data were transformed into four types, namely, first derivative (FD) [41],
continuum removal (CR) [41], square root (SQT) [41], and standard normal variate (SNV) [42], and five
types (RS, FD, CR, SQT, SNV) of spectral data were obtained for each sampling point.

3.2. Machine Learning Method

3.2.1. Random Forest Regression (RFR)

In the random forest method, a random approach is used to build a forest. There are many
decision trees in the forest and there are no correlations among the decision trees. When a new sample
is input, each decision tree in the forest evaluates it separately. In the regression problem, the random
forest outputs the average of all decision tree outputs [43]. The random forest algorithm is a bagging
algorithm and bagging is an integrated learning method. The main strategy is to train multiple weak
models to form a strong model. The performance of the strong model is far superior to that of a single
weak model [44]. In a random forest, each decision tree “plants” and “grows” in four main steps:
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1. Suppose the training set size is N. The N samples are obtained via repeated multiple sampling
with reset. The sampling results will be used as the training set for our decision tree;

2. If there are M input variables, each node will randomly select m (m < M) variables and use these
m variables to determine the best split point. During the generation of the decision tree, the value
of m remains unchanged;

3. Each decision tree grows as much as possible without pruning;
4. New data are predicted by summing all decision trees (using majority voting in classification and

averaging in regression) [43,45].

The RFR predictor is:

f̂
K
rf(x) =

1
K

K∑
k=1

T(x) (1)

where x represents an input vector that is composed of various evidential features, k represents the
number of regression trees that are constructed in RFR, and T(x) represents each constructed tree [46].

In this paper, RFR is implemented in Python (computer programming language) based on
classification and regression tree (CART). CART is a model that is implemented internally by sklearn
and spark [47]. Multiple binary decision trees are packaged into RFRs. When using RFR for regression,
the mean square error is minimized. The main parameters of the RFR call in Python are “n_estimators”
and “max_features.” “N_estimators” represents the number of trees in the forest. The larger the value,
the higher the performance but also the longer the calculation time. “Max_features” represents the size
of the random feature subset that is considered when splitting nodes.

3.2.2. Support Vector Regression (SVR)

SVR is an application of support vector machine (SVM) to the regression problem, namely, to find
a regression plane that minimizes the distance of all the data of a set from the plane. For nonlinear
models, the data must be projected into the feature space. Then, a linear classifier is used in the feature
space. To avoid huge computational complexity when mapping to the feature space, a kernel function is
introduced when performing support vector machine regression. Kernel function is the transformation
of feature from low dimension to high dimension, but it is first calculated on the low dimension, and
the actual classification effect is shown in the high dimension, which avoids the complex calculation
of high dimension and can get the same result. [48]. In this article, SVR is implemented in Python.
The common parameters when calling the function are kernel and C, where kernel indicates the type
of kernel to be used in the algorithm and C indicates the penalty parameter for the error, namely,
a regularization parameter, which is a trade-off between the adjustment function complexity and the
tolerance of the empirical material [47,49]. More time is required for training if C is larger; however,
the prediction results stop improving after a threshold. The SVR function can be expressed as:

f(x) =
N∑

i=1

(
αi −α

∗

i

)
·k(x, xi) + b (2)

where N is the number of samples,
(
αi −α

∗

i

)
is the Lagrange multiplier, k(x, xi) is the kernel function,

and b is the bias term [50,51].

3.2.3. Gradient-Boosted Regression Tree (GBRT)

The GBRT is an iterative decision tree algorithm that consists of multiple decision trees and the
conclusions of all the trees are summed to obtain the final answer. The GBRT was considered together
with the SVM to be a highly generalized algorithm when it was proposed. The core strategy is that
each tree learns the residuals of all previous tree conclusions. This residual is the cumulative amount
that can be obtained after adding the predicted value [52,53]. The typical parameters that GBRT uses
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in Python are “learning_rate,” “n_estimators,” “subsample,” “max_depth,” and “loss”: “learning_rate”
represents the learning rate, on which the contribution of each tree depends; “n_estimators” represents
the number of boosting stages to be executed; “subsample” represents the sample score of each basic
learner that is used for fitting; “max_depth” represents the maximum depth of the regression estimator,
where the maximum depth limits the number of nodes in the tree; and “loss” represents the loss
function optimization method. It is necessary to balance “learning_rate” with “n_estimators” and
“n_estimators” with “subsample” when the model is called [47].

f(x) = predict(0) +
M∑

m=1

s ∗ predict(Tm) (3)

where predict(0) is the initial predicted value, M is the number of trees, s is the scaling factor, and
predict(Tm) is the predicted value of each tree [54].

3.2.4. Multilayer Perceptron Regression (MLPR)

Multilayer perceptron regression is also called artificial neural network. The perceptron is a
simple neuron model, which is a precursor to large neural networks, and typically consists of an input
layer, an output layer, and multiple hidden layers. The multilayer perceptron layer is fully connected
to the next layer, namely, each neuron in the upper layer is connected to all neurons in the next layer.
The layers are articulated by weights and the neurons are arranged in the layers. In each layer, the nodes
receive input only from the nodes in the previous layer and only pass their output to the nodes of the
next layer [55,56]. Common parameters for calling MLPR in Python are “hidden_layer_sizes,” which
specifies the number of neurons in the hidden layer; “activation,” which indicates the function that is
used in the hidden layer [47]. This model optimizes the squared loss via stochastic gradient descent.

f(x) = G(b(2) + W(2)(s(b(1) + W(1)x))) (4)

where b(1) and W(1) are the offset vector and the weight matrix, respectively, of the output layer to the
hidden layer; s is the activation function of the layer; b(2) and W(2) are the offset vector and the weight
matrix, respectively, of the output layer to the hidden layer; and G is the activation function of the
layer [57].

3.2.5. Least Angle Regression (Lars)

Least angle regression is a regression algorithm for high-dimensional data. Similar to forward
stepwise regression, at each step, it identifies the features that are most relevant to the target. When there
are multiple features with equal correlation, instead of continuing along a single feature, it proceeds
along an isometric direction between the features [58]. The parameter that is typically specified when
LARS is called in Python is “n_nonzero_coefs,” which represents the number of targets with non-zero
coefficients [47].

βk = βk + δk∗sign
(
fT
kr

)
(5)

where r is the initial state; k is the feature that is most relevant to r; sign
(
fT
kr

)
is the forward direction,

namely, βk is updated in the direction of sign
(
fT
kr

)
; and δk is the step size [59].
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3.2.6. Ordinary Least Squares (OLS)

Ordinary least squares regression is a linear regression model that identifies the best-matching
function for data by minimizing the sum of the squared errors. OLS is implemented in Python.
The general form of ordinary least squares is as follows:

λ̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2 (6)

λ̂0 = y− λ̂1x (7)

where xi is the input variable, yi is the measured value, x is the average of the input variables, and y is
the average of the measured values [24].

3.3. Model Comparison Method

3.3.1. Collinear Problems

In using field hyperspectral data to evaluate the performance of each model in estimating soil
salinity, the first evaluation criterion is the performance of each model in dealing with collinear
problems. Collinearity problem means that one variable can be represented linearly by several other
variables [60]. The field hyperspectral data that we use contains more than 2000 bands, namely, more
than 2000 features (variables), which easily causes collinearity among variables. If no variable selection
has been conducted or if a suitable regression model has not been selected, false regression can easily
occur. In this paper, to evaluate the performance of each model in dealing with collinear problems,
each model uses the five variations of the spectrum to conduct modelling regression analyses with
5, 10, 15, 20, 30, 40, 50, and 100 bands. These bands are sorted according to the correlation with the
soil salt content from high to low prior to being input into the model and the corresponding number
of bands are input in order. The performance of each model in dealing with collinear problems is
evaluated by comparing the regression results.

3.3.2. Data Noise Problems

When measuring a spectrum, many errors are generated and the noise is expressed by the spectral
curve. Reflections, scattering, and light from other objects in the measurement will enter the probe
together with the reflected light of the salt-affected soil, thereby affecting the spectral information of
the soil. In addition, the sensor that receives the information will introduce system noise into the
spectral information. If the regression model is subsequently applied to satellite imagery, noise from
atmospheric radiation will also be introduced [61]. A satisfactory model is necessary for performing
regression analysis stably even if there is noise in the data. Gaussian white noise is an ideal model
for analyzing channel additive noise, where Gaussian indicates that the probability distribution is a
normal function and white noise indicates that its second-order moment is irrelevant and the first-order
moment is constant. To evaluate the performance of each model in dealing with noise, the original
data are added to Gaussian white noise in MATLAB according to the following signal-to-noise ratios:
5, 10, 15, 20, 30, 40, and 50. The data with various degrees of noise will be added to the regression
analysis and the performance of each model in dealing with noise will be evaluated by comparison
with the results of the regression analysis.

3.3.3. Stability

When using the model for regression analysis, a large change in the regression result will occur in
response to a change in the amount of input data. Hence, the constructed model is only suitable for
limited scenarios and the regression results will be unstable under changes in the amount of data [62].
To evaluate the stability of each model, the input data, namely, the training data, are set to 3/4, 2/4,



Remote Sens. 2019, 11, 2605 11 of 26

and 1/4 of the original data. The stability performance of each model is evaluated according to the
magnitude of the change of each evaluation index as the number of input data changes.

3.3.4. Leave-One-Out Cross-Validation Method

In leave-one-out cross-validation, if the size of the data set D is N, then N-1 data items are used
for training and the remaining data item is used for verification. The main disadvantage of using a
single data item for verification is that there may be a large difference between the true value and
the predicted value. Therefore, in leave-one-out cross-validation, a group is removed from D as a
verification set in each round until all the samples have been evaluated, which requires a total of N
calculations, and the verification error is averaged [63].

3.3.5. Evaluation Index

To evaluate the performance of the model in various aspects, we use determination coefficient
(R2), the ratio of the performance to the deviation (RPD), the root mean square error (RMSE), and
the mean absolute percentage error (MAPE) evaluation indicators. Their calculation formulas are as
follows:

R2 = 1−

∑N
i=1

(
Yi − Ŷi

)2

∑N
i=1

(
Yi −Yi

)2 (8)

RPD =
SDs

RMSE
(9)

RMSE =

√∑N
i=1

(
Yi − Ŷi

)2

N
(10)

MAPE =
1
N

N∑
i=1

∣∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣∣ (11)

where N is the sample size, Yi is the measured value of soil sample i, Ŷi is the salt content of soil sample
i that is predicted by the models, Yi is the average salt content of soil sample i, SDs is the standard
deviation of the measured salt content, and RMSE is the root mean square error of the predicted salt
content. Larger values of R2 and RPD and smaller values of RMSE and MAPE correspond to higher
model performance [21,22,64].

4. Results

4.1. Spectrum Analysis

After the transformation of the raw spectral curve in four forms, four spectral curves were drawn
for each spectral form, each curve representing different soil salt content (Figure 5). When the FD
spectrum curve is near 600 nm, the higher the soil salt content, the larger the value. The CR spectrum
curve shows patterns that differ according to the salt content at 400 nm and 1900 nm. The higher
the SQT curve at a fixed salt content, the larger the value of the curve. When the SNV curve is near
1500 nm and 2000 nm, different absorption characteristics and curve trends are observed as the salt
content is varied.
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Figure 5. Various forms of spectral curves, namely, (a) first derivative (FD), (b) continuum removal
(CR), (c) square root (SQT), and (d) standard normal variate (SNV).

To evaluate the relationship between the band and the soil salinity, various forms of spectra were
correlated with the soil salt content (Figure 6). The results shown in Figure 6 are those that pass the
significance test. The correlations between RS, SQT, and SNV and the soil salt content are strong in the
wavelength range of 350–1400 nm, with correlation coefficients that exceed 0.6, and the correlation
between the band in the range of 1400–1900 nm and soil salt content is from 0.4–0.6. The bands in
which FD is highly correlated with the soil salinity are mainly concentrated from 1400 to 1800 nm
and from 2000 to 2100 nm. The bands in which CR and FD are highly correlated with the soil salinity
are similar and are mainly concentrated from 400 to 600 nm, from 1300 to 1800 nm, and from 1900 to
2100 nm.

Figure 6. Correlations between various bands and the soil salt content.

To evaluate the relationship among the bands with high correlations with the soil salt content,
the curves of the various bands were subjected to autocorrelation analysis (Figure 7a–e). RS, SQT,
and SNV have high autocorrelations in the ranges of 300–1900 nm and 2100–2300 nm and the correlation
coefficients exceed 0.8. The correlation coefficients of FD between 350 and 500 nm, between 1100 and
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1900 nm, and between 2000 and 2200 nm exceed 0.8. The correlation coefficients of CR between 350
and 600 nm, between 1000 and 1400 nm, and between 1400 and 2200 nm exceed 0.8. By comparison,
there is also a strong correlation among the bands with high correlations with the soil salt content.

Figure 7. Correlation analysis. (a) presents the autocorrelation plot of RS, (b) presents the autocorrelation
plot of FD, (c) presents the autocorrelation plot of CR, (d) presents the autocorrelation plot of SQT,
and (e) presents the autocorrelation plot of SNV. The results of a 0.01 significance test are also presented
in the figure.

Therefore, based on the correlation analysis results in this study, some characteristic wavelengths
were selected for modeling while avoiding water absorption characteristics. The bands selected by RS
are 455–554 nm, the bands selected by FD are 1372–1397 nm, 1640–1697 nm, 2090–2113 nm, the bands
selected by CR are 1635–1734 nm, the bands selected by SQT are 464–563 nm, and the bands selected
by SNV are 455–554 nm.

4.2. Model Parameter Determination

After considering the characteristics of each model and the characteristics of the data and after
conducting repeated tests, the main parameters of each model are determined. The parameters are
listed in Table 3.

Table 3. Parameters set by each model.

Model Parameters

RFR n_estimators=2500,min_samples_split=13,max_features=“sqrt”,oob_score=True
SVR kernel=‘linear’, C=15

GBRT n_estimators=500, learning_rate=0.1, subsample=0.5, min_samples_split=20,
max_depth=4, random_state=0, loss=‘huber’

MLPR hidden_layer_sizes=(100,),activation=‘tanh’, random_state=1
Lars n_nonzero_coefs=1

4.3. Analysis on Collinear Problems

The results of the regression analysis of each model with five spectral forms according to various
bands are presented in Figures 8 and 9. Figure 8 plots R2 and RPD between the model estimated value
and the measured value. Figure 9 plots RMSE and MAPE between the estimated and measured results.
By comparison, it is found that the RFR model performs the best on the collinear problem, except that
the regression effect of the FD is abrupt when the input band is 20, whereas the regression results of
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all other variations do not exhibit sharp changes with the increase of the number of bands. The RFR
model is followed by Lars, for which slight fluctuations (in RS and FD) are observed among input
bands 5-30. When the number of bands exceeds 30, the regression performance is slightly reduced.
Lars is followed by GBRT, which is similar to Lars, except that there are more spectral forms that exhibit
fluctuations. In SVR, when the number of input RS bands is greater than 10, the regression result
suddenly drops sharply. In MLPR, the regression results in RS, FD, and SQT fluctuated drastically
with the number of bands. Therefore, the order of the models from strongest to weakest performance
on collinear problems is RFR > Lars > GBRT > SVR > MLPR.

Figure 8. R2 and ratio of performance to deviation (RPD) for each model regression result.
(a) corresponds to random forest regression (RFR), (b) to support vector regression (SVR), (c) to
gradient-boosted regression tree (GBRT), (d) to multilayer perceptron regression (MLPR), and (e)
to Lars.

Figure 9. Root mean square error (RMSE) and MAPE for each model regression result. (a) corresponds
to RFR, (b) to SVR, (c) to GBRT, (d) to MLPR, and (e) to Lars.

4.4. Noise Processing Performance Analysis

The regression results in terms of R2, RPD, RMSE, and MAPE of each model as the noise is
gradually decreased, namely, as the signal-to-noise ratio is increased, are plotted (Figure 10). When
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the signal-to-noise ratio is less than 20, the fluctuation of the estimation results of GBRT is the largest;
hence, the regression of this model is not highly robust to noise. GBRT is followed by SVR and Lars,
which exhibit slight fluctuations in the signal-to-noise ratio. On noisy problem, models RFR and MLPR
are the most stable. Therefore, the order of the models from the strongest to weakest performance on
noisy problems is MLPR > RFR > Lars > SVR > GBRT.

Figure 10. Results of each model on processing noise. (a) represents R2, (b) represents RPD, (c)
represents RMSE, and (d) represents MAPE.

4.5. Stability Analysis

When the training data and the test data change during modelling, the results of each model
are presented in Figure 11. For quantitatively analyzing the changes in the estimation results of each
model, the statistics of the changes in the indicators of the model data are presented in Table 4. When
the training data are 3/4 of the total data, the smallest change occurs with the RFR model. When the
test data are 2/4 and 1/4 of the total data, the smallest change occurs with the SVR model. According of
the magnitude of the change, the SVC model is the most stable, followed by the MLPR, RFR, and Lars
models. The GBRT model is the least stable. The order of the models from highest to lowest stability
under three changes in the data volume is as follows: SVR > MLPR > RFR > Lars > GBRT.

Table 4. Changes in the regression results of each model.

Data ∆ RFR SVC GBRT MLPR Lars

3/4

∆RMSE 0.028 0.049 0.037 0.154 0.101
∆MAPE 0.045 0.107 0.074 0.111 0.111
∆RPD 0.099 0.008 0.054 1.108 0.238
∆R2 0.050 0.096 0.043 0.021 0.102

2/4

∆RMSE 0.107 0.073 0.202 0.071 0.079
∆MAPE 0.143 0.135 0.191 0.028 0.116
∆RPD 0.462 0.250 0.682 0.369 0.277
∆R2 0.177 0.071 0.437 0.207 0.089

1/4

∆RMSE 0.282 0.085 0.265 0.026 0.111
∆MAPE 0.196 0.090 0.203 0.039 0.077
∆RPD 0.894 0.265 0.783 0.039 0.361
∆R2 0.296 0.082 0.642 0.502 0.166
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Figure 11. Regression results for each model with various amounts of data. (a) and (b) show the results
of each model when the training data is 3/4 of the total data. (c) and (d) show the results of each model
when the training data is 2/4 of the total data. (e) and (f) show the results of each model when the
training data is 1/4 of the total data.

4.6. Precision Analysis

The six models were evaluated using the leave-one-out cross-validation method. The results
are presented in Figure 12. The Lars model yields the best prediction result. The obtained R2 is 0.87,
the RPD is 2.67, the RMSE is 0.18, and the MAPE is 0.11. The Lars model is followed by the RFR, SVR,
and MLPR models. The obtained results are both greater than 0.8. GBRT yield the worst modelling
results. The order of the models from highest to lowest precision is as follows: Lars > SVR>RFR >

MLPR > GBRT.
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Figure 12. Cross-validation results graph for each model. (a) represents RFR, (b) represents SVR, (c)
represents GBRT, (d) represents MLPR, and (e) represents Lars.

5. Discussion

5.1. Band Analysis

In this study, some bands were selected according to the sequence from high to low according to the
correlation coefficients based on the correlation analysis results while removing the water absorption
band. The selected bands mainly focus on 455–563 nm, 1372–1397 nm, 1640–1734 nm, and 2090–2113 nm.
The selected bands are compared with the previous studies (Figure 13). Csillag et al. (1993) studied the
spectral reflectivity of surface soil in the spectral range of 495–2395 nm, and found that the key bands
for identifying salt-affected soil were mainly 550–770 nm, 900–1030 nm, 1270–1520 nm, 1940–2150
nm, 2150–2310 nm, and 2330–2400 nm [65]. These bands are similar to the bands used in this study:
455–563 nm, 1372–1397 nm, and 2090–2113 nm. Dehaan et al. (2002) pointed out in the study on
the field-derived spectra of salinized soils that the absorption features of spectra were 505, 920, 1415,
1915, and 2205 nm [12]. The absorption features of the spectrum at 505 nm are in the bands used in
this study. Zhou et al. (2006) used laboratory hyperspectral data to estimate the physicochemical of
reclaimed saline soils and selected six spectral band, namely 448, 530, 670, 880, 1400, and 1900 nm,
to discriminate the four saline land and groups [66]. Among them, 448 nm, 530 nm, and 1400 nm are
similar to the bands used in this study. Weng et al. (2008) used reflectance spectroscopy to estimate
the soil salt content in soils, and pointed out that the reflectance at 1931–2123 nm and 2153–2254 nm
was highly correlated with soil salt content [14]. It is the same as the 2090–2113 nm band used in
this study according to the correlation analysis results. Wang et al. (2012) modeling and inversion
of the effect of salinity on soil reflectance under various moisture conditions were carried out in the
laboratory, and some sensitive bands of salt types were obtained. Sensitive band for Na2SO4 type of
salt affected soils were identified as from 1920–2230 nm, and 1970–2450 nm for NaCl, 350–400 nm for
Na2CO3 [67]. Sidike et al. (2014) used image and spectra to estimate the soil salinity, and the statistical
analysis showed that the sensitive bands of soil salinity were 350–436 nm, 516–814 nm, 1445–1506 nm,
1667–1699 nm, 1882–2096 nm, and 2160–2393 nm [68]. Srivastava et al. (2017) used the visible-near
infrared reflectance spectroscopy to rapidly identify salt-affected soil and pointed out that the spectral
range of 1390–2400 nm was highly sensitive to salinization [69]. The bands used in this study are
similar to those in previous studies. Though, this study chooses the bands that cannot fully cover the
soil salinity sensitive bands used in previous study, by comparison, this study selects the bands that
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also can represent the features of the soil salinity. At the same time, through the regression results also
can indicated, the bands used in this study can be used to estimate the soil salt content.

Figure 13. A comparison between the bands used in this study and those used in previous studies. The
red represents the bands used in this study. The yellow represents the bands used in previous studies.

5.2. Comprehensive Comparison of Models

According to the comparative analysis, the RFR model performs the best on collinear problems and
it also realizes satisfactory performance in terms of noise processing performance, model stability, and
model accuracy. The SVR model has the highest stability. GBRT is the best at dealing with collinearity
in terms of four aspects, but it is poor at dealing with data noise, model stability, and model accuracy.
The MLPR model performs the best on noisy data. The OLS model performs the worst on collinear
problems and its accuracy is the lowest. The Lars model is the most accurate. To comprehensively
consider the performance of each model, each performance is assigned to one of the six levels: the
best performance is assigned to 6 and the worst to 1. Then, the scores of each model are summed to
comprehensively evaluate the performance of each model (Table 5). The overall performance of each
model in terms of the four aspects is presented in Figure 14. The RFR model has the best comprehensive
performance, followed by SVR, MLPR, and Lars, and GBRT and OLS perform the worst.

Figure 14. Performance comparison among the models.
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Table 5. Performance comparison of each model.

Model Collinear Noise Stability Precision Comprehensive

RFR 5 4 3 3 15
SVR 2 2 5 4 13

GBRT 3 1 1 1 6
MLPR 1 5 4 2 12
Lars 4 3 2 5 14

5.3. The Best Precision Model—Lars Model Depth Analysis

An in-depth analysis was conducted on the most accurate model, namely, Lars. First, the ability of
the model on co-linear problems is explored. The number of bands input into the model is incremented
from 1 to 100 in steps of 1 unit. By analyzing the regression results of each model, it is found that the
regression results of Lars model change little with the number of bands. It shows that this model can
process high-dimensional data, and the number of input bands has little influence on the results of the
model (Figure 15).

Figure 15. Explore Lars’ ability to deal with collinearity. The regression results of the model are
compared when the input band is gradually increased by 1 unit.

Then, we explore the limitations of the model in dealing with noisy problems. In the signal-to-noise
ratio range of 1–50, the performance of the model on noisy problems is explored with a step size of 1.
The results are presented in Figure 16. After the analysis, it is found that when the signal-to-noise
ratio is less than 23, the Lars model results in severe fluctuations. When the signal-to-noise ratio
is greater than 23, the results of the Lars model tend to be stable. Therefore, for the Lars model,
when the signal-to-noise ratio of the input data is greater than 23, the results of the model are stable
and acceptable.
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Figure 16. Results of the Lars model on noisy problems. In the signal-to-noise ratio range of 1–50, the
analysis is performed with a step size of 1.

5.4. Comparison of Traditional Methods and Machine Learning Methods

The above research shows that most machine learning methods show good performance in soil
salinization estimation. However, in the study, if the traditional regression method can show good
performance, it is not necessary to choose complex machine learning method. Therefore, a comparison
needs to be made between the traditional methods and machine learning methods. OLS and PLSR
models were selected for comparison in the traditional method, while RFR model with the best
comprehensive performance and Lars model with the highest accuracy were selected for comparison
in the machine learning method.

The four models were compared from four aspects (Figure 17). In dealing with the collinearity
problem, the regression results of the OLS model decreased sharply with the increase of the number of
bands, indicating that the model cannot cope with the collinear phenomenon in the data. With the
increase of the number of bands in the PLSR model, the regression results of the model are stable with
slight fluctuations. In dealing with data noise, the regression results of the OLS model and the PLSR
model vary greatly with the change of the data signal-to-noise ratio, while the machine learning model
is more stable, explaining that these two traditional methods are not as good at processing data noise
as machine learning methods. In terms of model stability, the four models showed similar stability.
In terms of model accuracy, machine learning model is obviously better than traditional methods.
Ma et al. (2019) also compared the accuracy of the machine learning method with the traditional
method in their study, and reached the same conclusion, that is, the accuracy of the machine learning
algorithm is better than the traditional method [70]. Therefore, by comparison, machine learning
methods are more suitable for soil salinization research than traditional methods.
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Figure 17. The results of the four models are compared from four aspects. (a) and (b) represent the
performance of the four models in dealing with collinearity; (c) and (d) represent the performance of
the four models to deal with data noise; (e) and (f) represent the stability of the four models. The figure
shows the variation value of model regression results on the four evaluation indicators when the
amount of training data changes. (g) and (h) represent the accuracy of the four models.

5.5. Spectral Difference Analysis Before and After Soil Disturbance

Field measurements of soil spectra were used in the study, and the soil was undisturbed at the
time of the measurements. But when the soil was chemically analyzed, it was disturbed, causing
the spectrometer to “see” a different salinity than the chemical analysis. Thus, spectral differences
between disturbed and undisturbed soils were investigated. Before the soil samples collected from
the field were sent to the laboratory for analysis, we air-dried the soil samples, removed the gravel,
dead branches, and passed them through a 1-mm sieve, and measured the laboratory spectra of each
group of samples in a dark room. We compared the field spectra with laboratory spectra (Figure 18).
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Figure 18. Field spectra versus laboratory spectra. SSC stands for soil salt content. The figure shows
the changes between field and laboratory spectra as soil salt content increases. (a) shows the spectra
for soil salt content of 2.92 g/kg. (b) shows the spectra for soil salt content of 4.07 g/kg. (c) shows
the spectra for soil salt content of 5.38 g/kg. (d) shows the spectra for soil salt content of 15.54 g/kg.
(e) shows the spectra for soil salt content of 15.85 g/kg. (f) shows the spectra for soil salt content of
16.30 g/kg. (g) shows the spectra for soil salt content of 42.04 g/kg. (h) shows the spectra for soil salt
content of 55.38 g/kg. (i) shows the spectra for soil salt content of 59.28 g/kg. (j) shows the spectra for
soil salt content of 108.27 g/kg. (k) shows the spectra for soil salt content of 159.05 g/kg. (i) shows the
spectra for soil salt content of 221.73 g/kg.

When the soil salt content is low, the change trend of field spectrum curve is consistent with that
of laboratory spectrum curve. Only when the wavelength is greater than 800 nm, the reflectivity of
the laboratory spectrum is higher than that of the field spectrum. This is due to the fact that the soil
measured in the field contains moisture, which makes the spectral reflectivity of the soil decreased as a
whole. With the increase of soil salt content, soil surface crust phenomenon is serious and the field
spectral reflectivity gradually increases. At 1900 nm, there is a strong water absorption valley in the
field spectrum. In this study, the selected wavelength was mainly concentrated at 400–600 nm, within
which the spectral difference before and after soil disturbance was small and had little influence on the
research results. However, the spectra before and after the soil disturbance are different to a certain
extent. The existence of such difference needs to be considered in the subsequent studies, and the
reasons for such difference can be analyzed in depth.
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6. Conclusions

This paper comprehensively analyses the performances of five machine learning models (RFR,
SVR, GBRT, MLPR, and Lars) in estimating the soil salinity using field-measured spectral data.
In dealing with collinearity problem, RFR model is the best, which has strong processing performance
for high-dimensional data. The MLPR and RFR models perform well on data noise problems; thus,
these two models can be considered if the data noise is high. The stability of the SVR models is
satisfactory and changes in the amount of data have less of an impact on the model. The Lars model
has the highest accuracy in estimating the soil salinity. When applying the Lars model for optimal
modelling results, the signal-to-noise ratio of the input data should exceed 23.

Through comprehensive analysis of each model, the ranking of the model comprehensive
performance from strong to weak is RFR>Lars>SVR>MLPR>GBRT. Through comparison it is found
that the comprehensive performance of machine learning model is superior to the traditional regression
learning method. Therefore, RFR model can be used as the preferred model for subsequent studies on
hyperspectral estimation of soil salt content.
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